
CS6781 - Theoretical Foundations of Machine Learning

Lecture 11: Introduction to Online Learning
February 27, 2020

Lecturer: Nika Haghtalab Readings: Chapter 21-21.2, UML
Scribe: Katherine Van Koevering

1 Overview

So far, we have talked about the PAC model where samples are drawn i.i.d. from distribution D
and the goal was to find some h ∈ C with low error on distribution D. Next, we will talk about
a learning model where we make no assumptions about how the data is generated – we do not
assume that there is a distribution that generates the data. Without this assumption, what is the
right performance benchmark? And how do we achieve it? This is what we talk about today.

2 Online Model

Consider a scenario where we make some decision every day with no information on what today is
going to look like ahead of time, but we do know what decisions we have made in the past and how
they performed. An example is deciding which route to take to drive to Cornell everyday without
knowing After driving, we can look back and asses the traffic on our route and perhaps also ask
others what the traffic was like on all the other routes in Ithaca. What you want is that, over a long
period of time, we don’t do much worse than if we took the single best route in hindsight.

In another example, consider the setting where everyday we guess whether the stock market index
is going to go up or down. You may rely on some recommendation sources: Wall Street Journal,
CNN, your neighbor, your psychic, etc. At the end of the day, you observe whether you were
right or wrong. Your goal is not to make many more mistakes compared to your best advisor in
hindsight.

2.1 Mistake Bound Model

We start formalizing this setting via the Mistake Bound model. Given a class of hypothesis C, for
t = 1, 2, 3, ...

1

• Receive xt ∈ X .

• Predict ŷt ∈ {−,+}.

• Receive true label yt = c∗(xt) for some c∗ ∈ C. A mistake is made if ŷt 6= yt

The goal is to bound the number of mistakes you make. Note that we have made a realizability as-
sumption, that is there is an unknown c∗ ∈ C such that for all t, yt = c∗(xt). At every timestep t, the
algorithm has access to the sequence of past experience, i.e., {(x1, y1), (x2, y2), · · · , (xt−1, yt−1)}.

Definition 2.1. An algorithm A learns the hypothesis class C with mistake bound M if for any
online sequence (x1, y1), (x2, y2), ... for which there is c∗ ∈ C, such that yt = c∗(xt) for all t, the
algorithm makes at most M mistakes.

Ideally, you want bothM and the runtime of the per-step runtime of the algorithm to be polynomial
in terms of the instance size.

Example 2.2. Let X = {0, 1}n and C be the set of monotone disjunctions. Can you find an
algorithm with per-round runtime of poly(n) and mistake bound of M = n?

Note that the realizability assumption means that there is a P ∗ ⊆ [n] for which c∗(x) =
∨
i∈P ∗(xi).

Initialize P = [n] and define h(x) =
∨
i∈P (xi). For timestep t, use h to predict ŷt = h(xt). If

we make a mistake on xt, then update P ← P \ {i : xti = 1}. Note that we will never predict
h(xt) = − when c∗(x) = +, because P ∗ ⊆ P t. Also, whenever we make a mistake the size of P t

decreases by at least 1, so we make no more than n mistakes. Furthermore, this is tight. If P ∗ = ∅
and all the vectors are unit vectors, then M = n. Run time is O(n) per step, since we remove at
most n elements.

2.2 Majority/Halving Algorithm

For the remainder of the lecture, let’s forget for a moment about computational efficiency, and
focus on having a low mistake bound. We are still dealing with a class C = {h1, · · · , hn} of hy-
potheses. It’s common to refer to these hypotheses and their predictions as “expert’s advice”. Each
expert will make a prediction at every time step t, and you can observe the history of predictions
by every expert to make a decision at time t. In this section, we will continue making the realiz-
ability assumption: there is some expert h∗ that is always right. For now we will deal with binary
classification - either we are right or we are wrong.

Majority/Halving Algorithm Algorithm: At time t, consult all hi that have yet to make a mistake.
Go with their majority vote.

Theorem 2.3. The Majority Algorithm has mistake bound M ≤ blog2 |C|c.

2

Proof. Note that the mistake bound model assumes that there is some consistent c∗ ∈ C such that
∀t, c∗(xt) = yt. Let St = {hi : hi has not made a mistake so far} and let Wt = |St|. If the majority
make a mistake, then at least half of St were wrong. Thus, Wt+1 ≤ 0.5Wt. Furthermore, we know
Wt ≥ 1 for all t since we assume there exists a “perfect" expert that is always right. This implies
that you can halve Wt at most blog2(|C|)c times.

2.3 Weighted Majority

Notice that the Majority algorithm relies on the existence of a perfect expert, i.e., a consistent
hypothesis. What if there is no consistent c∗ ∈ C? Can we have a mistake bound M that is not too
much worse than the best possible c ∈ C?

Given a sequence {(x1, y1), . . . }, let OPT be the number of mistakes the best expert makes. We
would like to have an algorithm that makes a number of mistakes, M , that is not much worst than
OPT. That is, for any sequence of inputs, M ≤ αOPT+ β for desirable values of α and β.

One possible strategy is the Iterated Majority Algorithm, where we run the Majority Algorithm
until we run out of experts, reinstate all the experts, and start again. Note that for this algorithm,
M ≤ log |C|(OPT + 1). This is because, for every mistake the best expert makes the iterated
Majority Algorithm algorithm can take up to log |C| mistakes and run out of the experts, and
reinstate all experts again.

