CS6781 - Theoretical Foundations of Machine Learning

Lecture 9: Hardness of Learning
February 18, 2020

Lecturer: Nika Haghtalab Readings: The Design and Analysis of Algorithms, D. Kozen
Scribe: Yurong You and David Low

1 Overview

For the first 4 weeks, we studied definitions of learnability, focusing on the statistical, i.e., the
sample complexity, aspect of learning. Today, we focus on the computation, i.e. run time, aspect
of learning. We can divide the computational aspect of learning into two categories: representation
dependent and representation independent.

o In representation dependent learning, we fix a class C and our algorithm outputs h € C. This
is “proper learning” because we can draw h from a known class C. It is easier to prove results
in representation dependent learning, so we will focus on this category.

e In representation independent learning, we allow our algorithm to output ~ ¢ C. This is
“improper learning” because h is not constrained to be from C. The community has only
recently proven results of this form; we will only state results from this category.

2 Hardness and Reductions

Definition 2.1. Let L be a decision problem. We say that

1. L is NP-hard when for every problem H in NP, there is a polynomial time reduction from
HtoL.

2. Lis NP-complete if L € NP and L is NP-hard. by an oracle machine with an oracle for L.

These problems are only conjectured to be hard; if a polynomial time algorithm for solving any
NP-complete problem is found, then NP = P and all NP-complete problems can be solved in
polynomial time. Examples of NP-complete problems are max independent set, 3-CNF SAT,
subset sum, and hypergraph coloring.


https://www.cs.cornell.edu/courses/cs6820/2019fa/handouts/npcomplete.pdf

To show a problem B is hard, take A from the set of NP-complete problems and show that you
could solve any instance of problem A in polynomial time if you are given an algorithm for problem
B. You can write this reduction as

A<, B.

We need to map instances of problems A to instances of problems B. To show this, you need to
prove that for any instance (input) of problem A,

1. converting an instance of problem A to an instance of B needs at most polynomial time;

2. the solution to the converted instance of B gives the solution to the instance of A with work
that takes at most a polynomial amount of time.

3 Representation Dependent Hardness

In the representation-dependent setting, we consider the hardness of proper learning, where the
algorithm is required to return a hypothesis that belongs to a predetermined hypothesis class C.

That is, assuming that there exists a ¢* € C such that errp(c*) = 0 (realizable setting), how hard
is it to find a hypothesis & € C such that errp(h) < £? More generally, how hard is it to find a
hypothesis i € C even in the non-reailzable setting such that

h) < i
egr( ) <e+ amin eér(c),

for some values of « and .

3.1 Intersection of two Halfspaces

We know from previous lectures that when C is the class of halfspaces, there is an LP that solves the
consistency problem: That is, given S, find a halfspace h such that h(z;) = y; for all (z;,y;) € S,
or establishes that none exists. The same linear program can be used to efficiently learn halfspaces
in the realizable setting. In this section, we see that when C represent the class of intersections of
two halfspaces, this this learning task becomes hard. We first show that solving the consistency
problem in this setting is hard.

Theorem 3.1. Learning intersections of two halfspaces in R in the consistency model is hard.

Definition 3.2 (Hypergraph Coloring Problem). Given a universe [n] and m subsets Sy, Sa, - -+, S C
[n], decide whether one can color each element of [r] with either the color red or blue such that no
S; is monochromatic. This is an NP-Complete Problem.



We are going to show that any instance of the hypergraph coloring problem can be mapped onto
an instance of the intersection of two halfspaces problem. Then if we can solve the intersection
of two halfspaces in the consistency model, we can solve the NP-Complete hypergraph coloring
problem.

We are given a universe [n] and subsets S, -+, S,,. One way to map the hypergraph coloring
problem onto the intersection of halfspaces in R? i.e., to form a sample space S from the universe
[n] and subsets Sy, - - -, Sy, 18 as follows:

f‘l +1
........................ ' S={1,2}

1. Take d = n.

The number of elements in the universe [n] is the dimensionality of the intersection of half-
space problem.

2. (0,+1).
Label the origin as +1.
3. (&,—1) foralli € [n].

Each standard basis vector ¢; € R" is labeled —1. The jth element of the standard basis
vector ¢; is defined as €;[j| = d;; where ¢;; is the Kronecker delta defined as 1 if i = j and O
otherwise.

4. (S;,+1) forall i € [n].
Create, and label as +1, 57@ the indicator vector for .S;. We can write §Z as

g1 {1 ifj e S,

0 otherwise.



