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Sequential Experimentation

Categories of problems

@ Sequential experimental design
Given two or more hypotheses, and one or more experiments
whose outcome distributions differ under various hypotheses,
design a procedure to test which hypothesis is true.
E.g., Hodgkin or non-Hodgkin lymphoma?



Sequential Experimentation

Categories of problems
@ Sequential experimental design

@ Multi-armed bandit
Given two or more actions, each of which produces stochastic
payoffs sampled from an unknown stationary distribution,
design a procedure to maximize average payoff over time.
E.g., Choose a color for the “donate” button on our site.



Sequential Experimentation

Categories of problems
@ Sequential experimental design
e Multi-armed bandit

@ Best arm identification
Given two or more actions as in the multi-armed bandit
problem, design a procedure to find the one with the highest
average payoff.
E.g., Which of these drugs is most effective at treating high
blood pressure?



Sequential Experimentation

Categories of problems
@ Sequential experimental design
@ Multi-armed bandit
@ Best arm identification
Modes of analysis

@ Bayesian: Optimize average-case performance under some
prior distribution on the true state of the world.

@ Minimax: Optimize worst-case performance over all potential
states of the world.
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Key Techniques

Chernoff bound
a non-asymptotic form of the law of large numbers, used to justify
that certain procedures have high probability of success

Kullback-Leibler divergence

an information theoretic measure of the distinguishability of
probability distributions, used to prove that certain procedures are
(nearly) optimal



Example #1: Biased coin testing

Hypothesis A: fair coin
- _ 1
Hypothesis B: Pr(heads) = %

Design a procedure to:
@ toss coin repeatedly
@ eventually stop and guess A or B
@ ensure Pr(error) < ¢ in both cases.

Try to minimize expected coin tosses.

Fixed Design Procedure: Toss coin s times, guess A unless
empirical frequency of heads exceeds % + 3



Analysis of fixed design procedure

Theorem (Chernoff-Hoeffding)

If X1, ..., Xs are independent random variables supported in [0,1],
and X =139 | X;, then Pr(X — EX > 7) < exp(—272s).

Analysis of fixed design procedure with s samples.

An error (under either hypothesis) requires empirical frequency to
differ from its expected value by more than v = ¢/4.

Hence Pr(error) < exp(—g&2s).
To make this less than §, set s > 8log(1/4)/s°.
E.g., for e = 0.1, = 0.05, 2400 samples suffice.



Analysis of fixed design procedure

Theorem (Chernoff-Hoeffding)

If X1, ..., Xs are independent random variables supported in [0,1],
and X =139 | X;, then Pr(X — EX > 7) < exp(—272s).

Two quantitative hallmarks of optimal experimentation.
e 1/£2 independent samples suffice to distinguish distributions
that differ by €,
e Inflating sample complexity by log(1/J) boosts confidence
tol—4.



Kullback-Leibler divergence: definition

KL-divergence If p, g are two distributions on a finite set €2,

D(pllq) = p(x)log (SEX) :

x€Q

More generally, if p and g are probability measures on a measure

space €2, i
D(pla) = [ tog (j’,g) dp()

where dp/dq denotes the Radon-Nikodym derivative.




Kullback-Leibler divergence: key properties

e For all p,q, D(p|lg) > 0 with equality if and only if p = g.

e If Ber(r) denotes the Bernoulli distribution with parameter r,
then D(Ber(3) || Ber(112)) < &2 for £ < 8/9.

o (High- probablllty Pinsker inequality) If Q = AU B then
p(B) + q(A) > 5 exp(—D(pllq))-

@ (Chain rule for KL-divergence) If p, g are probability
distributions on a sequence x = (x1,...,Xp) € Q1 X -+ X Q,,

D(pllq) = Z oA [D(p(xk|x1s - xk—1) | gOxi|xas - - xk—1))] -



Divergence decomposition lemma

Let J be a set of experiments and let p;, g; denote the distribution
of outcomes for experiment i € J under hypotheses p, g, resp.

