
CS6781 - Theoretical Foundations of Machine Learning

Lecture 3: Probably Approximately Correct Learning
January 28, 2020

Lecturer: Nika Haghtalab Readings: Chp 2.2-3.1, UML

As we mentioned in the previous lecture, the consistency model is really about optimization on
observed labeled instances. But it is not necessary clear whether the concept that is learned in the
consistency model is a good predictor for instances that the algorithm has not encountered yet. Let
us highlight this problem with an example of learning disjunctive normal forms in the consistency
model. LetX = {0, 1}n and C be the class of boolean concepts that can be expressed as disjunctive
normal form (DNFs) with n literals and as many clauses as one likes, such as (x1 ∧ x3) ∨ (x1 ∧
x5 ∧ x8).

Is the class of DNFs efficiently learnable in the consistency model? It is not hard to see that it
is. Consider an algorithm A that for any set of labeled instances S,

• For every (x,+) ∈ S, it creates a conjunction where the ith variable appears as xi or xi,
based on the value of ith coordinate of x, i.e., (1, 0, 1) corresponds to the clause x1∧x2∧x3.

• If there is an x such that (x,+) ∈ S and (x,−) ∈ S, then A(S) returns “no consistent
concept exists.” Otherwise, A(S) returns the disjunction of clauses made in step 1.

This algorithm learns DNFs in the consistency model, because it only assigns a positive label to
positive instances in the sample set and negative label otherwise. Now consider an example (x,+)
that never appeared in S. The concept returned byA labels any such instance as negative, therefore,
making a mistake on any positive instance that had never been observed by the algorithm. This
means that algorithms in the consistency model are good at memorizing the history, but they may
not generalize to unseen examples.

In this lecture, we look at an alternative model of learning that emphasizes the generalization
ability of the learned concepts.

1 The PAC Model
We use the definitions of domain X , label set Y , concept classes C, etc. from the previous lecture.
We will also define additional notations that will be used in this lecture and many of the following
lectures.

• Data-Generating distribution: We consider a probability distribution D over X . We as-
sume that instances we received are independent and identically distributed (i.i.d) according
to an unknown D. I.I.D. means that samples x1, . . . , xm are all distributed according to the
same distribution and are independent of each other. Throughout today’s lecture, we assume
that there is an unknown concept c that determines the true label of instances. That is, the set

1

of labeled instances S = {(x1, y1), . . . , (xm, ym)} is generated by taking xi ∼ D i.i.d and
having yi = c(xi).

• True Error: Consider a data-generating distribution D and the true labeling concept c. The
true error of a concept h with respect to D is the probability that h makes a mistake, i.e.,
disagrees with c, on a freshly drawn sample from D. That is,

errD(h) = Prx∼D[h(x) 6= c(x)].

• Empirical Error: Given a sample set S = {(x1, y1), . . . , (xm, ym)}, the empirical error of
a concept h with respect to S is the fraction of instances in S that are incorrectly labeled by
h. That is,

errS(h) =
1

m

m∑
i=1

1(h(xi) 6= yi)).

The basic idea of the Probably Approximately Correct (PAC) learning model is to assume that
labeled instances are coming from a fixed but unknown distribution D and the goal is to use the
sample set S to learn a concept h that has a small true error on D. We assume that there is an
unknown concept c ∈ C that truly labels instances in distribution D. We also assume that we
have access to another set of concepts H from which we have to choose the concept. For ease of
representation, we often callH the class of hypotheses.

Definition 1.1 (PAC Learning). An algorithmA PAC-learns concept class C by hypothesis classH
if there is a functions mC(ε, δ) : (0, 1)× (0, 1)→ N such that the following is true: For any c∗ ∈ C
and any distribution D labeled according to c∗, any ε > 0 and δ > 0, there is an algorithm A that
takes an i.i.d. sample set S of size m ≥ mC(ε, δ), and with probability 1 − δ returns a hypothesis
h ∈ H such that errD(h) ≤ ε. Algorithm A is computationally efficient if the number of samples
and runtime is polynomial time in 1

ε
, 1
δ
,m and a natural representation of the concept class C.

In PAC learning, ε and δ represent two types of bad events. Here, δ is the probability that
a “total disaster” could happen and A(S) returns a hypothesis h that is completely wrong, i.e.,
errD(h) is very large. So, typical range of δ is 0.01-0.001 or less. On the other hand, ε describes
how close h and c∗ are, when we avoid that total disaster. ε is typically much larger than δ, for
example ε = 0.05-0.1 is a quite reasonable. PAC learning refers to the fact that our hypothesis is
“probably” (with probability 1− δ) “approximately” (up to an error of ε) correct!

Remark 1 There are different versions of PAC learning based on what H and C represent. We
typically consider H ⊇ C, to ensure that the target concept c∗ remains a legitimate outcome of the
algorithm. When C = H, we call this proper PAC learning. If there is a possibility of learning
h ∈ H \ C, this is called improper PAC learning. Typically, when you are asked about PAC
learnability of a concept class C the choice and representation ofH does not matter and can include
any function that can be evaluated in polynomial time. To emphasize the fact that instances in D
are generated by a concept c∗ and the representation of H does not matter, sometimes we refer to
PAC learning as realizable PAC learning.

