| | CS6781 - Theoretical Foundations of Machine Learning |
| :---: | :---: | :---: |
| Lecture 5: PAC Sample Complexity Proof | |
| | February 4, 2020 |
| Lecturer: Nika Haghtalab
 ?? | Readings: Chapter 6.4-6.5, UML |

1 Overview

We spent the last two lecture learning about the growth function, VC dimension, the relationship between them, and the following theorem. In this lecture, we formally prove these results. ${ }^{1}$

Theorem 1.1 (PAC Learnability of Infinite Concept Classes). Let \mathcal{A} be an algorithm that learns a concept class \mathcal{C} in the consistency model. Then, \mathcal{A} learns the concept class \mathcal{C} in the PAC learning model using a number of samples that satisfies

$$
m \geq \frac{2}{\epsilon}\left(\log _{2}\left(\Pi_{\mathcal{C}}(2 m)\right)+\log _{2}\left(\frac{2}{\delta}\right)\right)
$$

2 Proof of Theorem 1.1

In this lecture, we define and work with three "bad" events. First, is the actual failure event, as a function of the training set $S \sim \mathcal{D}^{m}$, we would like to bound:

$$
B(S): \exists h \in \mathcal{C} \text { such that } \operatorname{err}_{S}(h)=0 \text { and } \operatorname{err}_{\mathcal{D}}(h)>\epsilon
$$

Second, for the sake of analysis we also consider an independently drawn sample set $S^{\prime} \sim \mathcal{D}^{m}$. We define the following event that is a function of S and S^{\prime}.

$$
B^{\prime}\left(S, S^{\prime}\right): \exists h \in \mathcal{C} \text { such that } \operatorname{err}_{S}(h)=0 \text { and } \operatorname{err}_{S^{\prime}}(h)>\frac{\epsilon}{2}
$$

Lastly, given two sample sets $S=\left\{x_{1}, \ldots, x_{m}\right\}$ and $S^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$, and a vector $\vec{\sigma} \in$ $\{-1,+1\}^{m}$, we swap the members of S and S^{\prime} as follows: For each $i \in[m]$, if $\sigma_{i}=+1$, we let $z_{i}=x_{i}$ and $z_{i}^{\prime}=x_{i}^{\prime}$, otherwise, we let $z_{i}=x_{i}^{\prime}$ and $z_{i}^{\prime}=x_{i}$. Then, let $T=\left\{z_{1}, \ldots, z_{m}\right\}$ and $T^{\prime}=\left\{z_{1}^{\prime}, \ldots, z_{m}^{\prime}\right\}$. Given S, S^{\prime}, and $\vec{\sigma}$, we define the following bad event:
$B^{\prime \prime}\left(S, S^{\prime}, \vec{\sigma}\right): \exists h \in \mathcal{C}$ s.t., $\operatorname{err}_{T}(h)=0$ and $\operatorname{err}_{T^{\prime}}(h)>\frac{\epsilon}{2}$, where T and T^{\prime} correspond to $S, S^{\prime}, \vec{\sigma}$.

[^0]When representing the probability of these events, we typically take $S \sim \mathcal{D}^{m}, S^{\prime} \sim \mathcal{D}^{m}$, and $\sigma_{i}=+1$ or -1 with probability $1 / 2$ for all $i \in[m]$, all independently. When it is clear from the context, we suppress S, S^{\prime}, and $\vec{\sigma}$ in the statement of the probabilities.

To prove Theorem 1.1, it suffices to show that $\operatorname{Pr}_{S \sim \mathcal{D}}[B(S)] \leq \delta$. We do this by first bounding the probability of event B in terms of B^{\prime} and then in terms of $B^{\prime \prime}$. We then argue that because $B^{\prime \prime}$ only depends on the empirical error on T and T^{\prime} and not the true error, we can union bound only on the number of unique labelings produced on T and T^{\prime}, which is bounded by the growth function.

