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1 Examples of PAC Learning

Can we PAC learn the following hypothesis classes?

Monotone Conjunctions. Yes! Last lecture we saw that we can efficiently learn monotone con-
junctions in the consistency model. Note that there are at most 2" monotone conjunctions. So, us-
ing Theorem 2.1, we can PAC learn monotone conjunctions with m(e, d) = O (¢ }(n + In(1/9)).

DNFs. Is the set of all DNF functions efficiently (in the number of variables) learnable in the
PAC model (by the class of DNFs)? In last lecture, we showed that DNFs are efficiently learnable
in the consistency model. So, it remains to see whether the sample complexity of learning this
class is polynomial in 1/¢, 1/, and the number of variables n.

Let us count the number of DNFs in existence. We noted that DNFs can express all possible
functions on n variable. Note that there are |X'| = 2" instances in the domain, so there are |C| =
2/*I DNFs. Using Theorem 2.1 from the previous lecture gives us that

1
me(e,6) = O (2(2" + ln(l/é))) .
The exponential dependence of m¢ (¢, §) on n is not sufficient for showing that DNFs can be learned

efficiently in n, 1 /¢, 1/0, in the PAC model We will see later that indeed this exponential depen-
dence is necessary and DNFs cannot be learned efficiently in poly(n, 1/¢,1/4), in the PAC model.

Linear thresholds Are linear thresholds learnable in the PAC model? Previously, we saw that we
can efficiently learn linear thresholds in the consistency model. But the set of all linear thresholds
is infinitely large. Therefore, we cannot directly use Theorem 2.1 from the previous lecture to
show that linear thresholds are PAC learnable. In the remainder of the lecture, we explore how we
could reason about PAC learnability of infinite hypothesis classes by understanding their structure.

2 Effective Number of Hypotheses and VC Dimension

So far we have seen that when a concept class C is finite, with probability 1 — §, any concept ¢ € C
that is consistent with a sample set S of at least e 1 (In(|C|) + In(1/§)) i.i.d. labeled instances has
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true error of errg(c) < e. Unfortunately, when C is very large or infinite, as in many applications
of machine learning, this sample complexity bound becomes less useful or even trivial. In this
lecture, we see how we can prove non-trivial bounds on the sample complexity of C even if its
infinitely large. We will introduce important concepts such as VC dimension and growth function
and show how these combinatorial notions play an integral role in the theory of learnability.

Even when C is infinitely large it is possible that many of the hypothesis in C project to the
“same type of behavior” on a sample set S. Formally, we define the set of all distinct labelings
produced by a hypothesis class C on a set of (unlabeled) instances S = {z1,..., 2} by

C[S] = {(C(xl)v C(xQ)’ ce 7C(Im))}cec-

That is, C[S] is the set of “projections” or “restrictions” of all concepts in C to the set of samples in
S. At ahigh level, the larger C[S] can be made on a sample set S, the more expressive and complex
C is. To capture this, we define the growth function as follows.

Definition 2.1. The growth function of C is the largest cardinality of C[S] as a function of the size
of S, i.e.,

le(m) = max |C[S]|.

Fact 2.2. IIo(m) < 2™ for any concept class with binary labels.
As seen below, the importance of growth function is that it determines the sample complexity

of PAC learning. That is, the size of C does not matter. Rather, it is the growth function of C that
matters.

Theorem 2.3 (PAC Learnability of Infinite Concept Classes). Let A be an algorithm that learns a
concept class C in the consistency model. Then, A learns the concept class C in the PAC learning
model using a number of samples that satisfies

= 2 (inle(m) +1n(3) ). m
for a fixed constant cy.

Interpreting the above theorem may look challenging at first sight because the dependence on
m appears on both sides of the inequality. For example, when II¢(m) = 2™, Equation 1 cannot be
satisfied and the guarantees of Theorem 2.3 falls apart.

Next we define an important combinatorial notion that helps us bound and interpret I1¢(m) and
simplify the sample complexity bound of Theorem 2.3.

Definition 2.4. We say that a set of unlabeled instances S is shattered by C, if |C[S]| = 2!%|. That
is, C labels S in every way possible.

Definition 2.5. The Vapnik-Chervonenkis (VC) dimension of C, denoted by VCDim(C) is the size
of the largest set S that is shattered by C.