Equivalently, S; = 3° ies, -

Claim 3.3. S is consistent with an intersection of two halfspaces if and only if there is a legal
2-coloring of S1,Sa, -+, Sm C [n].

Proof. = direction: given two halfpsaces (hi, hy) whose intersection is consistent with S, we
want to convert it into a legal 2-coloring for Sy, Ss, -+, S,, C [n].

Suppose
hy(Z) = sign(wyxy + - - - + wpx, > W),
he(Z) = sign(wizy + - - - + wyx, > wy).
We color points in [n] as follows. For all i € [n],
red if hi(&;) = —1,
color(i) = 4 blue if hao(€;) = —1,

either color otherwise

We show that this is a legal 2-coloring by contradiction. Assume .S; that is monochromatic. With-
out loss of generality, we assume the nodes in .S; are colored all blue. Then,

1. wi <0:
By construction, (0,41) € S. So, we must have that s,(0) = +1 This implies that 0 > w},.
2. wj < wp:
Forall j € S;, (€}, —1) € S colored blue. Thus, hy(€j) = —1 = wj < wy,.
Thus . .
w - S; = Zw; < |Sj|-wy < wy = ha(S;) = —1,
JES;

— —

which contradicts with the fact that hy(.S;) A ho(S;) = +1.

By the symmetry of the coloring procedure, the proof for when all of the elements of 5; are all red
follows similarly.

<= direction: Given a legal 2-coloring of Sy, Sa, - - -, S, C [n], we need to construct two halfspaces
hy and h, whose intersection is consistent with S.

We construct the h(Z) = sign(wyzq + - - - + w,px, > wyp) and ho(Z) = sign(wjzy + - - - +wl,x, >
wy) as follows,

Vj € [n] —1 if j is colored red,
np,w; = PR
/ ’ +n if j is colored blue,
1
Wo = Ty



and

. , —1 if j is colored blue,
! +n if 7 is colored red,
1

We check the classifications are consistent:

e For 0:

G-0=w-0=0>—-1/2 = hy(0) = hy(0) = +1 = hy(0) A ho(0) = +1

—1/2) =sign(—1 > —1/2) = —
—1/2) =sign(+n > —1/2) = 1

I\/ I\/

which implies h(€;) A ho(€);) = —1.
e For all €j that were colored blue:

—1/2) = sign(4+n > —1/2) = +1,
—1/2) =sign(—1 > —1/2) = —1,

I\/ I\/

which implies h4(€;) A hy(€;) = —1.

e For S;, since it is not monochromatic, there must at least one k£ € S; such that wy, (and wy,)
set as +n, thus

S;

| \/

(n—1)(=1)=1>-1/2 = (S, =
(n—1)(=1)=1>—1/2 = hy(S,) =

L&

+ o+

w - n
w' - n

| \/

which implies hy(S;) A hy(S;) = +1

So, hy A hy is consistent with S. We proved both directions are valid. OJ

3.2 NPvsRP

Definition 3.4. Randomized polynomial time (RP) is the complexity class of problems for which
a probabilistic Turing machine exists such that:



e The algorithm runs in polynomial time in the input size
e [f the correct answer is NO, it always returns NO.
e If the correct answer is YES, then it returns YES with probability at least 1/2.

Theorem 3.5. Proper PAC learning of intersections of two halfspaces in the realizable setting is
hard unless NP = RP.

In other words, assume there exists an algorithm with runtime in poly(n,1/¢,1/0) that properly
PAC learns in this setting to accuracy ¢ and confidence 1 — 9. Then, this is is an algorithm in RP
that solves an NP complete problem.

Proof. To prove this, repeat the same construction as before to get the sample set S that was used
in the consistency model. Define D to be the uniform distribution over S and define ¢ = 1/(2|S])
and = 1/100. The actual instance S’ ~ D™ is taken for m required for the algorithm and the
algorithm takes this S’ as input returns an intersection of two halfspaces. We say YES if the PAC
learning algorithm learns a hypothesis /1 A ho that corresponds to a legal 2-coloring. Otherwise,
say NO.

It is easy to see that if the instance has no legal 2-coloring, then by definition our algorithm returns
NO. Note that because ¢ < 1/(2|S]), then errp(hy A he) < € if and only if hy A hy is consistent
with §. Therefore, when the original instance has a legal 2-coloring, then with probability 1 — ¢
the PAC learning algorithm returns iy A ho that leads to this legal 2 coloring. [
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