Claim 2.1. If $m>\frac{8}{\epsilon}$, then

$$
\operatorname{Pr}_{S, S^{\prime} \sim \mathcal{D}^{m}}\left[B^{\prime}\left(S, S^{\prime}\right) \mid B(S)\right] \geq \frac{1}{2}
$$

Proof. Suppose $B(S)$ holds. Then take an h that is consistent with S, i.e., $\operatorname{err}_{S}(h)=0$, and $\operatorname{err}_{\mathcal{D}}(h)>\epsilon$. Since S^{\prime} is drawn i.i.d. from \mathcal{D},

$$
\mathbb{E}_{S^{\prime} \sim \mathcal{D}^{m}}\left[\operatorname{err}_{S^{\prime}}(h)\right]=\operatorname{err}_{\mathcal{D}}(h)>\epsilon .
$$

Furthermore, $\operatorname{err}_{S^{\prime}}(h)$ is the sample average of m i.i.d. bernoulli variables. Recall that Chernoff bound states that for X_{1}, \ldots, X_{m} bernoulli random variables with expectation μ,

$$
\operatorname{Pr}\left[\frac{1}{m} \sum_{i \in[m]} X_{i} \leq \frac{\mu}{2}\right] \leq \exp (-m \mu / 8)
$$

Replacing $\mu>\epsilon$, we have that $\operatorname{Pr}\left[\operatorname{err}_{S^{\prime}}(h) \leq \epsilon / 2\right] \leq \frac{1}{2}$. This proves the claim.
Note that Claim 2.1 immediately implies that $\operatorname{Pr}_{S \sim \mathcal{D}^{m}}[B(S)] \leq 2 \operatorname{Pr}_{S, S^{\prime} \sim \mathcal{D}^{m}}\left[B^{\prime}\left(S, S^{\prime}\right)\right]$, because

$$
\frac{\operatorname{Pr}\left[B^{\prime}\left(S, S^{\prime}\right)\right]}{\operatorname{Pr}[B(S)]} \geq \frac{\operatorname{Pr}\left[B^{\prime}\left(S, S^{\prime}\right) \cap B(S)\right]}{\operatorname{Pr}[B(S)]}=\operatorname{Pr}\left[B^{\prime}\left(S, S^{\prime}\right) \mid B(S)\right]
$$

Therefore, it suffices to bound $\operatorname{Pr}_{S, S^{\prime} \sim \mathcal{D}^{m}}\left[B^{\prime}\left(S, S^{\prime}\right)\right]$.
Claim 2.2. For i.i.d. sample sets $S \sim \mathcal{D}^{m}$ and $S^{\prime} \sim \mathcal{D}^{m}$, and a vector $\vec{\sigma}$, where $\sigma_{i}=+1$ or -1 with probability $1 / 2$ for all $i \in[m]$ independently, we have

$$
\operatorname{Pr}_{S, S^{\prime}}\left[B^{\prime}\left(S, S^{\prime}\right)\right]=\operatorname{Pr}_{S, S^{\prime}, \vec{\sigma}}\left[B^{\prime \prime}\left(S, S^{\prime}, \vec{\sigma}\right)\right] .
$$

Proof. This is true because $\left(T, T^{\prime}\right)$ and $\left(S, S^{\prime}\right)$ are identically distributed.
Claim 2.3. For any $S, S^{\prime} \in \mathcal{X}^{m}$ and any h that is fixed (independently of $\vec{\sigma}$), we have

$$
\operatorname{Pr}_{\vec{\sigma}}\left[\operatorname{err}_{T}(h)=0 \text { and } \left.\operatorname{err}_{T^{\prime}}(h)>\frac{\epsilon}{2} \right\rvert\, S, S^{\prime}\right] \leq 2^{-m \epsilon / 2}
$$

Proof. Consider the predictions of h on S and S^{\prime} as follows.

$$
\begin{aligned}
& h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{m}\right) \\
& h\left(x_{1}^{\prime}\right), h\left(x_{2}^{\prime}\right), \ldots, h\left(x_{m}^{\prime}\right)
\end{aligned}
$$

First, note that if there is a column with both predictions wrong then $\operatorname{err}_{T}(h)=0$ can never happen, and the desired probability would be 0 . Similarly, if more than $\left(1-\frac{\epsilon}{2}\right) m$ of the columns have both predictions right, $\operatorname{err}_{T^{\prime}}(h) \leq \epsilon / 2$, so again the desired probability would be 0 . Thus, at least $r \geq m \epsilon / 2$ columns have one correct and one incorrect prediction. If $\operatorname{err}_{T}(h)=0$, it must happen that in all such columns, σ_{i} must ensure that the right prediction goes to T and the wrong one goes to T^{\prime}. This happens with probability at most $2^{-r} \leq 2^{-m \epsilon / 2}$.

