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1 Overview
Recall that last time, we began to explore the difference between online and offline learnability
of hypothesis classes. While offline learnability is characterized by finite VC dimension, we saw
an example of a class of hypothesis, namely 1-dimensional thresholds, that has a VC dimension
of 1, but cannot be learned in the online setting. In this lecture, we seek an analogous notion to
VC dimension for online learnability which will allow us to bound regret for infinite hypothesis
classes.
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(last lecture) What about infinite classes?

2 Online Learnability
In order to reason about class complexity in offline learning, we considered the shattering of sets.
For online learnability we consider shattering trees, like the one that we used in the discussion of
1-dimensional thresholds last lecture.

Definition 2.1 (Shattering a Tree). Consider a full binary tree of depth d such that each node is
labeled by an x ∈ X . This tree is said to be shattered by H if for every set of labels {yi}di=1 ∈
{+,−}d, the root-to-leaf path x1, . . . , xd that is defined by starting at the root and taking left child
if yi = − and taking the right child otherwise, is such that ∃h ∈ H, h(xi) = yi, ∀i ∈ [d].

Essentially, for a tree to be shattered, for every path in the tree (corresponding to a set of labels
yis) there is a hypothesis inH that labels elements of this path according to yis.

Definition 2.2 (Littlestone Dimension). LDim(H) is the maximal depth of a tree that is shattered
byH.

For example, the Littlestone dimension of a 1-dimensional threshold is infinity. Note that in
this case, the Littlestone dimension is much larger than the VC dimension. We make three remarks
about the magnitude of the Littlestone dimension.
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Remark 2.3. For any classH,
LDim(H) ≤ log2(|H|).

Because each labelling constructs a different path, each path requires a different hypothesis h ∈ H.
Therefore, the number of paths cannot exceed |H|, and log2 (# of paths) = LDim(H) ≤ log2(|H|).

Remark 2.4. For any classH,
LDim(H) ≥ VCDim(H).

Labelings on a set can be encoded as a tree in which every layer has the same element. Note that if
this tree is shattered, the set is shattered as well, so LDim(H) ≥ VCDim(H). However, because
the Littlestone dimension does not require the same element x on each layer it can be much larger
than the VC dimension.

Remark 2.5. There is a classH such that

LDim(H)� log(|H|).

To give an example of this fact, consider the hypothesis class ha = 1(x = a) for a ∈ [0, 1]. Once
we have a positive label, we know the hypothesis. Put another way, no tree of depth two can exists
because no hypothesis can fit two different positive instances. Therefore, LDim(H) = 1, but |H|
is infinite.

Our goal is to be able to lower bound the error of an online learning algorithm using this notion
of the Littlestone dimension. This next theorem allows us to do so.

Theorem 2.6. Any algorithm A for learning H in the mistake bound model has mistake bound
M ≥ LDim(H).

The sketch of the proof is as follows: take a shattered tree and start at x1. Let yt = −ŷt and
take the path defined by y1, y2, . . . yd. Along this path, there are d mistakes that are made. Because
by definition, each path is consistent with an h ∈ H, there exists an h that is consistent.

This next theorem describes the error bound when the Littlestone dimension is infinite.

Theorem 2.7. If LDim(H) is infinite, then any algorithm A has a regret bound R ≥ Ω(T ).

The sketch of the proof is as follows: Let yt ∼ Unif{+,−} and take any path along the
tree. Because the tree is shattered, there exists a hypothesis h that is consistent with any path, so
OPT = 0. However, the labels are random, so the expected error at any step is 1

2
. Therefore, regret

is R ≥ T · 1
2

= T/2.
Ben-David et al. [2009] showed that the regret of any learner is in fact captured by the Little-

stone dimension. Additionally, Ben-David et al. [2009] also established an algorithm that recovers
the same bound up to logarithmic factors.

Theorem 2.8 (Ben-David et al. [2009]). Any algorithm A for learning H in the online learning
setting has regret bound Ω

(√
LDim(H) · T

)
. Additionally, there is an online learning algorithm

that has regret bound O
(√

LDim(H) · T · log T
)

.
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Ignoring the logarithmic term in T , this expression is exactly what we were looking for in the
table in the beginning, an upper and lower bound on regret that has dependence on LDim(H). We
can therefore write the average regret in the online setting for infinite classes is bounded by

REGRET

T
∈ Θ̃

(√
LDim(H)/T )

)
where the Θ̃ hides the logarithmic term in T .

The main takeaway from this section is that statistically, online and offline are very different!
In the next section, we will look at offline learning algorithms and how they perform in the online
setting.

3 Offline Algorithms in the Online Setting
We already know ERM works well for offline learning setting. How well will it work for online
learning setting? The following theorem shows that for some online sequences, ERM or any other
deterministic algorithm has very bad guarantee for regret.

Theorem 3.1. For any deterministic algorithm (including ERM) A, there is an online sequence
such that REGRET(A) ≥

(
1− 1

n

)
T , where n is the number of experts in the problem.

Proof. At each iteration t, since A is deterministic, the adversary can design his cost function as
follows: ct(it) = 1 if it is the expert that the player will choose by A and ct(i) = 0 for all i 6= it.
In this case,

∑T
t=1 c

t(it) = T , while mini∈[n]
∑T

t=1 c
t(i) ≤ T

n
because at least one of the n experts

appeared in less than T/n time steps. Thus REGRET(A) ≥ T − T
n

=
(
1− 1

n

)
T .

This theorem shows the performance of ERM against an worst-case adversary. What made
this sequence very challenging to learn was that the best expert so far, i.e., ERM’s outcome, kept
changing at most time steps. That is, the algorithm was running behind the ERM at the next
step. Indeed, this is the main challenge when it comes to online learning. To begin, let’s see the
following lemma.

Lemma 3.2. If the strategy of the player is ERM, i.e., xt = arg minx
∑t−1

τ=1 c
τ (x), then

REGRET(ERM) =
T∑
t=1

ct
(
xt
)
−min

x

T∑
t=1

ct (x) ≤
T∑
t=1

(
ct
(
xt
)
− ct

(
xt+1

))
.

Before the proof, let us first think about what we can get from this lemma. Note that if there are
only k times steps, for which xt 6= xt+1, then REGRET(ERM) ≤ k. Moreover, even if xt 6= xt+1,
but ct has good Lipschitz property and xt+1 doesn’t change too much from xt, the lemma above
will still give us a meaningful bound. We see more of this next time.
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Proof. The required bound can be rewritten as

T∑
t=1

ct
(
xt+1

)
≤ min

x

T∑
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ct (x) =
T∑
t=1

ct
(
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)
,

where the second equality holds by the definition of xT+1. We prove this new inequality by induc-
tion. When T = 1, the claim follows by definition. Assume

T−1∑
t=1

ct
(
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)
≤ min

x

T−1∑
t=1

ct(x).

Then,

T∑
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ct
(
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)
=

T−1∑
t=1

ct
(
xt+1

)
+ cT

(
xT+1

)
≤ min

x

T−1∑
t=1

ct(x) + cT
(
xT+1

)
(Induction Hypothesis)

≤
T−1∑
t=1

ct(xT+1) + cT
(
xT+1

)
(replacing x← xT+1)

=
T∑
t=1

ct
(
xT+1

)
= min

x

T∑
t=1

ct(x).

as required.
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