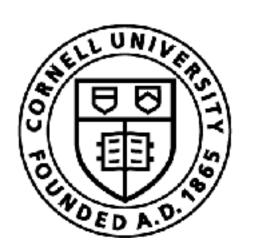
Imitation Learning as Inferring Latent Expert Values

Sanjiban Choudhury



Two Core Ideas

Data

"What is the distribution of states?"

Loss

"What is the metric to match to human?"

Data

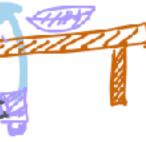
What is the distribution of states?"

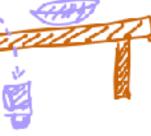
Two Core Ideas

Loss

"What is the metric to match to human?"

DAGGER H2GORITHH To the BEHAVIOR CLONING. Det SJ EXPTY DATA BUFFER For i= 1 ---- N ROLLOUT T_i ($S_1, Q_1, S_2, Q_2, \dots$) QUERY HUMAN T* FOR CORRECT ACTIONS (S1, T(S), S2, T(S) -----) $D \leftarrow D \cup \{(s_1, \vec{x}(s_2), s_2, \vec{x}(s_2), \dots, s_n\}$ Ti & TRAIN (D)

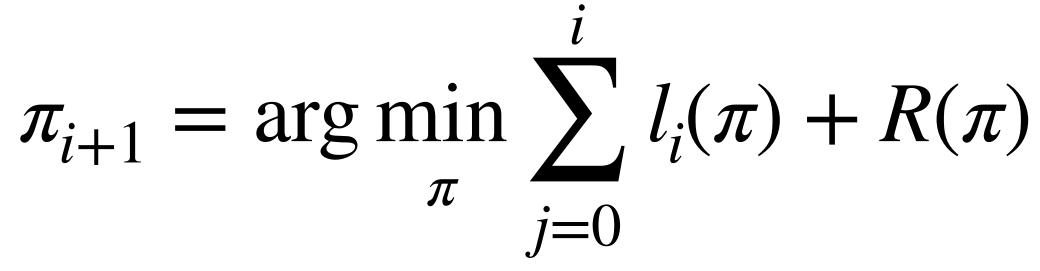




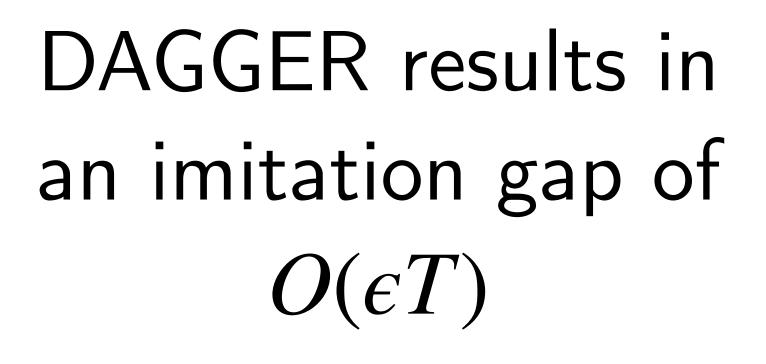
DAGGER -12GORITHH To the BEHAVIOR CLONING. Det SJ EXPTR DATA BUFFER For i= 1 ---- N Romoot π_i ($S_1, a_1, S_2, a_2, \dots \dots$) QUERY HUMAN \mathcal{K}^* For CORRECT ACTIONS $(S_1, \mathcal{K}(S_2), S_2, \mathcal{K}(S_2) - - - -)$ $D \leftarrow D \cup \{(s_1, \pi(s_1), s_2, \pi(s_2), \dots,)\}$ Ti & TRAIN (D)

By training on aggregated data π_i is playing Follow the (Regularized) Leader!

