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1 Overview
In the last few lectures, we have proved the number of samples sufficient for PAC learning is

mC(ε, δ) ∈ O
(
d ln(1/ε) + ln(1/δ)

ε

)
. (1)

In this lecture, we show that this sample complexity is nearly tight, up to a factor of ln(1/ε).

Theorem 1.1 (PAC Sample Complexity Lower Bound). Any algorithm that PAC learns, with pa-
rameters ε and δ, a concept class C with VC dimension d, must use

mC(ε, δ) ∈ Ω

(
d+ ln(1/δ)

ε

)
.

We will prove this for a constant value of δ in this lecture and leave the added 1
ε

ln(1/δ) sample
complexity as an exercise. More precisely we prove the following theorem.

Theorem 1.2. Any algorithm for PAC learning, with parameters ε and δ ≤ 1/15, a concept class
of C of VC dimension d must use more than (d − 1)/(64ε) samples (for the worst-case choice of
D).

Proof. To prove that there exists a concept c∗ ∈ C and a distributionD that requires a large number
of samples, we will construct a fixed distributionD but label it based on a randomly chosen concept
c∗. If we see that the expected probability of error is high over the choice of c∗, then there must be
a c∗ that would also lead to high error.

Consider a concept class C with VC dimension d. Let Z = {x1, . . . , xd} be a set that is
shattered by C. We will construct a distribution D on the set Z that requires many samples. Since
our distribution by construction will be supported on just Z , without loss of generality we assume
that all concepts in C are also just defined on Z , i.e, we only consider their restriction to Z . Note
that because C shatters Z , we have that |C| = 2d. So, every labeling of x1, . . . , xd is possible.

In this proof, we assume that a concept c∗ for labeling the distribution is drawn uniformly at
random from C. Note that this is equivalent to choosing the label of each xi from {−,+} one at a
time uniformly at random to determine the labeling induced by c∗ on Z .

Let m = d−1
64ε

and A be any algorithm that uses at most m i.i.d. samples before picking a
hypothesis h. We need to show that there exist a distribution D on Z and a concept c∗ ∈ C for
labeling this distribution such that errD(h) > ε with probability at least 1/15.
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At a high level, we use a distribution D that puts a relatively large probability mass on one of
the d points, say x1, and splits the rest of the remaining probability on x2, . . . , xd uniformly. Our
goal is to show that any algorithm that takes m number of samples only, does not even encounter
a large fraction of x2, . . . , xd. Since these points could have been labeled any which way possible
(by the choice of a random c∗ ∈ C) the algorithm cannot predict their labels with probability more
than 1/2 each. Therefore, the algorithm will incur a large error.

More formally, our distribution has point mass p(·) as follows

p(x) =

{
1− 16ε x = x1
16ε
d−1 x = x2, . . . , xd

Let Z ′ = {x2, . . . , xd}. For ease of presentation, we define err′(h) = Pr[c∗(x) 6= h(x) and x ∈
Z ′]. Note that err′(h) ≤ errD(h). So it suffices to show that err′(h) is large.

Let us now define the event B(S) : S contains less than (d − 1)/2 points in Z ′. Note that, in
expectation S contains 16εm = (d − 1)/4 points from Z ′. Furthermore, the number of points in
S that fall in Z ′ is a binomial distribution. Since the median of this distribution is b(d − 1)/4c or
d(d− 1)/4e, we have that

Pr
S∼Dm

[B(S)] ≥ 1/2. (2)

We next show that for a uniformly chosen c∗ ∈ C,

Ec∗,S[err′(h)|B(S)] > 4ε.

Recall that choosing a random c∗ is equivalent to choosing the label of each xi from {−,+}, one at
a time and uniformly at random, to determine the labeling induced by c∗ on Z . When B(S) holds,
A has not seen at least (d − 1)/2 of instances in Z ′. For each of these points, no matter what h
is, in expectation over the labels assigned by c∗, h makes a mistake on that point with probability
exactly 1/2. Therefore,

Ec∗,S[err′(h)|B(S)] >
d− 1

2
× 1

2
× 16ε

d− 1
= 4ε. (3)

Using Inequalities 2 and 3 we have that

Ec∗,S [err′(h)] > 2ε.

This means that there is some c∗ ∈ C such that ES[err′(h)] > 2ε. For the remainder of this proof,
consider this c∗.

Note that err′(h) ≤ 16ε by definition, because it is only penalized by mistakes that h can make
on Z ′. Let p = PrS[err′(h) > ε]. We have

2ε < Ec∗,S [err′(h)] ≤ 16εPr[err′(h) > ε] + εPr[err′(h) ≤ ε] ≤ 16εp+ (1− p)ε,

which shows that p < 1/15.
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2 The Gap between the Upper and Lower Bounds
Comparing the sample complexity upper bound of Equation 1 and lower bound of Theorem 1.1,
we see that they differ by ln(1/ε). So, which one is tight? Interestingly, you could consider both
to be tight but in two different settings!

Auer and Ortner [2007] showed that mC(ε, δ) ∈ Ω
(
d ln(1/ε)+ln(1/δ)

ε

)
is needed (and of course

sufficient based on Equation 1), if we want that with probability 1− δ,

For all h ∈ C, if errS(h) = 0 then errD(h) ≤ ε.

On the other hand, Hanneke [2016] shows that there is an algorithm that doesn’t return just any
arbitrary hypothesis h ∈ C that is consistent with the data and succeeds at PAC learning the class
of C using only

mC(ε, δ) ∈ O
(
d+ ln(1/δ)

ε

)
,

which is also needed by Theorem 1.1. The algorithm that achieves this improved bound takes the
majority vote of classifiers, each of which are trained on data subsets specified by a recursive algo-
rithm, with substantial overlaps between them. Note that because the majority vote of classifiers
in C may not itself belong to C, this algorithm is improperly PAC learning C.
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