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1 Overview
We spent the last two lecture learning about the growth function, VC dimension, the relationship
between them, and the following theorem. In this lecture, we formally prove these results.1

Theorem 1.1 (PAC Learnability of Infinite Concept Classes). Let A be an algorithm that learns a
concept class C in the consistency model. Then, A learns the concept class C in the PAC learning
model using a number of samples that satisfies

m ≥ 2

ε

(
log2(ΠC(2m)) + log2(

2

δ
)

)
.

2 Proof of Theorem 1.1
In this lecture, we define and work with three “bad” events. First, is the actual failure event, as a
function of the training set S ∼ Dm, we would like to bound:

B(S) : ∃h ∈ C such that errS(h) = 0 and errD(h) > ε.

Second, for the sake of analysis we also consider an independently drawn sample set S ′ ∼ Dm.
We define the following event that is a function of S and S ′.

B′(S, S ′) : ∃h ∈ C such that errS(h) = 0 and errS′(h) >
ε

2
.

Lastly, given two sample sets S = {x1, . . . , xm} and S ′ = {x′1, . . . , x′m}, and a vector ~σ ∈
{−1,+1}m, we swap the members of S and S ′ as follows: For each i ∈ [m], if σi = +1, we
let zi = xi and z′i = x′i, otherwise, we let zi = x′i and z′i = xi. Then, let T = {z1, . . . , zm} and
T ′ = {z′1, . . . , z′m}. Given S, S ′, and ~σ, we define the following bad event:

B′′(S, S ′, ~σ) : ∃h ∈ C s.t., errT (h) = 0 and errT ′(h) >
ε

2
, where T and T ′ correspond to S, S ′, ~σ.

1Several proofs of Theorem 1.1 are known in the literature. The proof approach we cover is similar to that outlined
by Robert Schapire’s lecture notes.
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When representing the probability of these events, we typically take S ∼ Dm, S ′ ∼ Dm, and
σi = +1 or −1 with probability 1/2 for all i ∈ [m], all independently. When it is clear from the
context, we suppress S, S ′, and ~σ in the statement of the probabilities.

To prove Theorem 1.1, it suffices to show that PrS∼D[B(S)] ≤ δ. We do this by first bounding
the probability of event B in terms of B′ and then in terms of B′′. We then argue that because B′′

only depends on the empirical error on T and T ′ and not the true error, we can union bound only on
the number of unique labelings produced on T and T ′, which is bounded by the growth function.

Claim 2.1. If m > 8
ε
, then

Pr
S,S′∼Dm

[B′(S, S ′) | B(S)] ≥ 1

2
.

Proof. Suppose B(S) holds. Then take an h that is consistent with S, i.e., errS(h) = 0, and
errD(h) > ε. Since S ′ is drawn i.i.d. from D,

ES′∼Dm [errS′(h)] = errD(h) > ε.

Furthermore, errS′(h) is the sample average of m i.i.d. bernoulli variables. Recall that Chernoff
bound states that for X1, . . . , Xm bernoulli random variables with expectation µ,

Pr

 1

m

∑
i∈[m]

Xi ≤
µ

2

 ≤ exp (−mµ/8)

Replacing µ > ε, we have that Pr[errS′(h) ≤ ε/2] ≤ 1
2
. This proves the claim.

Note that Claim 2.1 immediately implies that PrS∼Dm [B(S)] ≤ 2 PrS,S′∼Dm [B′(S, S ′)], be-
cause

Pr[B′(S, S ′)]

Pr[B(S)]
≥ Pr[B′(S, S ′) ∩B(S)]

Pr[B(S)]
= Pr[B′(S, S ′) | B(S)].

Therefore, it suffices to bound PrS,S′∼Dm [B′(S, S ′)].

Claim 2.2. For i.i.d. sample sets S ∼ Dm and S ′ ∼ Dm, and a vector ~σ, where σi = +1 or −1
with probability 1/2 for all i ∈ [m] independently, we have

Pr
S,S′

[B′(S, S ′)] = Pr
S,S′,~σ

[B′′(S, S ′, ~σ)] .

Proof. This is true because (T, T ′) and (S, S ′) are identically distributed.

Claim 2.3. For any S, S ′ ∈ Xm and any h that is fixed (independently of ~σ), we have

Pr
~σ

[
errT (h) = 0 and errT ′(h) >

ε

2
| S, S ′

]
≤ 2−mε/2
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Proof. Consider the predictions of h on S and S ′ as follows.

h(x1), h(x2), . . . , h(xm)

h(x′1), h(x′2), . . . , h(x′m)

First, note that if there is a column with both predictions wrong then errT (h) = 0 can never happen,
and the desired probability would be 0. Similarly, if more than (1− ε

2
)m of the columns have both

predictions right, errT ′(h) ≤ ε/2, so again the desired probability would be 0. Thus, at least
r ≥ mε/2 columns have one correct and one incorrect prediction. If errT (h) = 0, it must happen
that in all such columns, σi must ensure that the right prediction goes to T and the wrong one goes
to T ′. This happens with probability at most 2−r ≤ 2−mε/2.

