
CS6781 - Theoretical Foundations of Machine Learning

Lecture 14, 16: Follow The Regularized/Perturbed Leader
March 10, 2020

Lecturer: Nika Haghtalab Readings: N/A
Scribe: Kate Donahue, Ziyang Wu, and Jonathan Chang

1 Review
Last time, we discussed the statistical and algorithmic aspects of online learning. We investigated
how algorithms that perform well offline fare in online settings. We found that ERM does not do
well in the online world and indeed any deterministic algorithm performs poorly as well. This is
due to the fact that OPT (best solution) kept switching from one time step to another. Today, we
will look at the algorithmic implications of this and provide an online no-regret algorithm that is
very similar to ERM.

Let us start by recalling a lemma we saw in the last lecture.

Lemma 1.1. Let xt to be the ERM performed on the historical data up to the current time step,
i.e., xt ← argminx

∑t−1
τ=1 c

τ (x). Then,

Regret ≤
T∑
t=1

[
ct(xt)− ct(xt+1)

]
We proved this in class last week. Note that ct(xt) − ct(xt+1) is 0 whenever xt = xt+1 (ERM

doesn’t switch). Last time, we showed that:

T∑
t=1

ct(xt+1) ≤ min
x

T∑
t=1

ct(x)

by induction. Once we have this, the result is immediate, because

Regret =
T∑
t=1

[
ct(xt)

]
−min

x

T∑
t=1

[
ct(x)

]
≤

T∑
t=1

[
ct(xt)− ct(xt+1)

]
The implication is that if ERM is stable (xt+1 and xt switch at most k times, or ct(x)− ct(xt+1) is
positive only in k time steps), then regret ≤ k.

1

2 Follow the Regularized Leader
In this section, we see how we can stabilize ERM so as to achieve a no-regret algorithm. We
start by considering ERM with one small change, we add to the history a new cost function c0(·).
This cost function is often called a regularizer. We refer to ERM with a regularizer as Follow the
Regularized Leader (FTRL) algorithm. See Algorithm 1 for a description.

Algorithm 1 Follow the Regularized Leader

R(·) regularizer
x1 = argminxR(x)
for t = 2, 3, 4, ...T do
xt = argminx∈XR(x) +

∑t−1
τ=1 c

τ (x)
end for

Theorem 2.1 (FTRL Theorem). Let xt be the action played by the FTRL algorithm (Algorithm 1)
at time t. Then, for any x∗ ∈ X ,

T∑
t=1

ct(xt)−
T∑
t=1

ct(x∗) ≤
T∑
t=1

[
ct(xt)− ct(xt+1)

]
+
[
R(x∗)−R(x1)

]
In other words, if you regularize your ERM, the regret is the same as in Lemma 1.1, but includes

the difference term for the regularizer.

Proof. In order to prove this, we will follow the same steps as we did before, but we will include
the cost on a the 0th day, c0(x) = R(x). FTRL is equal to ERM but on this altered history. By
Lemma 1.1 we have.

T∑
t=0

ct(xt)− ct(x∗) ≤
T∑
t=0

ct(xt)− ct(xt+1).

c0(x0)− c0(x∗) +
T∑
t=1

ct(xt)− ct(x∗) ≤ c0(x0)− c0(x1) +
T∑
t=1

ct(xt)− ct(xt+1)

Cancelling out the c0(x0) and bringing across the terms gives us the result we want.

To see the implications of the FTRL theorem, let us assume that the cost functions we are deal-
ing with are linear. That is, ct(x) = ct · x. Then our hope is that the choice of regularizer induces
large enough cost so that the choice of xt and its loss changes slowly, i.e., ct(xt) − ct(xt+1) ≤ ε,
but also the regularizer is small enough so that R(x∗) − R(x1) is also small. In that case the re-
gret ≤ ε · T + maxxR(x) is hopefully small. So, we need to choose a regularizer that has these
properties.

2

Theorem 2.2. Let X ⊆ Rn be X = {x | ‖x‖2 ≤ 1} and assume that the cost functions on each
step are linear and ‖c‖2 ≤ 1. Consider the FTRL algorithm with the following regularizer

R(x) =

√
T

2
‖x‖22.

Then the regret of FTRL is at most
√
2T .

