CS6780 Advanced Machine Learning

Spring 2019

Thorsten Joachims Cornell University Department of Computer Science

Outline of Today

- · Who we are?
 - Prof: Thorsten Joachims
 - TAs: Aman Agarwal, Ashudeep Singh
- · What is learning?
 - Examples of machine learning (ML).
 - What drives research in and use of ML today?
- Syllabus
 - Topics and Methods
 - Themes
- Administrivia

(One) Definition of Learning

• Definition [Mitchell]:

A computer program is said to learn from

- · experience E with respect to some class of
- · tasks T and
- · performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.

What is the goal of CS6780?

- · PhD-level introduction to machine learning
 - First or second ML class
- Broad, but deep along several key themes
- Enable your research in or with machine learning
- Practice "soft" skills you need as researcher

Syllabus

- Supervised Batch Learning: model, decision theoretic foundation, model selection, model assessment, empirical risk minimization
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- Statistical Learning Theory: generalization error bounds, VC dimension
- Large-Margin Methods: linear Rules, margin, Perceptron, SVMs
- Kernels: duality, non-linear rules, non-vectorial data
- Deep Networks: multi-layer perceptrons, convolutions, pooling
- Structured Output Prediction: hidden Markov model, Viterbi, structural SVMs, conditional random fields
- Probabilistic Models: generative vs. discriminative, maximum likelihood,
- Latent Variable Models: k-means clustering, mixture of Gaussians, expectation-maximization algorithm, matrix factorization, embeddings
- Online Learning: experts, bandits, online convex optimization
- Causal Inference: interventional vs. observational data, treatment effects, policy learning

Theme: Prediction and Action

- Building intelligent systems vs. analyzing existing systems
 - Prediction
 - Intelligent action
 - Guarantees on prediction/action quality
 - Causality

Theme: Bias vs. Variance

- · Fundamental trade-off in learning
 - Training error vs. prediction error
 - Model capacity
 - Statistical learning theory
 - Empirical risk minimization

Theme: Massive Overparameterization

- · The success story of machine learning
 - Sparse linear models
 - Kernels
 - Deep networks
 - → Number of parameters ≫ number of examples

Theme: Theoretical Underpinning

- · Theory for understanding sake
 - Identify the mechanisms at play in ML
 - Understand model complexity
 - Understand common themes between algorithms

Secondary Syllabus

- Practice "soft skills" needed to be a successful researcher
 - Pitch ideas
 - Present your work
 - Write convincing papers
 - Work in groups
 - Give constructive feedback to others
 - Use feedback constructively

Textbook and Course Material

- Main Textbooks
 - Kevin Murphy, "Machine Learning a Probabilistic Perspective", MIT Press, 2012.
 - See other references on course web page
- Course Notes
 - Writing on blackboard
 - Slides available on course homepage

Pre-Requisites

- Pre-Requisites
 - Programming skills (e.g. CS 2110)
 - Basic linear algebra (e.g. MATH 2940)
 - Basic probability theory (e.g. MATH 4710)
 - Basic multivariable calculus (e.g. MATH 1920)
- · Not required
 - Previous ugrad machine learning course

Homework Assignments

- · Assignments
 - 4 homework assignments
 - Some problem sets, some programming and experiments
- · Policies
 - Assignments are due at the beginning of class on the due date.
 - Everybody has 5 "free" late days. Use them wisely.
 - Beyond that, assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 - No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 - Typically collaboration of two students (see each assignment for detailed collaboration policy).
 - Please review Cornell Academic Integrity Policy!

Exam

- Exam
 - April 25
 - In class
 - No final exam

Project

- Organization
 - Self-defined topic related to your interests and research
 - Groups of 2-3 students
- · Deliverables
 - Proposal (March 12)
 - Poster Presentation (May 2, evening)
 - Report (May 13)
 - Peer review (May 15)
 - Author rebuttal (May 17)

Grading

- Deliverables
 - ExamProject
- (40% of Grade) (35% of Grade) (20% of Grade)
- HomeworksParticipation
- (5% of Grade)
- Outlier elimination
 - For homeworks, the lowest grade is replaced by the second lowest grade.
- Grade Options
 - Letter grade
 - S/U: a grade of at least D. Excludes project.
 - Audit: attend lectures. Excludes project, homeworks, exam.

Enrolling

- · You can enroll in the class only
 - if you are a PhD student.
- Enrollment Process
 - open enrollment via studentcenter.
- Enrollment "Deadline"
 - first homework will come out Feb 5.

Audio/Video

- · Live stream to Cornell Tech
- Recordings available after class

How to Get in Touch

- Online
 - Course Homepage (slides, references, policies, office hours)
 http://www.cs.cornell.edu/Courses/cs6780/2019sp/

 - Piazza forum (questions and comments)
 CMS (homeworks and grades)
 CMT (projects)

- CMT (projects)

 Email Addresses
 Thorsten Joachims: tj@cs.cornell.edu
 Aman Agarwal: aa2398@cornell.edu
 Ashudeep Singh: as3354@cornell.edu

 Office Hours
 Thorsten Joachims:

 Fridays 11:00am 12:00pm, 418 Gates Hall
 Other office hours:

 See course homepage
 - - See course homepage
 - Zoom for CT students