Lecture 6: PAC Sample Complexity Lower Bound

February 6, 2020

Lecturer: Nika Haghtalab Readings: None

1 Overview

In the last few lectures, we have proved the number of samples *sufficient* for PAC learning is

$$m_{\mathcal{C}}(\epsilon, \delta) \in O\left(\frac{d\ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}\right).$$
 (1)

In this lecture, we show that this sample complexity is nearly tight, up to a factor of $\ln(1/\epsilon)$.

Theorem 1.1 (PAC Sample Complexity Lower Bound). Any algorithm that PAC learns, with parameters ϵ and δ , a concept class C with VC dimension d, must use

$$m_{\mathcal{C}}(\epsilon, \delta) \in \Omega\left(\frac{d + \ln(1/\delta)}{\epsilon}\right).$$

We will prove this for a constant value of δ in this lecture and leave the added $\frac{1}{\epsilon} \ln(1/\delta)$ sample complexity as an exercise. More precisely we prove the following theorem.

Theorem 1.2. Any algorithm for PAC learning, with parameters ϵ and $\delta \leq 1/15$, a concept class of C of VC dimension d must use more than $(d-1)/(64\epsilon)$ samples (for the worst-case choice of D).

Proof. To prove that there exists a concept $c^* \in \mathcal{C}$ and a distribution \mathcal{D} that requires a large number of samples, we will construct a fixed distribution \mathcal{D} but label it based on a randomly chosen concept c^* . If we see that the expected probability of error is high over the choice of c^* , then there must be a c^* that would also lead to high error.

Consider a concept class $\mathcal C$ with VC dimension d. Let $\mathcal Z=\{x_1,\ldots,x_d\}$ be a set that is shattered by $\mathcal C$. We will construct a distribution $\mathcal D$ on the set $\mathcal Z$ that requires many samples. Since our distribution by construction will be supported on just $\mathcal Z$, without loss of generality we assume that all concepts in $\mathcal C$ are also just defined on $\mathcal Z$, i.e, we only consider their restriction to $\mathcal Z$. Note that because $\mathcal C$ shatters $\mathcal Z$, we have that $|\mathcal C|=2^d$. So, every labeling of x_1,\ldots,x_d is possible.

In this proof, we assume that a concept c^* for labeling the distribution is drawn uniformly at random from \mathcal{C} . Note that this is equivalent to choosing the label of each x_i from $\{-,+\}$ one at a time uniformly at random to determine the labeling induced by c^* on \mathcal{Z} .

Let $m=\frac{d-1}{64\epsilon}$ and $\mathcal A$ be any algorithm that uses at most m i.i.d. samples before picking a hypothesis h. We need to show that there exist a distribution $\mathcal D$ on $\mathcal Z$ and a concept $c^*\in\mathcal C$ for labeling this distribution such that $\mathrm{err}_{\mathcal D}(h)>\epsilon$ with probability at least 1/15.

At a high level, we use a distribution \mathcal{D} that puts a relatively large probability mass on one of the d points, say x_1 , and splits the rest of the remaining probability on x_2, \ldots, x_d uniformly. Our goal is to show that any algorithm that takes m number of samples only, does not even encounter a large fraction of x_2, \ldots, x_d . Since these points could have been labeled any which way possible (by the choice of a random $c^* \in \mathcal{C}$) the algorithm cannot predict their labels with probability more than 1/2 each. Therefore, the algorithm will incur a large error.

More formally, our distribution has point mass $p(\cdot)$ as follows

$$p(x) = \begin{cases} 1 - 16\epsilon & x = x_1\\ \frac{16\epsilon}{d-1} & x = x_2, \dots, x_d \end{cases}$$

Let $\mathcal{Z}' = \{x_2, \dots, x_d\}$. For ease of presentation, we define $\operatorname{err}'(h) = \Pr[c^*(x) \neq h(x) \text{ and } x \in \mathcal{Z}']$. Note that $\operatorname{err}'(h) \leq \operatorname{err}_{\mathcal{D}}(h)$. So it suffices to show that $\operatorname{err}'(h)$ is large.

