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Clustering as Mixture Modeling

• Setup

– Learning Task: 𝑃(𝑋)

– Training Sample: 𝑆 = ( Ԧ𝑥1, … , Ԧ𝑥𝑛)

– Hypothesis Space: 𝐻 = ℎ1, … , ℎ 𝐻

• each describes 𝑃(𝑋|ℎ𝑖) where ℎ𝑖 are parameters

– Goal: learn which 𝑃(𝑋|ℎ𝑖) produces the data

• What to predict?

– Predict where new points are going to fall



Mixture of Gaussians

Gaussian Mixture Model (GMM):

The data X is generated by 

𝑃 𝑋 = Ԧ𝑥 ℎ = σ𝑗=1
𝑘 𝑃 𝑋 = Ԧ𝑥 𝑌 = 𝑗, ℎ 𝑃(𝑌 = 𝑗)

where each mixture component

𝑃 𝑋 = Ԧ𝑥 𝑌 = 𝑗, ℎ = 𝑁 𝑋 = Ԧ𝑥 Ԧ𝜇𝑗 , Σ𝑗

and ℎ = ( Ԧ𝜇1, Σ1, … , Ԧ𝜇𝑘, Σ𝑘).



EM Algorithm for GMM

• EM Algorithm for (simplified) GMM

– Assume 𝑃(𝑌) and 𝑘 known and Σ𝑖 = 1.

– REPEAT

• 𝑃 𝑌 = 𝑗 𝑋 = Ԧ𝑥𝑖 , Ԧ𝜇1, … , Ԧ𝜇𝑘 =
𝑃 𝑋= Ԧ𝑥𝑖 𝑌=𝑗,𝜇𝑗)𝑃(𝑌=𝑗)

σ𝑙=1
𝑘 𝑃 𝑋= Ԧ𝑥𝑖 𝑌=𝑙,𝜇𝑙)𝑃(𝑌=𝑙)

=
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• Ԧ𝜇𝑗 =
σ𝑖=1
𝑛 𝑃 𝑌 = 𝑗 𝑋 = Ԧ𝑥𝑖 , Ԧ𝜇1, … , Ԧ𝜇𝑘 Ԧ𝑥𝑖

σ𝑖=1
𝑛 𝑃 𝑌 = 𝑗 𝑋 = Ԧ𝑥𝑖 , Ԧ𝜇1, … , Ԧ𝜇𝑘



Mixture of “X”

General Mixture Model:
The data X is generated by 

𝑃 𝑋 = Ԧ𝑥 ℎ = σ𝑗=1
𝑘 𝑃 𝑋 = Ԧ𝑥 𝑌 = 𝑗, ℎ 𝑃(𝑌 = 𝑗)

where each mixture component 𝑃 𝑋 = Ԧ𝑥 𝑌 = 𝑗, ℎ is

– Gaussian: 𝑁 𝑋 = Ԧ𝑥 Ԧ𝜇𝑗 , Σ𝑗 [real vectors]

– Independent Bernoullis: Ber 𝑋 = Ԧ𝑥 Ԧ𝜇𝑗 [bitvectors]

– Independent Poisson: Po𝑖𝑠𝑠𝑜𝑛 𝑋 = Ԧ𝑥 Ԧ𝜇𝑗 [counts]

– Multinomial: Mul 𝑋 = Ԧ𝑥 Ԧ𝜇𝑗 , 𝑙 [counts]

and ℎ collects the respective parameters.



Latent Variable Models

• Data: 𝑥1, 𝑧1 , … , 𝑥𝑛, 𝑧𝑛 where 

– 𝑥𝑖 are observed and 

– 𝑧𝑖 are unobserved (i.e. latent) (the 𝑦𝑖 in mixture).

• Approach: Maximum likelihood (or MAP) by 
marginalizing over the 𝑧𝑖
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General EM Algorithm

• Data: 𝑥1, 𝑧1 , … , 𝑥𝑛, 𝑧𝑛
• Auxiliary Function: 

𝑄 ℎ 𝑞 =෍

𝑖

𝐸𝑧𝑖∼𝑞𝑖 log 𝑃(𝑥𝑖 , 𝑧𝑖|ℎ) + 𝐸𝑛𝑡 𝑞𝑖

• Algorithm:
– E-Step: Compute distribution 𝑞𝑖

𝑡 of each 𝑧𝑖 based on 
current ℎ𝑡

– M-Step: Maximize 𝑄 ℎ 𝑞𝑡 to get ℎ𝑡+1

• Convergence:
𝑙 ℎ𝑡+1 ≥ 𝑄 ℎ𝑡+1 𝑞𝑡 ≥ 𝑄 ℎ𝑡 𝑞𝑡 = 𝑙(ℎ𝑡)



General EM for Mixture Models

• Model: 

– 𝑃 𝑋 = 𝑥 ℎ = σ𝑗=1
𝑘 𝑃 𝑋 = 𝑥 𝑌 = 𝑗, ℎ 𝑃(𝑌 = 𝑗)

– Component distributions 𝑃 𝑋 = Ԧ𝑥 𝑌 = 𝑗, ℎ

• Algorithm

– REPEAT

• E-Step: 𝑃 𝑌 = 𝑗 ℎ =
𝑃 𝑋= Ԧ𝑥𝑖 𝑌=𝑗,ℎ)𝑃(𝑌=𝑗)

σ𝑙=1
𝑘 𝑃 𝑋= Ԧ𝑥𝑖 𝑌=𝑙,ℎ)𝑃(𝑌=𝑙)

• M-Step: Optimize Q with respect to h



Beyond Mixture Models

• Latent Variable Models for

– Missing feature imputation (missing features)

– Semi-supervised learning (missing labels)

– Censored regression (mortality analysis)

– Hidden Markov models with unobserved states 
(speech recognition)

– Matrix factorization (recommender systems)


