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1 Overview
In the last lecture we introduced two types of hardness results in learning: hardness of representation-
dependent or “proper" learning, and hardness of representation-independent or “improper" learn-
ing. We also proved a representation-dependent hardness result, namely, that proper learning
of intersection of two halfspaces in the realizable setting is hard. Today we will prove another
representation-dependent hardness result (the hardness of properly agnostically learning a halfs-
pace) and briefly go over a representation-independent hardness result (the hardness of improperly
agnostically learning any “reasonable” halfspace).

2 Hardness of Proper Agnostic Learning of Halfspaces
Properly learning a halfspace in the realizable setting can be done in polynomial time. In lecture
2 we developed an efficient linear programming solution for this problem. We will show that
in absence of the realizability assumption (in the agnostic setting) it is hard to properly learn
halfspaces.

Recall that in the last lecture we took a two-step approach to showing the hardness of prop-
erly learning intersection of two halfspaces in the realizable setting. We first showed hardness of
learning in the consistency model and then showed that this implies hardness in the realizable PAC
setting. We adopt a similar strategy in this lecture, and only focus on the hardness of performing
empirical risk minimization (ERM). Similar to the previous lecture, this can be used to show that
proper agnostic learning of halfspaces is hard.

Theorem 2.1. Given a class of hypothesis C that is the set of halfspaces in n dimension, it is
NP-hard to find h ∈ C that has the smallest error on input set S.

Definition 2.2 (Maximum Independent Set Problem). Given a graph G = (V,E), an independent
set V ′ ⊂ V is a set such that no two vertices in V ′ have an edge between them, i.e., ∀u, v ∈
V ′, (u, v) /∈ E. The maximum independent set (MIS) problem is finding a independent set of
maximum cardinality. This is an NP-Hard problem.

In order to prove theorem 2.1 we are going to show that any instance of the MIS problem can
be mapped onto an instance of the problem of properly agnostically learning a halfspace. We are
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given a graph G = (V,E). Without loss of generality, let V = [n]. We will map this into empirical
risk minimization over halfspaces in n dimension. Construct the input (training set) for the learning
algorithm as

S =
{
(~ei,+) : i ∈ [n]

}
∪
{
(~ei + ~ej,−) : (i, j) ∈ E

}
∪
{
(~0,−)

}
.

where ~ei is the vector with a one in the i’th index and zeros elsewhere. Notice that we are labelling
the origin as−1. We need to show that finding an MIS in G is equivalent to performing ERM on S
over the class of halfspaces. Let ERM be an algorithm that returns a halfspace minimizes error on
positive instances and makes no mistakes on negative instances. Instead of directly showing that
ERM over the class of halfspaces in the agnostic setting is hard, we will first show that ERM in
this setting is hard and then show that this implies that ERM is hard.

Claim 2.3. Let G = ([n], E) and let the training set S be as defined above. Then, there is an
independent set P ⊂ [n] in G of size |P | if and only if there is a halfspace that makes no mistakes
on negative instances and n− |P | mistakes on positive ones in S.

Note that the above claim and the definition of ERM imply that ERM gives us an MIS. There-
fore, proving the claim will show hardenss of ERM. The main idea in the proof of the claim is
that halfspaces divide the space to two convex regions: That is when ~0 is negative and ~ei and ~ej are
positive, then ~ei + ~ej is also positive.

Proof. ⇒ direction: Given an independent set P , consider the halfspace ~w · ~x ≥ 1
2
, where

wi =

{
+1 if i ∈ P
−1 if i /∈ P

.

We need to verify that this halfspace correctly classifies all negative instances and makes ex-
actly n−|P |mistakes on positive instances. Since ~0 · ~w = 0 < 1

2
, (~0,−) is classified correctly. For

each negative instance (~ei + ~ej,−), note that ~w · (~ei + ~ej) = wi + wj . Since P is an independent
set at most one of i and j is in P . This implies that at most one of wi and wj is +1. Therefore,
wi + wj ≤ 0, and (~ei + ~ej,−) is classified correctly. Thus, this halfspace classifies correctly clas-
sifies all negative instances. For each positive instance (~ei,+), note that ~w · ~ei = wi. This is equal
to +1 if i ∈ P , −1 otherwise. Therefore, the number of mistakes on positive instances is equal to
n− |P |.
⇐ direction: Given a halfspace ~w · ~x ≥ w0, where ~w = (w1, w2, . . . , wn), let

P = {i | wi ≥ w0}.

We have to show that if the halfspace makes no mistakes on the negative points then P is an
independent set. Since the halfspace correctly classifies all negative instances, we have ~0 · ~w =
0 < w0 and ~w · (~ei + ~ej) = wi + wj < w0. The second inequality implies that at most one of wi
and wj can be ≥ w0. Given our construction of P at most one of i and j is in P . This shows that
P is an independent set. For every positive instance (~ei,+) we have ~w · ~ei = wi. If wi ≥ w0 then
i ∈ P , otherwise i /∈ P . Since the halfspace makes n− |P | mistakes on positive points, the size of
the independent set P is |P |.
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To see why hardness of ERM also implies hardness of ERM, consider the following. Given
the above training set S, construct a new training set S ′ which contains |S| copies of each negative
instance in S and one copy of each positive instance in S. Observe that making a mistake on even
a single negative instance is worse than making a mistake on all positive instances. Thus, ERM on
S ′ will make no mistakes on negative instances and minimize error on positive instances, which
is precisely our definition of ERM. This shows that in the agnostic setting ERM over the class of
halfspaces is hard and concludes the proof of theorem 2.1.