Let us now define the event B(S): S contains less than (d-1)/2 points in \mathcal{Z}' . Note that, in expectation S contains $16\epsilon m = (d-1)/4$ points from \mathcal{Z}' . Furthermore, the number of points in S that fall in \mathcal{Z}' is a binomial distribution. Since the median of this distribution is $\lfloor (d-1)/4 \rfloor$ or $\lceil (d-1)/4 \rceil$, we have that

$$\Pr_{S \sim \mathcal{D}^m}[B(S)] \ge 1/2. \tag{2}$$

We next show that for a uniformly chosen $c^* \in \mathcal{C}$,

$$\mathbb{E}_{c^*,S}[\operatorname{err}'(h)|B(S)] > 4\epsilon.$$

Recall that choosing a random c^* is equivalent to choosing the label of each x_i from $\{-, +\}$, one at a time and uniformly at random, to determine the labeling induced by c^* on \mathcal{Z} . When B(S) holds, \mathcal{A} has not seen at least (d-1)/2 of instances in \mathcal{Z}' . For each of these points, no matter what h is, in expectation over the labels assigned by c^* , h makes a mistake on that point with probability exactly 1/2. Therefore,

$$\mathbb{E}_{c^*,S}[\operatorname{err}'(h)|B(S)] > \frac{d-1}{2} \times \frac{1}{2} \times \frac{16\epsilon}{d-1} = 4\epsilon. \tag{3}$$

Using Inequalities 2 and 3 we have that

$$\mathbb{E}_{c^*,S}\left[\operatorname{err}'(h)\right] > 2\epsilon.$$

This means that there is some $c^* \in \mathcal{C}$ such that $\mathbb{E}_S[\operatorname{err}'(h)] > 2\epsilon$. For the remainder of this proof, consider this c^* .

Note that $\operatorname{err}'(h) \leq 16\epsilon$ by definition, because it is only penalized by mistakes that h can make on \mathcal{Z}' . Let $p = \Pr_S[\operatorname{err}'(h) > \epsilon]$. We have

$$2\epsilon < \mathbb{E}_{c^*,S}\left[\operatorname{err}'(h)\right] \le 16\epsilon \Pr\left[\operatorname{err}'(h) > \epsilon\right] + \epsilon \Pr\left[\operatorname{err}'(h) \le \epsilon\right] \le 16\epsilon p + (1-p)\epsilon,$$

which shows that p < 1/15.

2 The Gap between the Upper and Lower Bounds

Comparing the sample complexity upper bound of Equation 1 and lower bound of Theorem 1.1, we see that they differ by $\ln(1/\epsilon)$. So, which one is tight? Interestingly, you could consider both to be tight but in two different settings!

Auer and Ortner [2007] showed that $m_{\mathcal{C}}(\epsilon, \delta) \in \Omega\left(\frac{d \ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}\right)$ is needed (and of course sufficient based on Equation 1), if we want that with probability $1 - \delta$,

For all
$$h \in \mathcal{C}$$
, if $\operatorname{err}_S(h) = 0$ then $\operatorname{err}_{\mathcal{D}}(h) \leq \epsilon$.

On the other hand, Hanneke [2016] shows that there is an algorithm that doesn't return just any arbitrary hypothesis $h \in \mathcal{C}$ that is consistent with the data and succeeds at PAC learning the class of \mathcal{C} using only

$$m_{\mathcal{C}}(\epsilon, \delta) \in O\left(\frac{d + \ln(1/\delta)}{\epsilon}\right),$$

which is also needed by Theorem 1.1. The algorithm that achieves this improved bound takes the majority vote of classifiers, each of which are trained on data subsets specified by a recursive algorithm, with substantial overlaps between them. Note that because the majority vote of classifiers in \mathcal{C} may not itself belong to \mathcal{C} , this algorithm is improperly PAC learning \mathcal{C} .

References

Peter Auer and Ronald Ortner. A new pac bound for intersection-closed concept classes. *Machine Learning*, 66(2-3):151–163, 2007.

Steve Hanneke. The optimal sample complexity of PAC learning. *Journal of Machine Learning Research*, 17(1):1319–1333, 2016.