
CS6781 - Theoretical Foundations of Machine Learning

Lecture 15: Sequential Experimentation: Theory and Principles
March 12, 2020

Lecturer: Robert Kleinberg Readings: n/a
Scribe: Sloan Nietert

This lecture will examine several categories of problems related to sequential experimentation.

• Sequential Experimental Design: Given two or more hypotheses, and one or more exper-
iments whose outcome distributions differ under the hypotheses, design a procedure to test
which hypothesis is true. For example, Hodgkin or non-Hodgkin lymphoma?

• Multi-Armed Bandit: Given two or more actions, each of which produces stochastic pay-
offs sampled from an unknown stationary distribution, design a procedure to maximize av-
erage payoff over time. For example, choose a color for the “donate" button on our site.

• Best Arm Identification: Given two or more actions as in the multi-armed bandit problem,
design a procedure to find the one with the highest average payoff. For example, which of
these drugs is most effective at treating high blood pressure?

There are several standard modes of analysis for these problems.

• Bayesian: Optimize average-case performance under some prior distribution on the true
state of the world.

• Stochastic: Optimize worst-case performance under the assumption that payoffs/experiment
results are sampled independently from a fixed distribution.

• Adversarial: Optimize worst-case performance under the assumption that payoffs/experi-
ment results are chosen by an oblivious or adaptive adversary.

The following techniques will be key to our analysis.

• The familar Chernoff bound will be used to justify that certain procedures have high proba-
bility of success.

• Kullback-Leibler (KL) divergence is an information theoretic measure of distance between
probability distributions which will be used to prove that certain procedures are (nearly)
optimal.

These scribe notes are based on slides for a guest lecture given to Yale’s Econ 421 class in October 2017.
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Example #1: Biased Coin Testing
As a first example, we consider a scenario in which we toss a single coin and wish to determine
whether:

(A) the coin is fair, or

(B) Pr(heads) = 1+ε
2

.

We seek to design a procedure to toss the coin until eventually stopping and guessing A or B, such
that Pr(error) < δ in both cases. A natural goal is to minimize the expected number of coin tosses.
In particular, we will consider the fixed design procedure which tosses the coin s times and guesses
A unless the empirical frequency of heads exceeds 1/2 + ε/4 (i.e. maximum likelihood estimation).
An error (under either hypothesis) requires empirical frequency to differ from its expected value
by more than ε/4, so the Chernoff-Hoeffding bound gives that

Pr(error) < exp

(
−ε

2s

8

)
.

To make this less than δ, set s > 8 log(1/δ)/ε2. This example exhibits two quantitative hallmarks of
optimal experimentation.

• 1/ε2 independent samples suffice to distinguish distributions that differ by ε,

• Inflating sample complexity by log(1/δ) boosts confidence to 1− δ.

Next, we’ll develop some machinery to prove that no procedure can admit the same error rate
with o(log(1/δ)/ε2) expected samples.

1.1 Kullback-Leibler Divergence
Definition 1.1 (KL Divergence). If p, q are two distributions on a finite set Ω, we define the
Kullback-Leibler divergence between p and q as

D(p ‖ q) :=
∑
x∈Ω

p(x) log

(
p(x)

q(x)

)
.

More generally, if p and q are probability measures on a measure space Ω,

D(p ‖ q) =

∫
Ω

log

(
dp

dq

)
dp,

where dp
dq

denotes the Radon-Nikodym derivative.

KL divergence exhibits several important properties.
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• For all p, q, D(p ‖ q) ≥ 0 with equality if and only if p = q.

• If Ber(r) denotes the Bernoulli distribution with parameter r, then

D

(
Ber

(
1

2

) ∥∥∥ Ber

(
1 + ε

2

))
< ε2

for ε < 8/9.

Less trivially, we also have the following.

Proposition 1.2 (High-Probability Pinsker Inequality). If Ω = A ∪B, then

p(B) + q(A) ≥ 1

2
exp(−D(p ‖ q)).

Proposition 1.3 (Chain Rule for KL Divergence). If p, q are probability distributions over se-
quences x = (x1, . . . , xn) ∈ Ω1 × · · · × Ωn, then

D(p ‖ q) =
n∑
k=1

Ex∼p[D(p(xk|x1, . . . , xk−1) ‖ q(xk|x1, . . . , xk−1))],

where p(xk|x1, . . . , xk−1) is shorthand for the distribution r over Ωk with

r(x) = Pr
y∼p

[yk = x | y1 = x1, . . . , yk−1 = xk−1].

Now, let I be a set of experiments, and let pi, qi denote the distribution of outcomes for experi-
ment i ∈ I under hypotheses p, q respectively. Let π be a sequential experimentation protocol, and
let pπ, qπ denote the distributions of outcome sequences produced under p, q, respectively. Then,
we have the following.