Let m be a sequential experimentation protocol and let p™, g™
denote the distributions of sequences produced under p, g, resp.

Lemma (Divergence decomposition lemma)

If Si() is the random variable denoting the number of times
experiment i is performed under protocol m, then

D(p"[lg™) = Y Ep[Si(m)] - D(pillai).

i€J

Proof is an application of the chain rule.



Kullback-Leibler divergence: key properties

e For all p,q, D(p|/g) > 0 with equality if and only if p = g.

e If Ber(r) denotes the Bernoulli distribution with parameter r,
then D(Ber(3) || Ber(112)) < &2 for £ < 8/9.

o (High-probability Pinsker inequality) If Q = AU B then
p(B) + q(A) > 3 exp(—D(pl|q)).
o (Divergence decomposition)
D(p™[|q™) = > ics EplSi(m)] - D(pillqi)-
Typical use case:

Low error probability + Pinsker = Lower bound on D(p™||q™)
Divergence decomposition = Lower bound on E,[S;()].



Approximate optimality of fixed design

Let p, g denote the outcome distributions under Hypothesis A
(fair coin) and Hypothesis B (bias 1<) respectively.

Let A, B denote the events “guess A", “guess B".
If 7 is a procedure satisfying p™(B) < § and g"(A) < § then

25 > p(B) +"(A) > 5 exp(~D(p"[l4"))

so D(p"||g™) > log(1/49).
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Approximate optimality of fixed design

Let p, g denote the outcome distributions under Hypothesis A
(fair coin) and Hypothesis B (bias 11%) respectively.

Let A, B denote the events “guess A", “guess B".
If p™(B) < & and q"(A) < 6 then D(p™||g™) > log(1/40).
If S(7) denotes the number of coin tosses, then

log(1/46) < D(p"[lq™) = E[S(n)] - D(Ber(3) || Ber(*5%))
< E[S(r)] - 2.

Hence log(1/40)/c? samples are required, in expectation.



Biased coin detection: executive summary

To distinguishing a fair coin from an e-biased coin with error
probability 6, O(log(1/5)/c?) samples are necessary and sufficient.

Upper bound: concentration of measure (Chernoff-Hoeffding)
shows that for large sample size, the sample average is probably
close enough to the true expectation.

Lower bound: sample size must be large enough to push the
KL-divergence between null hypothesis and experimental
hypothesis above a confidence threshold.



Example #2: Best arm identification

Design a procedure to select one out of n coins.
One step = pick any coin and toss it.

Ensure that bias of selected coin is e-close to maximum bias, with
probability at least 1 — §. (“procedure is (e,5)-PAC")

Goal: minimize expected number of steps.



Fixed design for best arm identification

Fixed design procedure: Flip each coin s times, select the one
with highest empirical frequency.

To make an incorrect selection, either the best coin or the selected

coin must deviate from its expected frequency by at least /2.

Probability of any coin deviating by /2 is less than exp(—%szs).

So s = 2log(2/§)/e? suffices? (2 bad events, each of prob < §/2)



Fixed design for best arm identification

Fixed design procedure: Flip each coin s times, select the one
with highest empirical frequency.

To make an incorrect selection, either the best coin or the selected
coin must deviate from its expected frequency by at least /2.
Probability of any coin deviating by /2 is less than exp(—%szs).
So s = 2log(2/§)/e? suffices? (2 bad events, each of prob < §/2)
No! Watch out for selection bias.

There are n — 1 suboptimal coins. If one of them deviates by ¢/2
we are more likely to select it. So

Pr(selected coin deviates) > Pr(coin i deviates).



Fixed design for best arm identification

Fixed design procedure: Flip each coin s times, select the one
with highest empirical frequency.

To make an incorrect selection, at least one of the n coins must
deviate from its expected frequency by at least /2.