Claim 2.4. For any $S, S^{\prime} \in \mathcal{X}^{m}$,

$$
\underset{\vec{\sigma}}{\operatorname{Pr}}\left[\exists h \in \mathcal{C}, \operatorname{err}_{T}(h)=0 \text { and } \left.\operatorname{err}_{T^{\prime}}(h)>\frac{\epsilon}{2} \right\rvert\, S, S^{\prime}\right] \leq \Pi_{\mathcal{C}}(2 m) 2^{-m \epsilon / 2}
$$

Proof. Given a set S, define $\mathcal{C}^{\prime}(S) \subseteq \mathcal{C}$ to be a set of size $|\mathcal{C}[S]|$ where we choose one (representative) hypothesis for each different labelings of \mathcal{C} on S.

$$
\begin{aligned}
\text { L.H.S } & =\operatorname{Pr} \\
& =\operatorname{Pr}\left[\exists h \in \mathcal{C}, \operatorname{err}_{T}(h)=0 \text { and } \left.\operatorname{err}_{T^{\prime}}(h)>\frac{\epsilon}{2} \right\rvert\, S, S^{\prime}\right] \\
& \left.\leq \sum_{h \in \mathcal{C}^{\prime}\left(S \cup S^{\prime}\right)} \operatorname{Pr} \mathcal{C}^{\prime}\left(S \cup S^{\prime}\right), \operatorname{err}_{T}(h)=0 \text { and } \operatorname{err}_{T}(h)=0 \text { and } \left.\operatorname{err}_{T^{\prime}}(h)>\frac{\epsilon}{2} \right\rvert\, S, S^{\prime}\right] \\
& \leq \Pi_{\mathcal{C}}(2 m) 2^{-m \epsilon / 2} \quad \text { (Claim 2.3) }
\end{aligned}
$$

Putting together Claims 2.1, 2.2, 2.3, and 2.4, it suffices to find m such that

$$
2 \Pi_{\mathcal{C}}(2 m) 2^{-m \epsilon / 2} \leq \delta
$$

this gives us $m \geq \frac{2}{\epsilon}\left(\log _{2}\left(\Pi_{\mathcal{C}}(2 m)\right)+\log _{2}\left(\frac{2}{\delta}\right)\right)$.

3 Sauer's Lemma

In the last lecture, we demonstrated the importance of the following lemma.
Lemma 3.1 (Sauer's Lemma). Consider any hypothesis class \mathcal{C} and let $d=\operatorname{VCDim}(\mathcal{C})$. For all m,

$$
\Pi_{\mathcal{C}}(m) \leq \sum_{i=0}^{d}\binom{m}{i}
$$

In this lecture, we derive the proof of this lemma.
Proof of Sauer's Lemma. The following facts will be used in this proof:
Fact 3.2. $\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}$
Fact 3.3. $\binom{m}{k}=0$, if $k<0$ or $k>m$.
We will prove Sauer's Lemma by induction on $m+d$. Let $\Phi_{d}(m)=\sum_{i=0}^{d}\binom{m}{i}$.

Base Cases

- For $m=0$ and all $d . \Pi_{\mathcal{C}}(m)=1=\sum_{i=0}^{d}\binom{0}{i}=\Phi_{d}(m)$. This is a degenerate case, where we label the empty set.
- For $d=0$ and all $m . \Pi_{C}(m)=1=\binom{m}{0}=\Phi_{d}(m)$. Not even shattering a point, so only one labeling is possible.