Lemma 1.4 (Divergence Decomposition Lemma). If Si(π) is the random variable denoting the
number of times experiment i is performed under protocol π, then

D(pπ ‖ qπ) =
∑
i∈I

Ep[Si(π)] ·D(pi ‖ qi).

Proof. Let ik = ik(π) be the random variable denoting the experiment selected by π at step k.
Then, by the chain rule, we have

D(pπ ‖ qπ) =
∑
k

Ex∼pπ [D(pπ(xk|x1, . . . , xk−1) ‖ qπ(xk|x1, . . . , xk−1)]

=
∑
k

Ex∼pπ

[∑
i∈I

1(ik = i) D(pi ‖ qi)

]
=
∑
i∈I

Ep[Si(π)] ·D(pi ‖ qi).

Now, if we know that an experimentation protocol has a low error probability, then we can
use Pinkser’s inequality to bound D(pπ ‖ qπ) from below. From there, we can use divergence
decomposition to lower bound Ep[Si(π)]. To make this concrete, we return to the coin tossing
experiment.
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1.2 Approximate Optimality of Fixed Design
Theorem 1.5. To distinguish a fair coin from an ε-biased coin with error probability at most δ,
O(log(1/δ)/ε2) samples are necessary and sufficient.

Proof. We have already proven sufficiency. For the lower bound, let p, q denote the outcome
distributions under Hypothesis A (fair coin) and Hypothesis B (bias 1/2 + ε/2) respectively, and let
A,B denote the events “guess A”, “guess B”. Then, if π is a procedure satisfying pπ(B) < δ and
qπ(A) < δ, we have

2δ > pπ(B) + qπ(A) ≥ 1

2
exp(−D(pπ ‖ qπ)),

so D(pπ ‖ qπ) ≥ log(1/4δ). If S(π) denotes the number of coin tosses, then

log

(
1

4δ

)
≤ D(pπ ‖ qπ) = Ep[S(π)] ·D

(
Ber

(
1

2

) ∥∥∥ Ber

(
1 + ε

2

))
< Ep[S(π)] · ε2.

Hence, log(1/4δ)/ε2 samples are required in expectation under Hypothesis A. Because the Pinsker
inequality is symmetric, this lower bound actually holds under both hypotheses.

Example #2: Best Arm Identification
Next, we will design a procedure to select one out of n coins with maximum bias. Each step
consists of picking a coin and tossing it. We require that the bias of the selected coin is ε-close to
maximum bias, with probability at least 1−δ, i.e. the procedure is (ε, δ)-PAC, and aim to minimize
the expected number of steps under such requirements.

Algorithm 1 Best Arm Identification - Fixed Design Procedure
1: procedure BESTARMFIXED(s)
2: Toss each coin s times
3: return coin with highest empirical frequency

Theorem 2.6. If s = 2 log(n/δ)/ε2, then BESTARMFIXED(s) is (ε, δ)-PAC and has total sample
complexity Oε,δ(n log n).

Proof. To make an incorrect selection, either the best coin or the selected coin must deviate from its
expected frequency by at least ε/2. Hoeffding’s inequality tells us that the probability of any single
coin deviating by ε/2 is less than exp(−ε2s/2), so the union bound gives that s = 2 log(n/δ)/ε2 suffices
(n bad events, each occuring with probability less than δ/n). Thus, the total sample complexity is
2n log(n/δ)/ε2 = Oε,δ(n log n).

Now, we move to a lower bound.
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Theorem 2.7. Any (ε, δ)-PAC algorithm for best arm identification requires Ω(n log(1/δ)/ε2) samples.

Proof. Define the null model p such that coin 1 has bias 1/2 + ε and all others have bias 1/2. For
i = 2, . . . , n, define the alternative model qi to be the same as p except with coin i having bias
1/2 + 2ε. For i = 2, . . . , n, let Bi denote the event “i selected”, and let Ai = “i not selected”.
Pinsker’s inequality requires that

2δ > pπ(Bi) + qπi (Ai) ≥
1

2
exp(−D(pπ ‖ qπi )),

so divergence decomposition gives

log

(
1

4δ

)
≤ D(pπ ‖ qπi )

=
1

2
Ep[Si(π)] ·D (Ber (1/2) ‖ Ber (1/2 + 2ε))

< 8ε2Ep[Si(π)].

Summing over i, we find that

n∑
i=2

Ep[Si(π)] >
log
(

1
4δ

)
8ε2

(n− 1).

Thus, for any sequential protocol, at least Ω(n log(1/δ)/ε2) samples are necessary.

We just saw that O(n log(n/δ)/ε2) samples sufficed via the fixed design procedure – what about
the log(n) factor? It turns out that there is an (ε, δ)-PAC sequential procedure which avoids the
log(n): median elimination (Even-Dar et al. [2006]).