Note that to show that VC dimension of a class C is d, we must show two things:

e There exists an instance set S of size d that is shattered by C.

e No set of size d + 1 exists that can be shattered by C.



3 Examples

As we see next, in many infinite concept class IIo(m) < 2.

1-D thresholds. Let X = R and C = {h, : a € R} be the set of 1-dimensional (positive
halfspace) thresholds, where
ho(z) = 1(z > a).

What is the growth function of the class of 1-D thresholds? Take an arbitrary set of m instances
in X and for ease of representation assume that they are in increasing order S = {z1,...,2,,}.
Note that the labeling each 1-D threshold h, produces can be fully determined by the the smallest
x; labeled positive, 1.e., smallest z; > a. There are at most (73) + (T) = m + 1 ways to choose
which zero to one of the instances in .S is the minimum instance being labeled positive. Therefore,
IIc(m) < m + 1. Alternatively, all thresholds h, for a € [z;, x;;) label all instances similarly.
There are at most m + 1 intervals, namely (—oo, x1), [z1,22), ..., [Tm_1, Tm), [Tm, 00) that lead
to unique labelings of the set of instance S. Therefore, II¢(m) < m + 1.

What is the VC dimension of this class? Clearly, we can shatter one instance. However, no
set of two instances {1, x2} can be shattered. This is because, assuming that z; < x5, we cannot

label x; as positive and x5 as negative. So the VC dimension of 1-D thresholds is 1.

1-D intervals Let X = Rand C = {h,; : a,b € R} be the set of 1-dimensional intervals, where
hop(z) = 1(a <z < b).

What is the growth function of the class of 1-D intervals? Take an arbitrary set of m instances
in X and for ease of representation assume that they are in increasing order S = {z1,..., 2, }.
So, each labeling produced by a hypothesis can be uniquely determined by the smallest and largest
instances in S that are labeled as positives. In more detail, when at least 2 instances in S are labeled
as positives, the largest and smallest positive instance are distinct. When only 1 instance in S' is
labeled as positives, then the smallest and largest positive instance is one and the same. And lastly,
when 0 instance is labeled as positive, then the largest and smallest positive instances do not exist
in S. All together, there are at most

(5)+ (1) (5) -5

labelings that can be produced by C on S.

What is the VC dimension of the class of 1-D intervals? It’s not hard to see that we can shatter
a set of 2 points. However, we cannot shatter any set of three points, because given z; < x5 < x3,
we cannot label x5 as negative and x1, x3 as positive. So the VC dimension of 1-D intervals is 2.

Axis-aligned rectangles in R%. We defined this class in the previous lectures. What is the VC
dimension of this class? 1t’s not hard to see that a set of 4 instances placed on the mid points
of edges of a rectangle is shattered by axis-aligned rectangles. But, no set of 5 instances can be
shattered. This is because, given any 5 points at least one of them is in the interior of the bounding



box of the other four. Therefore, we cannot label the interior instance as negative while labeling
the rest of the instances as positives. Therefore, VC dimension of this class is 4.

What is the growth function of this class? Following the same idea as intervals in 1-dimension,
we note that each axis-aligned rectangle is an intersection of one horizontal and one vertical interval
in one dimension. So the number of labels that can be produced by the set of rectangles is at most
the product of the number of labelings that can be produced by considering 1-dimensional intervals

2
on the two coordinates individually. Therefore, IIo(m) < (M) )

4 Relating VC Dimension and Growth Function

In the next lecture, we prove the following important relationship between the growth function of
a hypothesis class and its VC dimension.

Lemma 4.1 (Sauer’s Lemma). Consider any hypothesis class C and let d = VCDim(C). For all
m,

Lemma 4.2. For m > d,

Proof. We have
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So one way to interpret VC dimension is that it’s the value at which the growth function Iz (m)
stops growing exponentially — i.e., 2™ because the set is being shattered — and become a polyno-
mial, i.e. O(m?). In other words, In(Il¢(m)) stops growing as O(m) and starts to grow as log(m).
Note that it is precisely this logarithmic dependence on m that makes the bound in Theorem 2.3
meaningful. Using the above bound on the growth function in Theorem 2.3,

me(e,5) € O (% (VCDim(C) ln(%) + ln(%))> |