 $l_i(\pi) = \mathbb{E}_{s \sim d_{\pi}} \mathbb{1}(\pi(s) \neq \pi^*(s))$



DAGGER H2GORITHH To the BEHAVIOR CLONING. Det SJ EKPTY DATA BUFFER For i= 1 ---- N Romout T_i $(S_1, Q_1, S_2, Q_2, \dots)$ QUERY HUMAN π^* For CORRECT ACTIONS $(S_1, \overline{\pi}(S_2), S_2, \overline{\pi}(S_2), \dots, \dots)$ $D \leftarrow D \cup \{(s_1, t(s_2), s_2, t(s_2), \dots, t(s_n)\}$ Ti & TRAIN (D)



Assume the best policy in our policy class can drive down average loss to ϵ

Then DAGGER finds a policy π_i $J(\pi_i) - J(\pi^*) \leq T l_i(\pi_i)$ $\leq T \epsilon$

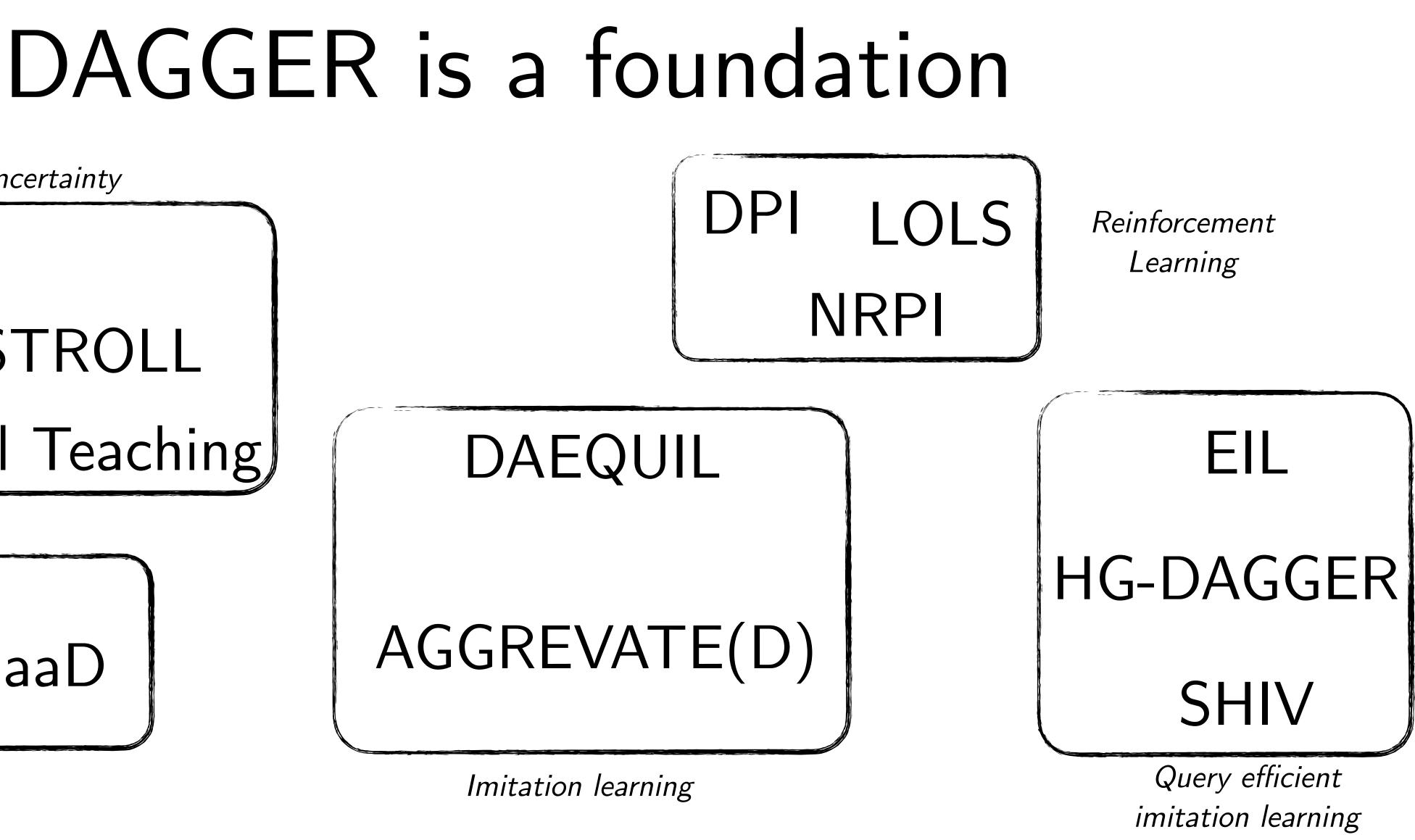
Original results from DAGGER!