Proof. Note that x1 = 0 is the minimizer of the regularizer. For all other time steps we have

xt+1 = argminx

√
T

2
‖x‖22 +

t∑
τ=1

cτ · x.

We find this minimum by taking the gradient and setting it to be equal to 0 as follows.

2

√
T

2
· x+

t∑
τ=1

cτ = 0

xt+1 = − 1√
2T

t∑
τ=1

cτ

If we had done this at the time step before, we would have gotten:

xt = − 1√
2T

t−1∑
τ=1

cτ .

So
xt+1 = xt − 1√

2T
ct.

This is online gradient descent! It also shows that ct · xt − ct · xt+1 changes slowly. Then,

Regret ≤
T∑
t=1

ct · (xt − xt+1) +R(x∗)−R(0)

≤
T∑
t=1

(
ct · 1√

2T
· ct
)
+

√
T

2
‖x∗‖22

≤
T∑
t=1

1√
2T

+

√
T

2

=

√
T

2
+

√
T

2
≤
√
2T

3

Note that in the above application of FTRL, it’s possible that we play xt /∈ X , i.e., it is possible
that ‖xt‖ > 1. Can we get similar guarantees as in Theorem 2.2 if we limited FTRL to play
within X ? Yes, when X is a convex body as is in Theorem 2.2. In that case, at every step of the
optimization, let x̂t be what FTRL suggests, and let xt ∈ X be the closest point to x̂t. That is
xt ∈ X is a projection of x̂t on the convex set X . Note that the distance between two points after
projection on a convex body is only smaller than before. That is,

‖xt − xt+1‖ ≤ ‖x̂t − x̂t+1‖.

So the stability property maintained by FTRL still holds here after projection.

3 Follow the Perturbed Leader
Let’s consider an online routing game, where every day we decide what route to take from home
to work. There is a graph G = (V,E) where the domain of our actions are valid paths in G, shown
by the set X ⊆ {0, 1}E . Our cost function is a vector c where entry ci is the traffic or delay on
edge i. When taking route x our total delay is c ·x. While this is a linear cost function, our domain
set X is not convex. Even though this problem is not a convex optimization problem, we can still
solve the ERM efficiently in time poly(|E|) by using Dijkstra’s algorithm. In this section, we ask
whether for linear functions we can turn any efficient ERM into a no-regret algorithm that is also
efficient, even if the problem is non-convex?

Let us consider the case of expert’s advice. We have K be the simplex of n dimensions (all
probability distributions over all experts): {x : xi ≥ 0 ∀i,

∑n
j=1 xj = 1}. Set c to be such

that ci is the cost of expert i, which is between 0 and 1. Theorem 2.2 suggests that if we pick
a strongly convex cost of

√
T/2‖x‖22 then we can get a no-regret algorithm. While this is true,

note that
√
T/2‖x‖22 cannot be interpreted as cost of experts at a time step, simply because it is

not linear. So, we ask whether we can use other methods of providing regularization that lead to
c0(x) = R(x) referring to the cost of the experts on time step 0?

The following algorithm, called Follow the Perturbed Leader (FTPL), achieves this exactly. It
takes a cost function c0 that assigns random costs to each expert at time 0. Then, at every time
steps it picks the expert whose cumulative cost including step 0 is minimized.

Algorithm 2 Follow the Perturbed Leader
for t = 1, 2, 3, 4, ...T do
c0 ∼ distribution
xt = argminxc

0(x) +
∑t−1

τ=1 c
τ (x)

end for

For an adaptive adversary, it is important that we re-draw c0 at every step to preserve the ran-
domness of our algorithm. But for the oblivious adversary we could take c0 once at the beginning
and reuse the same cost throughout. The expected regret of both algorithms is the same.

4

Theorem 3.1. Let X ⊂ Rn be any set (not-necessarily convex) such that maxx,x′ ‖x− x′‖1 ≤ D.
Assume that the cost functions are such that ‖ct‖1 ≤ A. Furthermore, assume that for any x and
x, |c · x| ≤ R. Then, Follow the Perturbed Leader with c0 ∼ Unif

[
0, 2

ε

]n has

E [Regret] ≤ 2D

ε
+ TRAε.

Note that for ε =
√

2D
ART

, this leads to E [Regret] ≤
√
2ARDT.

