
CS6781 - Theoretical Foundations of Machine Learning

Lecture 12: Introduction to Online Learning II
03/03/20

Lecturer: Nika Haghtalab Readings: Blum and Mansour, Chapter 4
Scribe: Seth Strimas-Mackey and Eric Landgrebe

1 Analysis of Randomized Weighted Majority (RWM)
Last time we introduced the Randomized Weight Majority (RMW) algorithm, which attempts to
learn in an online setting against an adaptive adversary from a finite hypothesis class (equivalently
set of experts)H of size n. Also recall that we denote the cost occured by expert i at time step t by
ct(i) ∈ [0, 1].

Algorithm 1 Randomized Weighted Majority (ε)

w1
1, w

1
2, ..., w

1
n = 1

for t = 1, 2, 3, ... do
W t =

n∑
i=1

wti

for i ∈ [n], pt(i) =
wti
W t

sample it from distribution given by pt = (p1, . . . , pn)
for all i : wt+1

i ← wti · (1− ε)c
t(i)

end for

Theorem 1.1. For any T > 0 with an adaptive adversary, for the RMW algorithm:

E

[
T∑
t=1

ct(it)

]
≤ 1

1− ε
E

[
min
i∈[n]

T∑
t=1

ct(i)

]
+

1

ε
ln(N),

where both of the expectations are taken over the (potential) randomization of the adversary and
the algorithm.

Proof. We will think of W t as the "total credibility" we assigned to the various hypotheses in H,
and will begin by lower-bounding this quantity with respect to the optimal hypothesis in hind-sight.

Let CT (i) =
T∑
t=1

ct(i).

Note that for all i ∈ [n], wT+1
i = (1− ε)c1(i) · (1− ε)c2(i) · · · (1− ε)cT (i) = (1− ε)CT (i)

1

https://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

Letting i∗ = arg mini∈[n] c
T (i) we have:

W T+1 =
n∑
i=1

wT+1
i ≥ wT+1

i∗ = (1− ε)CT (i∗)

So taking the natural log and expectation of both sides we get:

E
[
ln(W T+1)

]
≥ E

[
CT (i∗) · ln(1− ε)

]
(1)

Now we will bound W t+1 from above.

W t+1 =
n∑
i=1

(1− ε)ct(i)wti

≤
n∑
i=1

(1− ct(i) · ε)wti (using (1− ε)c ≤ 1− cε)

= W t − ε
n∑
i=1

ct(i) · wti

= W t

(
1− ε

n∑
i=1

ct(i) · pt(i)

) (
using pt(i) =

wti
W t

)
= W t

(
1− εEit∼pt

[
ct(it)|~wt

])
(by definition it ∼ pt)

≤ W te−εE[ct(it)|~wt] (using (1− x) ≤ e−x)

≤ N · e

(
−

t∑
τ=1

εE[cτ (iτ)|~wτ]
)
. (unraveling over past steps)

Now taking an expectation of W T+1 we get:

E
[
W T+1

]
≤ Ne

−
T∑
t=1

εE[ct(it)]
.

Taking the natural log of both sides (using that ln is concave) by Jensen’s inequality we get:

E
[
ln(W T+1)

]
≤ ln

(
E
[
W T+1

])
≤ ln(N)− ε

(
T∑
t=1

E
[
ct(it)

])
(2)

Combining Equation 1 and Equation 2, we get

E
[
CT (i∗) · ln(1− ε)

]
≤ ln(N)− ε

(
T∑
t=1

E
[
ct(it)

])
,

and rearranging,

T∑
t=1

E
[
ct(it)

]
≤ 1

ε
ln(N)− E

[
CT (i∗)

] ln(1− ε)
ε

2

=
1

ε
ln(N) + E

[
CT (i∗)

] 1

ε
ln

(
1

1− ε

)
≤ 1

ε
ln(N) + E

[
CT (i∗)

](1

1− ε

)
.

Here the last step uses the fact that 1
ε

ln
(

1
1−ε

)
≤ 1

1−ε , completing the proof.

2 Defining Regret
For an algorithm A and a sequence {xt}Tt=1, we define the regret of A on {xt}Tt=1 as

Regret
(
A, {xt}Tt=1

)
= E

[
T∑
t=1

ct(it)−min
i∈[n]

T∑
i=1

ct(i)

]
,

where {it}Tt=1 is the sequence of choices that A makes given the input sequence {xt}Tt=1, and ct(i)
is the cost of making choice i on round t. The first term in the expectation is the total cost incurred
by A, whereas the second term is the minimal total cost incurred by any expert. Thus the regret
measures how well A does relative to the best expert in hindsight.

An algorithmA is said to have regret boundR if for any adaptive adversarial sequence x1, . . . , xT ,

Regret
(
A, {xt}Tt=1

)
≤ R.

We can re-formulate Theorem 1.1 above as a regret bound as follows. Using that (1−ε)−1 ≤ 1+2ε
whenever ε ∈ (0, 1/2) and rearrange terms, we find

Regret
(
RWM(ε), {xt}Tt=1

)
≤ 2ε · E

[
min
i∈[n]

T∑
i=1

ct(i)

]
+

1

ε
ln(n)

= 2ε · OPT +
1

ε
ln(n), (3)

where we define OPT to be the expected cost of the best expert in hindsight,

OPT = E

[
min
i∈[n]

T∑
i=1

ct(i)

]
.