2

Remark 2 When the assumption that instances in D are labeled according to a concept c∗ that
is in the range of outcomes of the algorithm is removed, i.e., lack of realizibility, it might be
impossible to have a concept h that has errD(h) ≤ ε at all. This latter model, where no assumption
on the existence of a good concept is made, is called agnostic learning. We will come back to this
in a few lectures.

2 Consistency versus PAC
In this section we show how one can relate learnability in the consistency model and the PAC
model.

Theorem 2.1 (PAC Learnability of Finite Concept Classes). Let A be an algorithm that learns a
concept class C in the consistency model (that is, it returns h ∈ C whenever a consistent concept
w.r.t. S exists). Then, A learns the concept class C (by the hypothesis class H = C) in the PAC
learning model using

mC(ε, δ) =
1

ε

(
ln(|C|) + ln(

1

δ
)

)
.

Let us review two useful fact before we prove this theorem.

Fact 2.2. For any α ∈ [0, 1], 1− α ≤ exp(−α).

Fact 2.3 (Union Bound). LetE1, . . . , Ek be probabilistic events. Then, Pr
[⋃

i∈[k]Ei

]
≤
∑k

i=1Pr [Ei].

Proof of Theorem 2.1. Since we are in the (realizable) PAC setting, we know that there is a concept
c∗ ∈ C that is consistent with the sample set S. Therefore, A(S) will return a hypothesis hS ∈ C
that is also consistent with S. So it is sufficient to show that with probability 1 − δ, hS has true
error of at most ε. That is, it is sufficient to bound the probability of the following bad event.

B : ∃h ∈ C such that h is consistent with S and errD(h) > ε.

Fix one hypothesis h ∈ C that has errD(h) > ε. What is the probability that this hypothesis is
consistent with the sample set S? Note that for a freshly sampled x ∼ D, the probability that h
makes a mistake on x is exactly its true error. That is,

Prx∼D[h(x) 6= c∗(x)] = errD(h).

So, the probability that such an h does not make a mistake on any of the m samples in S is

Pr[h consistent with S] = (1− errD(h))
m < (1− ε)m ≤ exp(−mε).

Applying this to all possible hypothesis in C, we have that

Pr[B] = Pr

[⋃
h∈C

h is consistent with S and errD(h) > ε

]
≤ |C| exp(−mε).

Therefore, when m ≥ 1
ε

(
ln(|C|) + ln(1

δ
)
)
, we have that Pr[B] ≤ δ. This proves the claim.

3

3 Examples
Monotone Conjunctions Are monotone conjunctions learnable in the PAC model (by the class
of monotone conjunctions)? Yes! Last lecture we saw that we can efficiently learn monotone con-
junctions in the consistency model. Note that there are at most 2n monotone conjunctions. So, us-
ing Theorem 2.1, we can PAC learn monotone conjunctions with m(ε, δ) = O (ε−1(n+ ln(1/δ)).

Decision Lists Here, C is a class of all boolean functions that can be represented as a list of
if-then rules of the form

If `1 then b1, else if `2 then b2, . . . , else bk,

where each `i is a literal that is a variable xj or its negation xj and bi ∈ {+,−} is the assigned
label. For example, a concept c(x) = “If x2 then +, else if x1 then −, else +” is a decision list.

Is the class of decision lists learnable in the PAC model (by itself)? Let’s first see how large |C|
is for the class of all decision lists.

Note that there is a total of 4n “if-then” rules, because each variable xi can appear as one of
{xi, xi} and each bi ∈ {+, 0}. Once a rule is applied, there is no point applying it again, since
it will not be satisfied a second time. So, the number of decision lists is at most the number of
different permutations of these rules. That is |C| ≤ (4n)!.1 This results in ln(|C|) = O(n lnn).

Now, all that remain is to see if we can learn the class of decision lists in the consistency model.
Consider the following algorithm that enumerates all 4n possible rules in the set L and

1. Find some rule in L that is consistent with the current set of labeled examples, and the “if”
clause is satisfied by at least one example. If no such rule exists, then return “No consistent
classifier exists.”

2. Add that rule to the bottom the decision list and remove any (x, y) ∈ S from S that satisfied
its “if” clause.

3. Repeat until no instances left in S.

This algorithm runs in time polynomial in n and |S|, since in any round there are at most 4n rules to
evaluate on at most |S| samples. Can you see why this algorithm learns in the consistency model?
Suppose that the decision list c is consistent with the data. And assume that we are in Step 1 of the
above algorithm with at least one instance left in the set S. Each of these instances is classified by
some rule in c. Take the top rule. Note that adding this rule does not cause any inconsistencies,
because that’s the first rule in c to also apply to these examples. So, if it causes inconsistencies in
our current decision list, it would have also caused an inconsistency in c. So, the algorithm will
always have a suitable rule in Step 1.

Using this in Theorem 2.1, we see that we can efficiently PAC learn decision lists withm(ε, δ) =
O (ε−1(n ln(n) + ln(1/δ)).

1Can you think of a tighter analysis that shows that the number of decision rules is 4nn!? To show this, start by
showing that no variable appears twice in a decision list.

4

Linear thresholds Are linear thresholds learnable in the PAC model? Last lecture we saw that
we can efficiently learn linear thresholds in the consistency model. But the set of all linear thresh-
olds is infinitely large. Therefore, we cannot directly use Theorem 2.1 to show that linear thresh-
olds are PAC learnable. In the next lecture, we explore how we could reason about PAC learnability
of infinite hypothesis classes by understanding their structure.

5

