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Sequential Experimentation

Categories of problems

Sequential experimental design
Given two or more hypotheses, and one or more experiments
whose outcome distributions differ under various hypotheses,
design a procedure to test which hypothesis is true.
E.g., Hodgkin or non-Hodgkin lymphoma?

Multi-armed bandit

Best arm identification



Sequential Experimentation

Categories of problems

Sequential experimental design

Multi-armed bandit
Given two or more actions, each of which produces stochastic
payoffs sampled from an unknown stationary distribution,
design a procedure to maximize average payoff over time.
E.g., Choose a color for the “donate” button on our site.

Best arm identification



Sequential Experimentation

Categories of problems

Sequential experimental design

Multi-armed bandit

Best arm identification
Given two or more actions as in the multi-armed bandit
problem, design a procedure to find the one with the highest
average payoff.
E.g., Which of these drugs is most effective at treating high
blood pressure?



Sequential Experimentation

Categories of problems

Sequential experimental design

Multi-armed bandit

Best arm identification

Modes of analysis

Bayesian: Optimize average-case performance under some
prior distribution on the true state of the world.

Minimax: Optimize worst-case performance over all potential
states of the world.
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Key Techniques

Chernoff bound
a non-asymptotic form of the law of large numbers, used to justify
that certain procedures have high probability of success

Kullback-Leibler divergence
an information theoretic measure of the distinguishability of
probability distributions, used to prove that certain procedures are
(nearly) optimal



Example #1: Biased coin testing

Hypothesis A: fair coin
Hypothesis B: Pr(heads) = 1+ε

2

Design a procedure to:

toss coin repeatedly

eventually stop and guess A or B

ensure Pr(error) < δ in both cases.

Try to minimize expected coin tosses.

Fixed Design Procedure: Toss coin s times, guess A unless
empirical frequency of heads exceeds 1

2 + ε
4 .



Analysis of fixed design procedure

Theorem (Chernoff-Hoeffding)

If X1, . . . ,Xs are independent random variables supported in [0, 1],
and X̄ = 1

s

∑s
i=1 Xi , then Pr(X̄ − EX̄ > γ) < exp(−2γ2s).

Analysis of fixed design procedure with s samples.

An error (under either hypothesis) requires empirical frequency to
differ from its expected value by more than γ = ε/4.

Hence Pr(error) < exp(−1
8ε

2s).

To make this less than δ, set s > 8 log(1/δ)/ε2.

E.g., for ε = 0.1, δ = 0.05, 2400 samples suffice.



Analysis of fixed design procedure

Theorem (Chernoff-Hoeffding)

If X1, . . . ,Xs are independent random variables supported in [0, 1],
and X̄ = 1

s

∑s
i=1 Xi , then Pr(X̄ − EX̄ > γ) < exp(−2γ2s).

Two quantitative hallmarks of optimal experimentation.

1/ε2 independent samples suffice to distinguish distributions
that differ by ε,

Inflating sample complexity by log(1/δ) boosts confidence
to 1− δ.



Kullback-Leibler divergence: definition

Definition

KL-divergence If p, q are two distributions on a finite set Ω,

D(p‖q) =
∑
x∈Ω

p(x) log

(
p(x)

q(x)

)
.

More generally, if p and q are probability measures on a measure
space Ω,

D(p‖q) =

∫
log

(
dp

dq

)
dp(x),

where dp/dq denotes the Radon-Nikodym derivative.



Kullback-Leibler divergence: key properties

For all p, q, D(p‖q) ≥ 0 with equality if and only if p = q.

If Ber(r) denotes the Bernoulli distribution with parameter r ,
then D(Ber( 1

2 ) ‖Ber( 1+ε
2 )) < ε2 for ε < 8/9.

(High-probability Pinsker inequality) If Ω = A ∪ B then
p(B) + q(A) ≥ 1

2 exp(−D(p‖q)).

(Chain rule for KL-divergence) If p, q are probability
distributions on a sequence x = (x1, . . . , xn) ∈ Ω1 × · · · × Ωn,

D(p‖q) =
n∑

k=1

E
x∼p

[D(p(xk |x1, . . . , xk−1) ‖ q(xk |x1, . . . , xk−1))] .



Divergence decomposition lemma

Let I be a set of experiments and let pi , qi denote the distribution
of outcomes for experiment i ∈ I under hypotheses p, q, resp.

Let π be a sequential experimentation protocol and let pπ, qπ

denote the distributions of sequences produced under p, q, resp.

Lemma (Divergence decomposition lemma)

If Si (π) is the random variable denoting the number of times
experiment i is performed under protocol π, then

D(pπ‖qπ) =
∑
i∈I

Ep[Si (π)] · D(pi‖qi ).

Proof is an application of the chain rule.



Kullback-Leibler divergence: key properties

For all p, q, D(p‖q) ≥ 0 with equality if and only if p = q.