Choosing

ε∗ = min

{
1

2
,

√
ln(n)

2 · OPT

}
,

we find
Regret

(
RWM(ε), {xt}Tt=1

)
≤ 2
√

2OPT · ln(n) = O
(√

OPT · ln(n)
)
.

3

If OPT is not known, ε∗ cannot be computed to run the RWM(ε∗) algorithm. However, if we know
the number of steps T that the algorithm will be run for, we can use the fact that in the worst case,
a cost of 1 is payed during each of the T rounds, and so OPT ≤ T . Then, Equation 3 is further
bounded by (2εT + ln(n)/ε), so choosing

εT = min

{
1

2
,

√
ln(n)

2T

}
,

we find
Regret

(
RWM(ε), {xt}Tt=1

)
∈ O

(√
T · ln(n)

)
.

This assumes that T is known in advance. On the other hand, if the total runtime T is also
not known, we can first guess a runtime small T̃ , run the algorithm with for this number of steps
with the associated step size. If the actual time exceed T̃ , we double the estimate to 2T̃ and restart
the algorithm. We continue this process (doubling the runtime each time) until the total number
of steps is at least T . Since the regret is O

(√
2i · ln(n)

)
each time we run the algorithm, and we

run the algorithm O (log(T)) rounds in total (since we double the runtime each time), we find an
overall regret bound of

log T∑
i=1

O
(√

2i · ln(n)
)

= O
(√

T · ln(n)
)
.

The average regret satisfies

Regret
(
RWM, {xt}Tt=1

)
T

→ 0 as T → 0,

In general, we refer to any online algorithm with average regret that converges to zero as T → 0
as a no-regret algorithm.

3 Online Learnability
We now move on to formally define learnability in the online setting.

Definition 3.1. Algorithm A learns class H in the online adversarial setting if there is a function
TH : (0, 1)→ N such that for any ε ∈ (0, 1) and any T ≥ TH(ε), the regret of algorithm A for any
online sequence of length T satisfies

Regret
(
A, {xt}Tt=1

)
T

≤ ε.

In words, the regret is sublinear in T .

Using this definition, the regret bound for the RWM algorithm gives the following corollary for
finite hypothesis classes.

4

Corollary 3.2. IfH is a finite hypothesis class, there exists an algorithm that learns it with

TH(ε) ∈ O
(

ln(|H|)
ε2

)
.

What about for infinite hypothesis classes? In the PAC setting we know that if VCDim(H) ≤ d,
thenH can be PAC-learned with mH(ε, δ) samples, where

mH(ε, δ) = Θ

(
1

ε2
(d+ ln(1/δ))

)
.

Can we also learn H with finite VC dimension in the online setting? It turns out the answer is no.
To show this, let us considerH that is a class of threshold functions in 1-dimension:

H := {ha : a ∈ [0, 1]},

where ha(x) = 1(x ≥ a). This class has VC dimension 1. We will first construct an adversarial
sequence (x1, y1), . . . , (xT , yT) such that number of mistakes made by any algorithm is equal to T ,
but there exists h∗ ∈ H that is consistent with the sequence.

1. Choose x1 = 1/2 and let ŷ1 be the guess of the algorithm for the label of x1.

2. Choose y1, the true label, to be the opposite of ŷ1, i.e. y1 = 21(ŷ1 = 0)− 1. The algorithm
thus makes a mistake on the first round.

3. For every subsequent round t, we set

xt = xt−1 − αt−1
(

1

2

)t
,

where αt = −1 if yt = 0 and αt = 1 when yt = 1. See the learner’s prediction ŷt and set
yt = 21(ŷt = 0) − 1 to be the opposite of the algorithm’s guess, so the algorithm makes a
mistake on it.

Note that there is always a halfpspace that is consistent with the set of generated samples. There-
fore, in the mistake bound model any algorithm will have an∞ mistake bound.

Figure 1: Illustration of sequence (x1, y1), . . . , (xT , yT).

5

For the online adversarial setting introduced above, note that (xt, yt) can depend on the history
(x1, y1), . . . , (xt−1, yt−1), and the predictions ŷ1, . . . , ŷt−1, but cannot depend on the prediction ŷt
at time step t. To avoid this in the construction above, instead of choosing yt to be the opposite
label as ŷt, choose yt uniformly at random from {0, 1} and define xt in the same way as before.
Now at every time step any algorithm will make a mistake with probability 1/2, but there still
exists h∗ ∈ H that is consistent with the sequence. Thus,

E

[
T∑
t=1

1(ŷt 6= yt)−min
h∈H

T∑
t=1

1(h(xt) 6= yt)

]
=
T

2
.

This shows that H is not learnable in the online adversarial setting by any algorithm, even
though it has VC dimension of 1. We thus see that online learnability is inherently different from
offline learnability, and will require a notion other than VC dimension to be characterized.

6

	Analysis of Randomized Weighted Majority (RWM)
	Defining Regret
	Online Learnability