Probability of any coin deviating by £/2 is less than exp(—fe s).
So s = 2log(n/d)/<? suffices. (n bad events, each of prob < §/n)
Total sample complexity is 2nlog(n/8)/e? = O. s(nlog n).



Lower bound for best arm identification
Define null model p: coin 1 has bias % + ¢, all others have bias %

For i = 2,..., n, define alternative model g;:
same as p except coin i has bias % + 2¢.
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For i = 2,..., n, define alternative model g;:
same as p except coin i has bias % + 2¢.

Let B; = “select /", A; = "don't select /".

1
26 > p"(Bi) + 47 (Ai) = 5 exp(=D(p"[|47))



Lower bound for best arm identification

Define null model p: coin 1 has bias % + ¢, all others have bias %

For i = 2,..., n, define alternative model g;:
same as p except coin i has bias % + 2¢.

Let B; = “select /", A; = "don't select /".

26 > p™(Bi) + qF (A}) > %exp(—D(p”llq?))
log(1/46) < D(p™||qT)
_ %EP[S;(W)] - D(Ber(2) || Ber(2 + 2¢))
< 8%E,[Si(7)].



Lower bound for best arm identification

Define null model p: coin 1 has bias % + ¢, all others have bias %

For i = 2,..., n, define alternative model g;:
same as p except coin i has bias % + 2¢.

Let B; = “select /", A; = "don't select /".

26 > p™(Bi) + qF (A}) > %exp(—D(p”llq?))
log(1/46) < D(p™||qT)
_ %EP[S;(W)] - D(Ber(2) || Ber(2 + 2¢))
< 8%E,[Si(7)].

ZEP[S )] > lo <'”(§8/245)> (n—1).




Sequential design vs. fixed design

For fixed design, O(nlog(n/d)/c?) samples suffice.

For any sequential protocol, at least O(nlog(1/8)/e?) are
necessary.

These almost match, but what about the log(n)?



Sequential design vs. fixed design

For fixed design, O(nlog(n/d)/c?) samples suffice.

For any sequential protocol, at least O(nlog(1/8)/e?) are
necessary.

These almost match, but what about the log(n)?

For fixed design procedures, the log(n) factor turns out to be
unavoidable.

But there is a sequential procedure that is (¢,d)-PAC and avoids
the log(n) factor: median elimination. (Even-Dar et al., 2006)



Median elimination

Idea: run in phases, with each phase eliminating half of the
remaining arms, until only 1 remains.

Design goal for phase j: with probability at least 1 — ;, the bias of
the best remaining arm decreases by at most ¢;.

Setting §; = 6/2 and ¢; = } (%)j will then ensure the (e, §)-PAC
property.



Median elimination

Idea: run in phases, with each phase eliminating half of the
remaining arms, until only 1 remains.

Design goal for phase j: with probability at least 1 — §;, the bias of
the best remaining arm decreases by at most ¢;.

In phase j, sample each arm s; times.

For any arm i, Pr(arm i error > 2¢;) < exp(— 1EQSJ) < 16 if

sj=[2 Iog(3/6j)€f2].

Eliminating every €;-good arm requires one of two bad events:
© Error on best arm: probability %5j.

@ Fraction of errors on other arms exceeds 1/2: by Markov,
probability (%51-) / (%) < %51'.



Sample complexity of median elimination

. [2 og (3/@)5}% _ 5 (Iog(;/c?) .j.(4/3)2j>




Sample complexity of median elimination

= [2108(3/5)) %] = 0 ('Ogg/‘s) e (4/3)2j>

Sample complexity:
logy n )
Zsj.(n/2j)0(n-|og 1/5) ZJ (4/3) 212 J)

j=1
i ( log(l/é))

e2

j=1

matching the information-theoretic lower bound up to constant

factors.



Best arm identification: executive summary

To select an arm that is e-close to optimal with probability 1 — §,
O(nlog(1/8)/e?) samples are necessary and sufficient.

Fixed design procedures, which sample each arm a pre-specified
number of times, must inflate the number of samples by a factor of
log(n) in order to mitigate selection bias.