Imitation under uncertainty

SAIL Explore Stroll Counterfactual Teaching

Agnostic SysID DaaD

Model learning

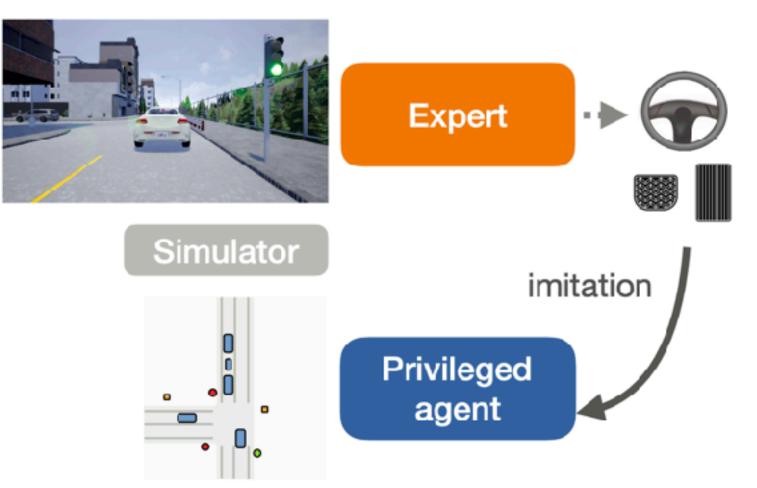


DAGGER

Many cool applications of DAGGER in robotics

Lee et al, Learning quadrupedal locomotion over challenging terrain (2020)

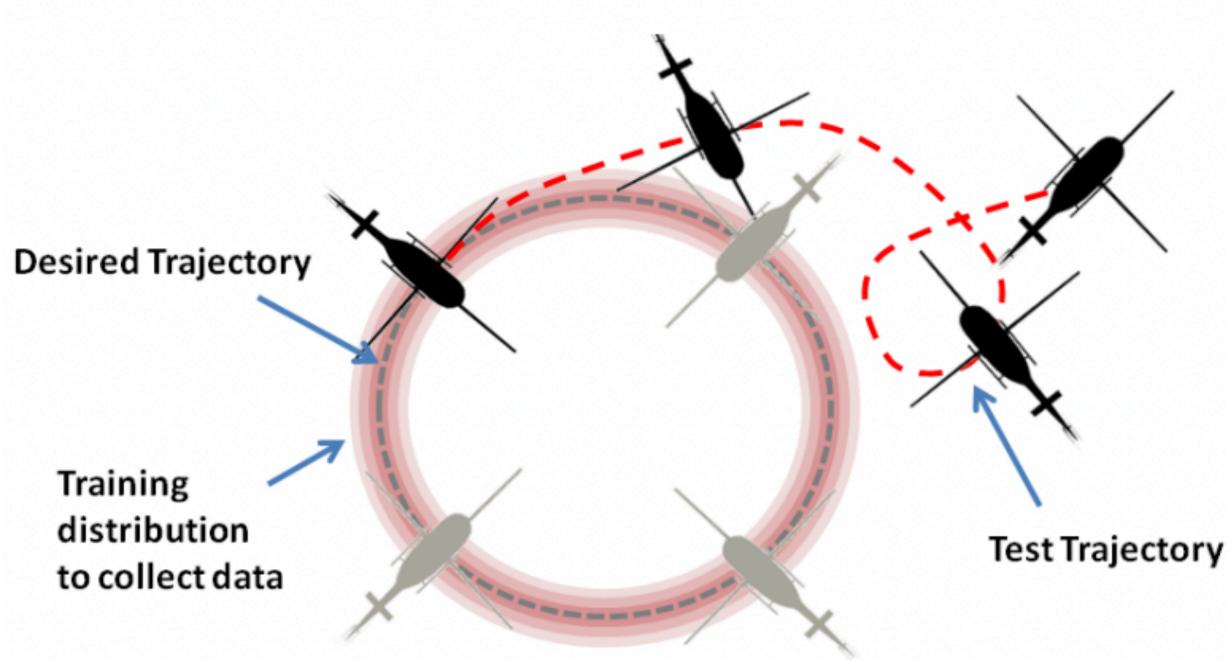
Choudhury et al, Data Driven Planning via Imitation Learning (2018)



Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous driving (2019)

DAGGER is not *just* for imitation learning!