If Ber(r) denotes the Bernoulli distribution with parameter r ,
then D(Ber( 1

2 ) ‖Ber( 1+ε
2 )) < ε2 for ε < 8/9.

(High-probability Pinsker inequality) If Ω = A ∪ B then

p(B) + q(A) ≥ 1
2 exp(−D(p‖q)).

(Divergence decomposition)

D(pπ‖qπ) =
∑

i∈I Ep[Si (π)] · D(pi‖qi ).

Typical use case:
Low error probability + Pinsker ⇒ Lower bound on D(pπ‖qπ)
Divergence decomposition ⇒ Lower bound on Ep[Si (π)].



Approximate optimality of fixed design

Let p, q denote the outcome distributions under Hypothesis A
(fair coin) and Hypothesis B (bias 1+ε

2 ) respectively.

Let A,B denote the events “guess A”, “guess B”.

If π is a procedure satisfying pπ(B) < δ and qπ(A) < δ then

2δ > pπ(B) + qπ(A) ≥ 1

2
exp(−D(pπ‖qπ))

so D(pπ‖qπ) ≥ log(1/4δ).
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2 ))

< E[S(π)] · ε2.

Hence log(1/4δ)/ε2 samples are required, in expectation.
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Biased coin detection: executive summary

To distinguishing a fair coin from an ε-biased coin with error
probability δ, O(log(1/δ)/ε2) samples are necessary and sufficient.

Upper bound: concentration of measure (Chernoff-Hoeffding)
shows that for large sample size, the sample average is probably
close enough to the true expectation.

Lower bound: sample size must be large enough to push the
KL-divergence between null hypothesis and experimental
hypothesis above a confidence threshold.



Example #2: Best arm identification

Design a procedure to select one out of n coins.

One step = pick any coin and toss it.

Ensure that bias of selected coin is ε-close to maximum bias, with
probability at least 1− δ. (“procedure is (ε, δ)-PAC”)

Goal: minimize expected number of steps.



Fixed design for best arm identification

Fixed design procedure: Flip each coin s times, select the one
with highest empirical frequency.

To make an incorrect selection, either the best coin or the selected
coin must deviate from its expected frequency by at least ε/2.

Probability of any coin deviating by ε/2 is less than exp(−1
2ε

2s).

So s = 2 log(2/δ)/ε2 suffices? (2 bad events, each of prob < δ/2)

No! Watch out for selection bias.

There are n − 1 suboptimal coins. If one of them deviates by ε/2
we are more likely to select it. So

Pr(selected coin deviates)� Pr(coin i deviates).
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Fixed design for best arm identification

Fixed design procedure: Flip each coin s times, select the one
with highest empirical frequency.

To make an incorrect selection, at least one of the n coins must
deviate from its expected frequency by at least ε/2.

Probability of any coin deviating by ε/2 is less than exp(−1
2ε

2s).

So s = 2 log(n/δ)/ε2 suffices. (n bad events, each of prob < δ/n)

Total sample complexity is 2n log(n/δ)/ε2 = Oε,δ(n log n).

No!
Watch out for selection bias.

There are n − 1 suboptimal coins. If one of them deviates by ε/2
we are more likely to select it. So

Pr(selected coin deviates)� Pr(coin i deviates).



Lower bound for best arm identification

Define null model p: coin 1 has bias 1
2 + ε, all others have bias 1

2 .

For i = 2, . . . , n, define alternative model qi :
same as p except coin i has bias 1

2 + 2ε.

Let Bi = “select i”, Ai = “don’t select i”.

2δ > pπ(Bi ) + qπi (Ai ) ≥
1

2
exp(−D(pπ‖qπi ))

log(1/4δ) ≤ D(pπ‖qπi )

=
1

2
Ep[Si (π)] · D(Ber( 1

2 ) ‖Ber( 1
2 + 2ε))

< 8ε2Ep[Si (π)].
n∑

i=2

Ep[Si (π)] > log

(
ln(1/4δ)

8ε2

)
(n − 1).
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Sequential design vs. fixed design

For fixed design, O(n log(n/δ)/ε2) samples suffice.

For any sequential protocol, at least O(n log(1/δ)/ε2) are
necessary.

These almost match, but what about the log(n)?

For fixed design procedures, the log(n) factor turns out to be
unavoidable.

But there is a sequential procedure that is (ε, δ)-PAC and avoids
the log(n) factor: median elimination. (Even-Dar et al., 2006)
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Median elimination

Idea: run in phases, with each phase eliminating half of the
remaining arms, until only 1 remains.

Design goal for phase j : with probability at least 1− δj , the bias of
the best remaining arm decreases by at most εj .

Setting δj = δ/2j and εj = 1
3

(
3
4

)j
will then ensure the (ε, δ)-PAC

property.



Median elimination

Idea: run in phases, with each phase eliminating half of the
remaining arms, until only 1 remains.

Design goal for phase j : with probability at least 1− δj , the bias of
the best remaining arm decreases by at most εj .