Median elimination culls unpromising arms, draws more samples
from the surviving ones to improve estimation accuracy. This
mitigates selection bias in a more sample-efficient manner.



Example #3: Multi-armed bandits

Given: n arms; arm i produces random payoffs R; ; € [0, 1] by
sampling from unknown stationary distribution F;.

One step = pull an arm, observe its reward.
Let u; = expected payoff of arm i, p. = max{u;}.
Regret of policy 7 at time T:

R(m,T) = . T—E

T
Z /’Lw(t)] .
t=1

Goal: minimize regret.

“Exploration vs. exploitation” trade-off: pulling suboptimal arms
has an opportunity cost, but is necessary in order to confidently
identify the best arm.



The UCBL1 Algorithm (Auer et al., 2002)

© Play each arm once.

@ Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.
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The UCBL1 Algorithm (Auer et al., 2002)

@ Play each arm once.

@ Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

© Always pull arm with highest upper confidence bound (UCB).

log t

An arm sampled s times in first t steps has conf radius .

Hoeffding: Pr(true mean outside conf interval) = O(t~2).

Call a time step “weird” if at least one arm violates its confidence
. . 2
interval. E[# weird steps] < n} ;2  t7% = %n.



The UCBL1 Algorithm (Auer et al., 2002)

© Play each arm once.

@ Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

© Always pull arm with highest upper confidence bound (UCB).

An arm sampled s times in first t steps has conf radius 4/ Io%t.
Excluding weird time steps, arm i with p, — p; = A; > 0 is only
pulled if its confidence interval is wide enough to bridge the gap to
the best arm: 2 'c’%t > A

Among first T time steps, at most 4'%@ non-weird pulls of arm /.

R(UCBL,T) < Zn+4log(T) > £
i:A;>0



The UCBL1 Algorithm (Auer et al., 2002)

@ Play each arm once.

@ Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

© Always pull arm with highest upper confidence bound (UCB).

An arm sampled s times in first t steps has conf radius 4/ "’%t.

R(UCBL,T) < Zn+4log(T) > £
i:A;>0

Remark: A KL-divergence argument (omitted) establishes that
this is optimal, up to constant factors.



Epilogue: Price experimentation

Given: sequence of prices 0 < p1 < pp < -+ < pp < 1.
Stream of consumers with values v; ~ F. (F unknown.)

One step = offer price p;, which is accepted iff vy > p;.

q(p)
‘e
Hypothesis A: ‘.\
Pr(v: > p) = qa(p) =1 —p. Rl o<,
. o %
Hypothesis B: \‘
Pr(ve > p) = qa(p) = 532. .
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Given: sequence of prices 0 < p; < pp < -+ < pp < 1.
Stream of consumers with values v; ~ F. (F unknown.)

One step = offer price p;, which is accepted iff v; > p;.

pq(p)
rad
Hypothesis A: ‘:.
Pr(ve > p) = qa(p) =1 —p. o
Hypothesis B: .jj. \Q
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Epilogue: Price experimentation

Given: sequence of prices 0 < p1 < pp < -+ < pp < 1.
Stream of consumers with values v; ~ F. (F unknown.)

One step = offer price p;, which is accepted iff v; > p;.

palp) D(q,l|q)

>
Hypothesis A: : '/.
Pr(v: > p) = ga(p) =1 - p. o g .
o, .\l/
Hypothesis B: .;)\0 /I\Q
Pr(ve > p) = qa(p) = %3P. oo 0
’ \. ./




Some contemporary research topics

@ Reinforcement learning: The environment has an internal
state (which may or may not be observable) that evolves over
time and governs the distribution of outcomes for each arm.

e Contextual bandits: Before choosing arm 7(t), you can
observe “side information” x;.

e Strategic aspects: Time steps or arms (or both) can be
strategic agents. For example, “pulling an arm” is making a
recommendation to a user, but users will only follow
recommendations they believe to be beneficial.