In light of theorem 2.1 in the proper and agnostic setting we cannot hope to efficiently find a
halfspace with minimum empirical error. However, is it possible to find a halfspace that approxi-
mately minimizes the empirical error? For instance, if ERM outputs a halfspace with error η, can
we efficiently find a halfspace with error at most 2η? If η is small, say, 0.001, then a halfspace with
error at most 0.002 would work reasonably well in practice. Unfortunately, the following theorem
states that this is impossible.

Theorem 2.4 (Hardness of Proper Agnostic Learning of Halfspaces, Guruswami and Raghavendra
[2009]). For arbitrary constants η and α, even if there is a halfspace with some constant error η,
finding a halfspace with error 1

2
− α in the proper (representation-dependent) setting is NP-hard.

Remark 2.5. We can get an error of 1
2

with random coin flips. This theorem says that beating the
predictions of a random coin flips by a bias of more than a constant is hard.

Remark 2.6. The above theorem states that we cannot find a good halfspace for every distributions.
However, not all distributions are bad and we might be able to learn halfspaces that perform very
well in practice on real-life distributions.

3 Hardness of Improper Learning of Halfspaces
In this section we will briefly discuss a representation-independent hardness result.

Theorem 3.1 (Daniely [2016]). (Under some assumptions of hardness) For any constant η, even if
there is a halfspace with a constant error η, it is hard to learner a predictor of any representation
with error 1

2
− 1

nc for any constant c > 1.

Remark 3.2. In contrast to theorem 2.4 the above theorem states that it is hard to “predict” with
low error without restricting to predictors that are halfspaces. The unrestricted “predict” part of
the theorem corresponds to “improper” or “representation-independent” learning.

The proof of this theorem is detailed and the interested reader is encouraged to refer to Daniely
[2016]. In this lecture, we only explain at high level how one can think about hardness of improper
learning.

The main high level idea is that there are problems where distinguishing between something
entirely random and something that has structure is hard. The notion of (lack of) structure is made
precise by the following definition of scattered.
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Definition 3.3 (Scattered). A training set S = {(x1, y1), . . . , (xm, ym)} ⊂ {−1, 1}n × {−1, 1} is
called scattered if each yi is a coin flip, i.e., it is equal to ±1 with probability 1

2
. In other words,

the labels have no correlation with the instances.

Let’s call a problem (HYPηm,H) “easy" if there exists an efficient randomized algorithmA such
that given an input S = {(x1, y1), . . . , (xm, ym)} ⊂ {−1, 1}n×{−1, 1} the algorithm satisfies the
following:

• If there is a h ∈ H with small error errS(h) ≤ η then Pr[A(S) = “almost realizable”] ≥ 3
4
,

where the probability is over the randomness in A.

• If S is scattered then with probability 1−O
(
1
n

)
over the choice of labels, we have Pr[A(S) =

“scattered”] ≥ 3
4

where the probability is over the randomness in A.

Lemma 3.4. Assume that HYPηna is hard for every a > 0. Even for distributions where there is
an h ∈ H such that errD(h) ≤ η, there is no efficient improper learning algorithm with error
errD(h) ≤ 1

2
− 1

nc .

Proof. Roughly speaking, an algorithm is efficient if it does not access too many bits or the output
of the algorithm is not a function of more than polynomial number of bits. In order to prove
this theorem consider the following reduction. Let L be the improper learning algorithm that
uses at most nc′ bits for some constant c′. Define q(n) = n2c+2c′ . Let m = q(n) and on input
S = {(x1, y1), . . . , (xm, ym)} do the following:

• Define D to be the uniform distribution on S. Call L on D.

• Let h be the hypothesis returned by L. If errS(h) ≤ 1
2
− 1

nc then output “almost realizable”.
Otherwise, output “scattered”.

Why does this work?

1. Case 1: ∃h ∈ H such that errS(h) ≤ η. By the definition of L the hypothesis returned,
h, has error errD(h) ≤ 1

2
− 1

nc . Since D is the uniform distribution on S, this means that
errS(h) ≤ 1

2
− 1

nc and the output is “almost realizable”.

2. Case 2: S is scattered. For any fixed hypothesis h ∈ H, using the Hoeffding bound we get
that

Pr
draws of scattered S

[
errS(h) ≤

1

2
− 1

nc

]
≤ exp

(
−2q(n)
n2c

)
.

Since L uses at most nc′ bits there at most 2nc′ hypotheses that could be returned by L
regardless of how these hypotheses are represented . Using union bound, we get that

Pr

[
return h s.t. errS(h) ≤

1

2
− 1

nc

]
≤ 2n

c′

exp

(
−2q(n)
n2c

)
.

Plugging in the definition of q(n) = n2c+2c′ and simplifying yields that the right hand side is
at most 2−nc′

= 1−O
(
1
n

)
.
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To use the above lemma, one first needs to show that the problem HYPη is hard for the class
of halfspaces. At a high level Daniely [2016] proves this by assuming that HYPη is hard for the
class of k-XOR functions. We encourage the interested reader to refer to Daniely [2016] for more
details on the connection between the two classes.

k-XOR functions are ANDs of XORs, where each XOR has up to k variables in it. This is an
example of a 2-XOR function.

(x1 ⊕ x2) ∧ ¬(x2 ⊕ x3) ∧ (x1 ⊕ x4) ∧ ¬(x2 ⊕ x4)

One can think about each of the XORs as a constraints expressed by one of m samples in the data
set. As we say in Homework 1, it is easy to find a satisfying assignment if one exits. However,
when no satisfying assignment exists, it is hard to find an assignment that satisfies the most number
of XORs. The assumption Daniely [2016] uses is that when m ≤ n

√
k log(k) solving HYPηm is hard

for the class of k-XORs.
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