Model-based Reinforcement Learning

Agnostic System Identification for Model-Based Reinforcement Learning

Stéphane Ross Robotics Institute, Carnegie Mellon University, PA USA

J. Andrew Bagnell Robotics Institute, Carnegie Mellon University, PA USA STEPHANEROSS@CMU.EDU

DBAGNELL@RI.CMU.EDU

Hidden charges from DAGGER

Hidden Charge #1: Not all errors are equal

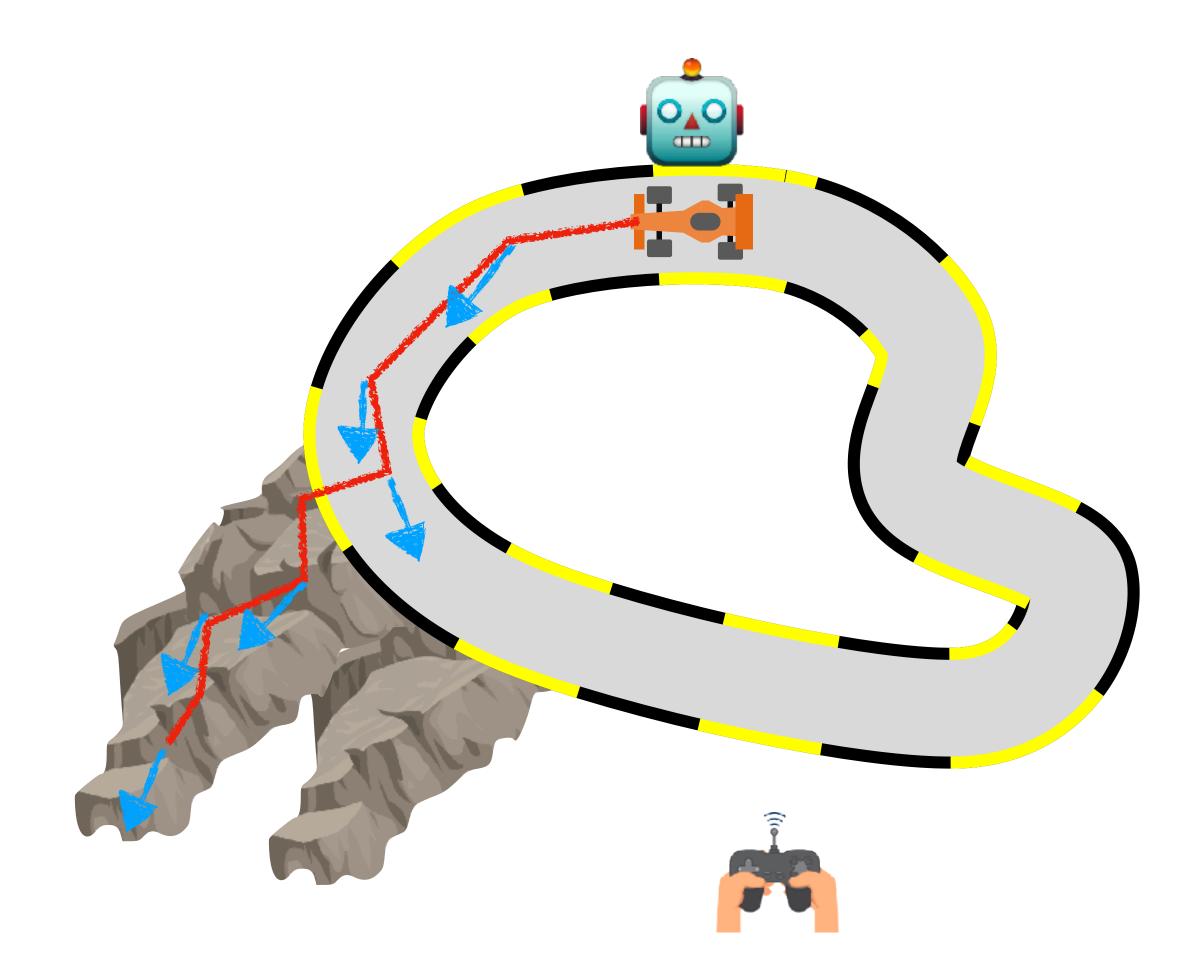
Roll out a learner policy

Collect expert actions

Aggregate data

Update policy $\min \mathbb{E}_{s,a^* \sim \mathcal{D}} \mathbb{1}(\pi(s) \neq a^*)$ ${\cal \pi}$

Recap: DAGGER

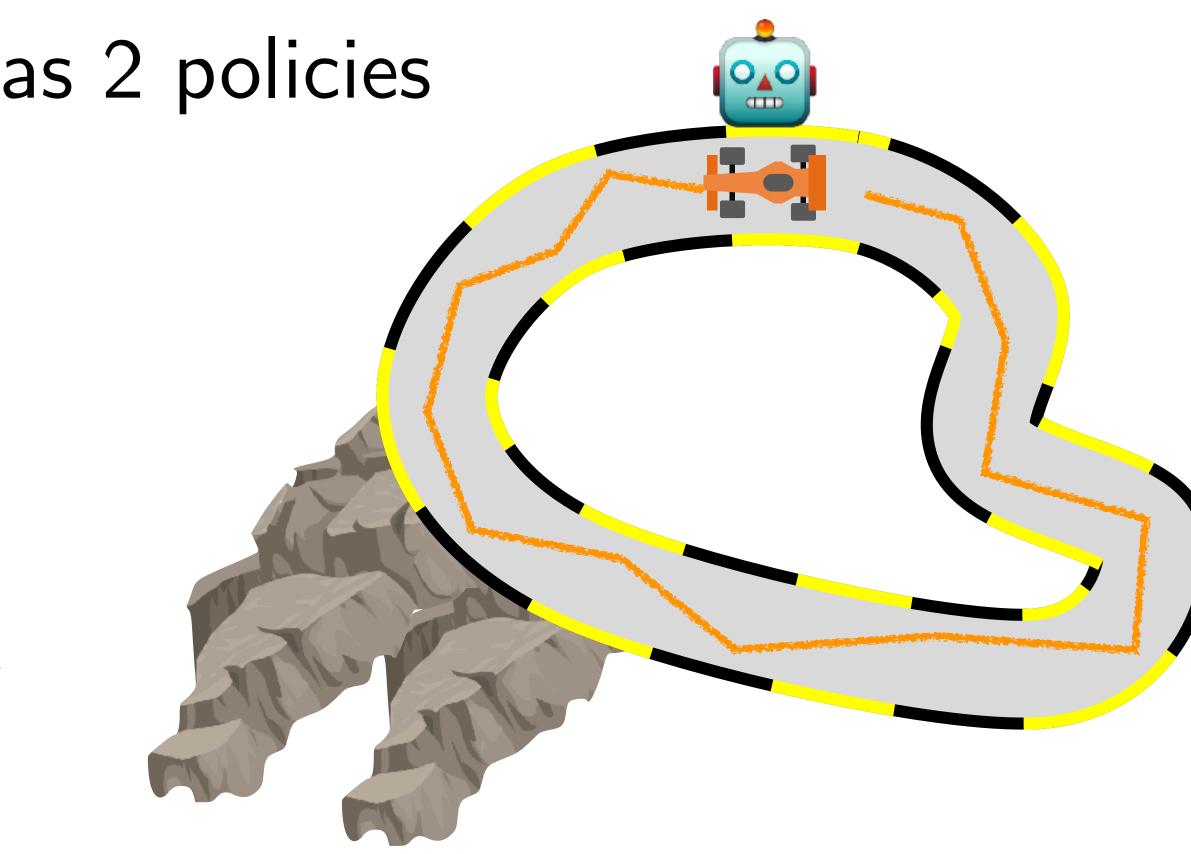


What does DAGGER guarantee?