Inductive steps We assume that the lemma holds for any $m^{\prime}+d^{\prime}<m+d$. We need to show that for any $S,|\mathcal{C}[S]| \leq \Phi_{d}(m)$. To prove this, we construct two new hypothesis classes that are defined on one fewer instance and apply our induction hypothesis. Take any $S=\left\{x_{1}, \ldots, x_{m}\right\}$ and let $\mathcal{X}^{\prime}:=S^{\prime}=\left\{x_{1}, \ldots, x_{m-1}\right\}$ be the domain of two new hypothesis classes \mathcal{C}_{1} and \mathcal{C}_{2}.

Consider the predictions of $h \in \mathcal{C}$ on S, by consider $\mathcal{C}[S]$. The labeling in $\mathcal{C}[S]$ are all unique and come in one of the following forms:

- Pairs: where there are h and h^{\prime} such that, for all $i \in[m-1], h\left(x_{i}\right)=h^{\prime}\left(x_{i}\right)$ and $h\left(x_{m}\right) \neq$ $h^{\prime}\left(x_{m}\right)$. For these pairs, we construct a function $g: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$, that is defined similarly as h and h^{\prime}, except that it is not defined on x_{m}. We add g to both \mathcal{C}_{1} and \mathcal{C}_{2}.
- Singleton: For h where there is no h^{\prime} that satisfies the pair condition. For these we construct a function $g: \mathcal{X}^{\prime} \rightarrow \mathcal{Y}$, that is the same as h except not defined on x_{m}. We add g only to \mathcal{C}_{1}.
Note that, the number of unique labelings in \mathcal{C} is preserved, so $|\mathcal{C}[S]|=\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|$. See the following figure for an example of this construction.

			$\begin{gathered} \mathcal{C}[S] \\ 2, x_{3}, \end{gathered}$						$, x_{2},$	$\begin{aligned} & \mathcal{C}_{1} \\ & , x_{3}, \end{aligned}$					\mathcal{C}_{2}	,	
h_{1}	0	1	1	1	0		\longrightarrow	0	1	1							
h_{2}	0	1	1	1	1								0	1		1	1
h_{3}	1	0	0	1	1		\longrightarrow	1	0	0							
h_{4}	1	0	0	1	0								1	0)	0	1
h_{5}	1	1	1	0	0		\longrightarrow		1	1							

Moreover, notice that if a set is shattered by \mathcal{C}_{1} then it is also shattered by \mathcal{C} because each labeling in $\mathcal{C}[S]$ can be generated using the same labeling (while ignoring x_{m}) in \mathcal{C}_{1}. So,

$$
\operatorname{VCDim}\left(\mathcal{C}_{1}\right) \leq \operatorname{VCDim}(\mathcal{C})=d
$$

Furthermore, if some set T is shattered by \mathcal{C}_{2}, then $T \cup\left\{x_{m}\right\}$ is shattered by \mathcal{C}. This is because every labeling in \mathcal{C}_{2} refers to two labelings in \mathcal{C}, where the labels on x_{1}, \ldots, x_{m-1} are the same and x_{m} is labeled in two different ways. Hence, $\operatorname{VCDim}(\mathcal{C}) \geq \operatorname{VCDim}\left(\mathcal{C}_{2}\right)+1$, which implies

$$
\operatorname{VCDim}\left(\mathcal{C}_{2}\right) \leq d-1
$$

Now, by induction we have that $\left|\mathcal{C}_{1}\right|=\left|\mathcal{C}_{1}\left[S^{\prime}\right]\right| \leq \Phi_{d}(m-1)$ and $\left|\mathcal{C}_{2}\right|=\mid \Pi_{\mathcal{C}_{2}}(m-1) \leq$ $\Phi_{d-1}(m-1)$. We have

$$
\begin{aligned}
|\mathcal{C}[S]| & =\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right| \\
& \leq \sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d-1}\binom{m-1}{i} \\
& =\sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d}\binom{m-1}{i-1} \\
& =\sum_{i=0}^{d}\binom{m}{i} \\
& =\Phi_{d}(m) .
\end{aligned}
$$

[^0]: ${ }^{1}$ Several proofs of Theorem 1.1 are known in the literature. The proof approach we cover is similar to that outlined by Robert Schapire's lecture notes.