In phase j , sample each arm sj times.
For any arm i , Pr(arm i error > 1

2εj) < exp(−1
2ε

2
j sj) ≤

1
3δj if

sj = d2 log(3/δj)ε
−2
j e.

Eliminating every εj -good arm requires one of two bad events:

1 Error on best arm: probability 1
3δj .

2 Fraction of errors on other arms exceeds 1/2: by Markov,
probability

(
1
3δj
)
/
(

1
2

)
≤ 2

3δj .



Sample complexity of median elimination

sj =
⌈

2 log (3/δj) ε
−2
j

⌉
= O

(
log(1/δ)

ε2
· j · (4/3)2j

)

Sample complexity:

log2 n∑
j=1

sj · (n/2j) = O

n · log(1/δ)

ε2
·
∞∑
j=1

j(4/3)2j2−j


= O

(
n · log(1/δ)

ε2

)
matching the information-theoretic lower bound up to constant
factors.
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Best arm identification: executive summary

To select an arm that is ε-close to optimal with probability 1− δ,
O(n log(1/δ)/ε2) samples are necessary and sufficient.

Fixed design procedures, which sample each arm a pre-specified
number of times, must inflate the number of samples by a factor of
log(n) in order to mitigate selection bias.

Median elimination culls unpromising arms, draws more samples
from the surviving ones to improve estimation accuracy. This
mitigates selection bias in a more sample-efficient manner.



Example #3: Multi-armed bandits

Given: n arms; arm i produces random payoffs Ri ,t ∈ [0, 1] by
sampling from unknown stationary distribution Fi .

One step = pull an arm, observe its reward.

Let µi = expected payoff of arm i , µ∗ = max{µi}.
Regret of policy π at time T :

R(π,T ) = µ∗T − E

[
T∑
t=1

µπ(t)

]
.

Goal: minimize regret.

“Exploration vs. exploitation” trade-off: pulling suboptimal arms
has an opportunity cost, but is necessary in order to confidently
identify the best arm.



The UCB1 Algorithm (Auer et al., 2002)

1 Play each arm once.

2 Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

3 Always pull arm with highest upper confidence bound (UCB).
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The UCB1 Algorithm (Auer et al., 2002)

1 Play each arm once.

2 Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

3 Always pull arm with highest upper confidence bound (UCB).

An arm sampled s times in first t steps has conf radius
√

log t
s .

Hoeffding: Pr(true mean outside conf interval) = O(t−2).

Call a time step “weird” if at least one arm violates its confidence
interval. E[# weird steps] < n

∑∞
t=1 t

−2 = π2

6 n.



The UCB1 Algorithm (Auer et al., 2002)

1 Play each arm once.

2 Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

3 Always pull arm with highest upper confidence bound (UCB).

An arm sampled s times in first t steps has conf radius
√

log t
s .

Excluding weird time steps, arm i with µ∗ − µi = ∆i > 0 is only
pulled if its confidence interval is wide enough to bridge the gap to

the best arm: 2
√

log t
si
≥ ∆i .

Among first T time steps, at most 4 log(T )
∆2

i
non-weird pulls of arm i .

R(UCB1,T ) < π2

6 n + 4 log(T )
∑

i :∆i>0

1
∆i



The UCB1 Algorithm (Auer et al., 2002)

1 Play each arm once.

2 Thenceforward, maintain a confidence interval for each arm,
centered at its empirical average.

3 Always pull arm with highest upper confidence bound (UCB).

An arm sampled s times in first t steps has conf radius
√

log t
s .

R(UCB1,T ) < π2

6 n + 4 log(T )
∑

i :∆i>0

1
∆i

Remark: A KL-divergence argument (omitted) establishes that
this is optimal, up to constant factors.



Epilogue: Price experimentation

Given: sequence of prices 0 < p1 < p2 < · · · < pn ≤ 1.

Stream of consumers with values vt ∼ F . (F unknown.)

One step = offer price pi , which is accepted iff vt > pi .

Hypothesis A:
Pr(vt > p) = qA(p) = 1− p.

Hypothesis B:
Pr(vt > p) = qB(p) = 2−p

3 .

q(p)

p
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Epilogue: Price experimentation

Given: sequence of prices 0 < p1 < p2 < · · · < pn ≤ 1.

Stream of consumers with values vt ∼ F . (F unknown.)

One step = offer price pi , which is accepted iff vt > pi .

Hypothesis A:
Pr(vt > p) = qA(p) = 1− p.

Hypothesis B:
Pr(vt > p) = qB(p) = 2−p

3 .

D(q   q )A Bp q(p)

p



Some contemporary research topics

Reinforcement learning: The environment has an internal
state (which may or may not be observable) that evolves over
time and governs the distribution of outcomes for each arm.

Contextual bandits: Before choosing arm π(t), you can
observe “side information” xt .

Strategic aspects: Time steps or arms (or both) can be
strategic agents. For example, “pulling an arm” is making a
recommendation to a user, but users will only follow
recommendations they believe to be beneficial.