2.3 Median Elimination
The main idea of this algorithm is to run in phases, with each phase eliminating half of the remain-
ing arms (based on empirical frequency), until only 1 remains. The goal of phase j is to decrease
the bias of the best remaining arm by no more than εj with probability at least 1 − δj . Setting
δj = δ/2j and εj = 1/3 (3/4)j will ensure the (ε, δ)-PAC property.

Algorithm 2 Best Arm Identification - Median Elimination
1: procedure MEDIANELIMINATION

2: while multiple coins remain do
3: Toss each coin sj =

⌈
2 log(3/δj)/ε2j

⌉
times

4: Eliminate half of the coins according to empirical frequency
5: return remaining coin
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Theorem 2.8. MEDIANELIMINATION is (ε, δ)-PAC and requires O (n log(1/δ)/ε2) samples.

Proof. By our choice of sj , we can bound

Pr
(

arm i error >
εj
2

)
< exp

(
−
ε2
jsj

2

)
≤ δj

3
.

Eliminating every εj-good arm requires one of two bad events:

1. Error on best arm: probability δj/3.

2. Fraction of errors on other arms exceeds 1/2: since the expected fraction of arms with errors
is at most δj/3, Markov’s inequality gives that the probability of this many errors is no greater
than (δj/3) /(1/2) ≤ 2δj/3.

Hence, a εj-good arm remains with probability δj , as desired. Next, we observe that

sj =

⌈
2

ε2
log

(
3

δj

)⌉
= O

(
1

ε2
log

(
1

δ

)
· j
(

4

3

)2j
)
,

so the total sample complexity is at most
log2 n∑
j=1

sj ·
n

2j
= O

(
n log

(
1
δ

)
ε2

·
∞∑
j=1

j

(
4

3

)2j

2−j

)
= O

(
n log

(
1
δ

)
ε2

)
,

matching the information-theoretic lower bound up to constant factors.

In summary, to select an arm that is ε-close to optimal with probability 1 − δ, O(n log(1/δ)/ε2)
samples are necessary and sufficient. Fixed design procedures, which sample each arm a pre-
specified number of times, must inflate the number of samples by a factor of log(n) in order to
mitigate selection bias. Median elimination culls unpromising arms, drawing more samples from
the surviving ones to improve estimation accuracy. This mitigates selection bias in a more sample-
efficient manner.

Example # 3: Multi-Armed Bandits
In this scenario, we are given n arms, where arm i produces random payoff Ri,t ∈ [0, 1] at step t
by sampling from an unknown stationary distribution Fi. At each step, we pull an arm and observe
its reward. Let µi denote the expected payoff of arm i, and let µ∗ = max{ui}. Then, the (pseudo)
regret of policy π at time T is

R(π, T ) = µ∗T − E

[
T∑
t=1

µπ(t)

]
.

Standard regret compares the expected cumulative payoff to the best possible payoff, but this for-
mulation is a more realistic baseline for comparison. Our goal, as usual, is to minimize regret. This
setup distills the omnipresent “exploration vs exploitation" trade-off to its core: pulling suboptimal
arms has an opportunity cost but is necessary in order to confidently identify the best arm.
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3.4 The UCB1 Algorithm
We will analyze the following algorithm due to Auer [2002].

Algorithm 3 Multi-Armed Bandits - Upper Confidence Bound
1: procedure UCB1
2: Play each arm once
3: Maintain a confidence interval for each arm, centered at its empirical average (with radius

specified below)
4: Always pull arm with highest upper confidence bound

Specifically, an arm sampled s times in the first t steps is given confidence radius
√

log(t)/s.

Figure 1: State of UCB1 midway through algorithm

Theorem 3.9. The regret of UCB1 is bounded by

R(UCB1, T ) <
π2

6
n+ 4 log(T )

∑
i:∆i>0

1

∆i

,

where ∆i = µ∗ − µi.

Proof. By our selection of confidence radius, Hoeffding’s inequality implies that

Pr(true mean outside confidence interval) = O(t−2).

We call a time step “weird" if at least one arm violates its confidence interval, so that

E[# weird steps] < n

∞∑
t=1

t−2 =
π2

6
n.
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Excluding weird time steps, arm i with µ∗−µi = ∆i > 0 is only pulled if its confidence interval is
wide enough to bridge the gap to the best arm, i.e. 2

√
log(t)/si ≥ ∆i. Among the first T time steps,

there are at most 4 log(T )/∆2
i non-weird pulls of arm i. Thus,

R(UCB1, T ) <
π2

6
n+ 4 log(T )

∑
i:∆i>0

1

∆i

.

As before, a KL divergence argument (omitted) establishes that this is optimal, up to constant
factors.
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