Iterated Majority Algorithm has a large mistake bound compared to OPT. This is because every-
time the algorithm restarts, it forgets the performance of the experts so far. In order to improve
this algorithm, instead of eliminating experts that make a mistake, we can reduce their credibility.
We can then take this credibility into account when we make our decision. This motivates the
following algorithm:

Algorithm 1 Weighted Majority (ε)

Let w1
1, w

1
2, ..., w

1
n = 1.

for t = 1, 2, 3, ... do
if

∑
i :hi(x

t)=1

wti >
∑

i :hi(xt)=0

wti predict 1. Otherwise predict 0

Receive yt

Define Et = {i : hi(xt) 6= yt}
For each i ∈ Et, update wt+1

i = (1− ε)wti
end for

Theorem 2.4. For any sequence of inputs and any time T > 0, let M be the number of mistakes
the Weighted Majority algorithm makes, and OPT be the number of mistakes made by the best

3

h ∈ C. Then,

M ≤ 2

1− ε
OPT+

2

ε
ln |C|.

Instead of proving the general case, we will prove that for ε = 0.5, M ≤ 2.4OPT+ log |C|.

As we did for the analysis of the Majority Algorithm, we use Wt to roughly represent the amount
of credibility we have left in the set of our experts. Every time we make a mistake, this credibility
is reduced. This gives us an upper bound on the total credibility after having made some number of
mistakes. We use these two bounds to show that our algorithm does not make too many mistakes
compared to the best expert.

Proof. At some time T , W T =
∑n

i=1w
T
i . Let i∗ be the best expert, which makes at most OPT

mistakes, and thus has their weight halved OPT times. It follows that the sum of the weights after
the algorithm has ended, is at least the weight of the best expert, i.e.,

W T+1 ≥ wT+1
i∗ =

(
1

2

)OPT

.

Now we upper bound the remaining credibility — that is, showing that when we make a mistake
the total weight reduces significantly. When Weighted Majority is wrong, then the weight of the
correct experts formed a minority. Recall we denoted the set of wrong experts as Et. So whenever
we make a mistake at time t, we have ∑

i/∈Et

wti ≤
W t

2

Thus,

W t+1 =
1

2

∑
i∈Et

wti +
∑
i/∈Et

wti

=
1

2
(W t −

∑
i/∈Et

wti) +
∑
i/∈Et

wti

=
1

2
W t +

1

2

∑
i/∈Et

wti

≤ 3

4
W t.

Note that W 1 = |C|. How many times can you multiply W 1 by 3
4

stay above 1
2

OPT?

1

2

OPT

≤ W T+1 ≤ 3

4

M

|C|

4

=⇒ M log
4

3
≤ log |C|+OPT

=⇒ M ≤ 2.4(OPT+ log |C|)

Consider the general form of the above theorem, M ≤ 2
1−εOPT + 2

ε
ln |C| ≈ 2(1 + ε)OPT +

2
ε
ln |C|. Note that, this bound essentially states that

M ≤ 2OPT+ 2εOPT+
2

ε
ln |C| ≤ 2OPT+O

(√
OPT ln(|C|)

)
,

for the optimal parameter setting of ε =
√

ln(|C|)
OPT

.

This is not a good bound for large values of OPT. For instance, for OPT = 0.3T , M < 0.6T
does not say much — we can ensure that M = 0.5T in expectation with just random guessing. In
the next section, we show how one can get a bound of M ≤ OPT + O

(√
OPT ln(|C|)

)
. We

show that one of the weaknesses of Weighted Majority algorithm is that it is a deterministic algo-
rithm. Therefore, it does not perform well in presence of adversaries who choose a bad sequence
specifically to make our algorithm have a bad mistake bound (See lecture 13 to see why determin-
istic algorithms have bad performance). Therefore, to improve the multiplicative dependence from
2OPT to OPT, we need to use randomness.

2.4 Randomized Weighted Majority

In this section, we extend the setting to arbitrary costs, instead of focusing on 0/1 error. Formally,
we consider the following setting. We again have n hypotheses or experts, e.g., representing dif-
ferent routes we take to work or different people we ask about the stock market, indexed by [n].
At every time step t, an adversary designs a cost function ct : [n]→ [0, 1], e.g., representing traffic
or time delay, having full knowledge of our algorithm and the history. The algorithm chooses an
expert it to follow and pays cost ct(it). The algorithm sees the cost of every expert afterwards.
Suppose we play for T rounds. We want to compare the cost our algorithm pays, i.e.,

∑T
t=1 c

t(it),
to the cost of the best expert, i.e., mini∈[N]

∑T
t=1 c

t(i). A randomized version of the weighted
majority algorithm is as follows:

Theorem 2.5. At any time T > 0, with an adaptive adversary, for Randomized Weighted Majority,

E

(
T∑
t=1

ct(it)

)
≤ 1

1− ε
E

(
min
i∈[n]

T∑
t=1

ct(i)

)
+

1

ε
ln(n),

where the expectation is taken over the randomness of the algorithm and adversary.

5

Algorithm 2 Randomized Weighted Majority (ε)

w1
1, w

1
2, ..., w

1
n = 1

for t = 1, 2, 3, ... do
W t =

n∑
i=1

wti

For i ∈ [n], pti =
wt

i

W t

Sample it from distribution given by pt = (pt1, . . . , p
t
n).

Receive the cost function ct and pay the appropriate cost ct(it).
For all i : wt+1

i ← wti · (1− ε)c
t(i)

end for

Note that Theorem 2.5 improves on Theorem 2.4 by a factor of 2. Note that when ct(i) is the 0/1
cost function for binary mistakes, Theorem 2.5 implies that E[M −OPT] / εOPT+ 1

ε
ln(n) ∈

O
(√

OPT ln(n)
)

for the optimal parameter setting of ε =
√
ln(n)/OPT. Therefore, this is a

big improvement over the type of results the deterministic Weighted Majority algorithms achieves
in Theorem 2.4. We will prove this theorem in the next lecture.

6