Claim 2.4. For any S, S ′ ∈ Xm,

Pr
~σ

[
∃h ∈ C, errT (h) = 0 and errT ′(h) >

ε

2
| S, S ′

]
≤ ΠC(2m)2−mε/2

Proof. Given a set S, define C ′(S) ⊆ C to be a set of size |C[S]| where we choose one (representa-
tive) hypothesis for each different labelings of C on S.

L.H.S = Pr
~σ

[
∃h ∈ C, errT (h) = 0 and errT ′(h) >

ε

2
| S, S ′

]
= Pr

~σ

[
∃h ∈ C ′(S ∪ S ′), errT (h) = 0 and errT ′(h) >

ε

2
| S, S ′

]
≤

∑
h∈C′(S∪S′)

Pr
~σ

[
errT (h) = 0 and errT ′(h) >

ε

2
| S, S ′

]
≤ ΠC(2m)2−mε/2 (Claim 2.3)

Putting together Claims 2.1, 2.2, 2.3, and 2.4, it suffices to find m such that

2ΠC(2m)2−mε/2 ≤ δ,

this gives us m ≥ 2
ε

(
log2(ΠC(2m)) + log2(

2
δ
)
)
.

3 Sauer’s Lemma
In the last lecture, we demonstrated the importance of the following lemma.

Lemma 3.1 (Sauer’s Lemma). Consider any hypothesis class C and let d = VCDim(C). For all
m,

ΠC(m) ≤
d∑
i=0

(
m

i

)
.
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In this lecture, we derive the proof of this lemma.

Proof of Sauer’s Lemma. The following facts will be used in this proof:

Fact 3.2.
(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
Fact 3.3.

(
m
k

)
= 0, if k < 0 or k > m.

We will prove Sauer’s Lemma by induction on m+ d. Let Φd(m) =
∑d

i=0

(
m
i

)
.

Base Cases

• For m = 0 and all d. ΠC(m) = 1 =
∑d

i=0

(
0
i

)
= Φd(m). This is a degenerate case, where

we label the empty set.

• For d = 0 and all m. ΠC(m) = 1 =
(
m
0

)
= Φd(m). Not even shattering a point, so only one

labeling is possible.

Inductive steps We assume that the lemma holds for any m′ + d′ < m + d. We need to show
that for any S, |C[S]| ≤ Φd(m). To prove this, we construct two new hypothesis classes that are
defined on one fewer instance and apply our induction hypothesis. Take any S = {x1, . . . , xm}
and let X ′ := S ′ = {x1, . . . , xm−1} be the domain of two new hypothesis classes C1 and C2.

Consider the predictions of h ∈ C on S, by consider C[S]. The labeling in C[S] are all unique
and come in one of the following forms:

• Pairs: where there are h and h′ such that, for all i ∈ [m − 1], h(xi) = h′(xi) and h(xm) 6=
h′(xm). For these pairs, we construct a function g : X ′ → Y , that is defined similarly as h
and h′, except that it is not defined on xm. We add g to both C1 and C2.

• Singleton: For h where there is no h′ that satisfies the pair condition. For these we construct
a function g : X ′ → Y , that is the same as h except not defined on xm. We add g only to C1.

Note that, the number of unique labelings in C is preserved, so |C[S]| = |C1| + |C2|. See the
following figure for an example of this construction.
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Moreover, notice that if a set is shattered by C1 then it is also shattered by C because each
labeling in C[S] can be generated using the same labeling (while ignoring xm) in C1. So,

VCDim(C1) ≤ VCDim(C) = d.

Furthermore, if some set T is shattered by C2, then T ∪{xm} is shattered by C. This is because
every labeling in C2 refers to two labelings in C, where the labels on x1, . . . , xm−1 are the same and
xm is labeled in two different ways. Hence, VCDim(C) ≥ VCDim(C2) + 1, which implies

VCDim(C2) ≤ d− 1.

Now, by induction we have that |C1| = |C1[S ′]| ≤ Φd(m − 1) and |C2| = |ΠC2(m − 1) ≤
Φd−1(m− 1). We have

|C[S]| = |C1|+ |C2|

≤
d∑
i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)

=
d∑
i=0

(
m− 1

i

)
+

d∑
i=0

(
m− 1

i− 1

)

=
d∑
i=0

(
m

i

)
= Φd(m).
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