Proof. Recall from Theorem 2.2 that

E [Regret] ≤ E

[
c0 · (x∗ − x1) +

T∑
t=1

ct · (xt − xt+1)

]
(1)

For the first term in the above inequality we have

c0 · (x∗ − x1) ≤ ‖c0‖∞‖x∗ − x1‖1 ≤
2

ε
D.

Next, we will analyze the second term in Equation 1. By linearity of expectation, we only need
to show that E[ct · xt]− E[ct · xt+1] ≤ Dε/2 for a fixed time step t. To help us with the notation,
we’ll define Box(a,b) as the box with origin at a and length b. Note that FTPL is choosing a
random c0 ∼ Box(0, 2

ε
).

Figure 1 shows the core idea. xt is chosen to optimize x ·
∑t−1

τ=0 c
τ and xt is chosen to optimize

x ·
∑t

τ=0 c
τ , when c0 is taken from the blue and orange boxes respectively. The parameters are

chosen so as to make the overlap between these two boxes very large. When c0 is within this
overalap then intuitively whether or not ct was observed by the algorithms matters less. This
shows that with high probability ct · xt is the same as ct · xt+1.

Let’s formalize this using Figure 2.

p := Pr
c0∼Box(0,2/ε)

[
c0 6∈ Box(ct,

2

ε
)

]
=

Box(0, 2
ε
) \ Box(ct, 2

ε
)

Box(0, 2
ε
)

=
Box(0, 2

ε
) \ Box(0, 2

ε
− ct)

Box(0, 2
ε
)

We can upper bound this probability by summing over the dimensions (which involves double
counting):

p ≤
∑

i c
t(i)
(
2
ε

)n−1(
2
ε

)n ≤ A
ε

2

So, the problematic case (sampling from different areas) only happens with small probability at
each stage. Let’s use this to calculate E [ct · xt], by taking c0 ∼ Box(0,2/ε) and conditioning on
whether or not it falls in the overlap.

E
[
ct · xt

]
= Pr

[
c0 6∈ Box

(
ct,

2

ε

)]
E
[
ct · xt|c0 6∈ Box

(
ct,

2

ε

)]
5

Figure 1: Diagram showing the vector of costs placed end-to-end up to time t − 1. The blue box
contains the range of possible areas for c0 and the orange one is the range of possible areas for
c0, given ct. The diagram shows that they largely overlap, so having any one particular ct being
present or not does not largely matter.

Figure 2: Figure demonstrating ways of estimating the size of the overlap

6

+ Pr

[
c0 ∈ Box

(
ct,

2

ε

)]
E
[
ct · xt|c0 ∈ Box

(
ct,

2

ε

)]
= p · E

[
ct · xt|c0 6∈ Box

(
ct,

2

ε

)]
︸ ︷︷ ︸

(1)

+(1− p) · E
[
ct · xt|c0 ∈ Box

(
ct,

2

ε

)]
︸ ︷︷ ︸

(2)

Next, let’s calculate E [ct · xt+1]. This time, we condition on whether c0 6∈ Box(0, 2
ε
− ct). Note

that as we showed in the definition of p, the probability of this event is p as well.

E
[
ct · xt+1

]
= p · E

[
ct · xt+1|c0 6∈ Box

(
0,

2

ε
− ct

)]
︸ ︷︷ ︸

(3)

+(1− p) · E
[
ct · xt+1|c0 ∈ Box

(
0,

2

ε
− ct

)]
︸ ︷︷ ︸

(4)

Recall that

xt ← argmin c0 · x+
t−1∑
τ=1

cτ · x

xt+1 ← argmin c0 · x+ ct · x+
t−1∑
τ=1

cτ · x.

Therefore, the distribution of xt+1 conditional on c0 ∈ Box(0, 2
ε
−ct) is the same as the distribution

of xt conditional on c0 ∈ Box(ct, 2
ε
). This is the key idea that is showing that terms (2) and (4)

are equal to each other.
Next, we see that terms (1) and (3) are close to each other. That is,

(3)− (4) ≤ p · ct(xt − xt+1) ≤ A
ε

2
2R ≤ εAR

We have T of these time steps, so the overall contribution is TRAε.
Combining all this into Equation 1, we get

E[Regret] ≤ 2D

ε
+ TRAε

as desired.

7

	Review
	Follow the Regularized Leader
	Follow the Perturbed Leader