Let's say your policy class Π has 2 policies

Policy π_1 :

Shaky hands, never goes out of racetrack, but can't recover if it did

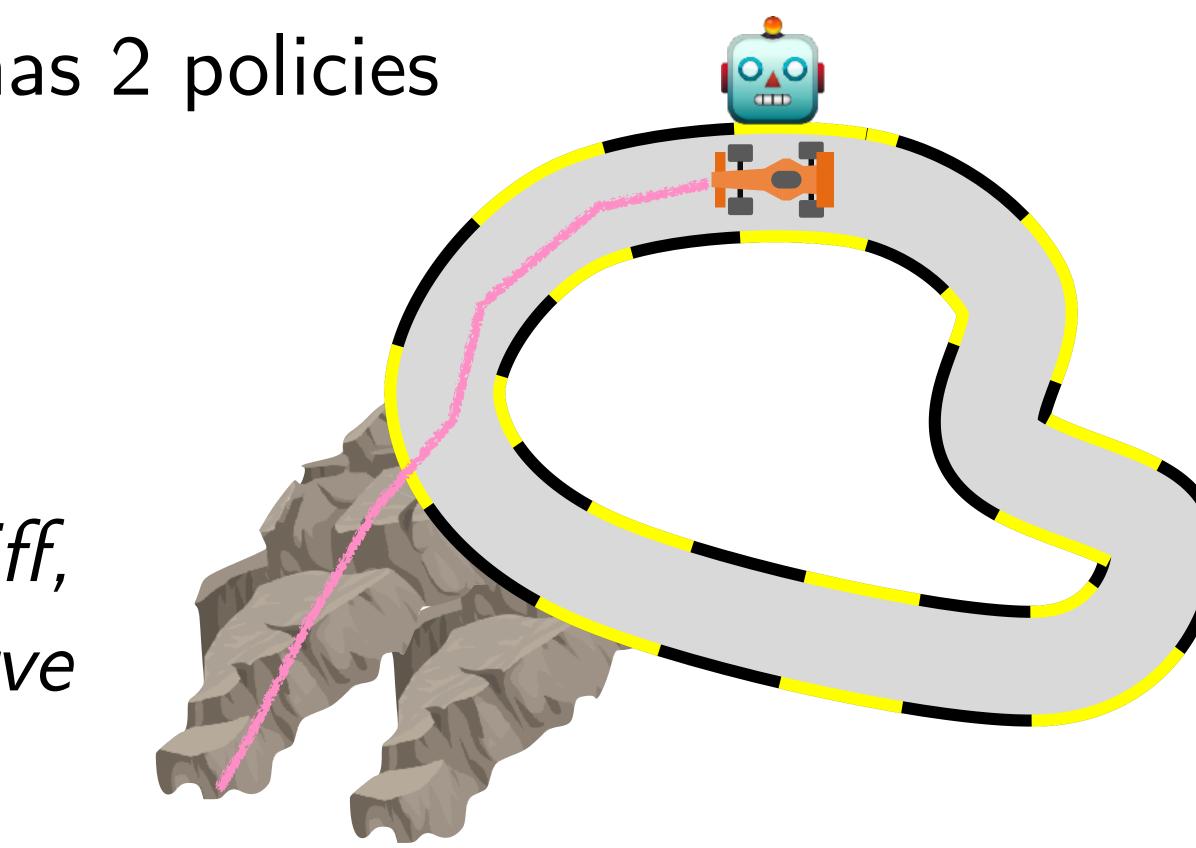


What does DAGGER guarantee?

Let's say your policy class Π has 2 policies

Policy π_2 :

Perfect on straight turns, Perfect when falling off the cliff, But makes mistake on the curve



What does DAGGER guarantee?

Which policy would you like to learn?

Which policy might DAGGER return?

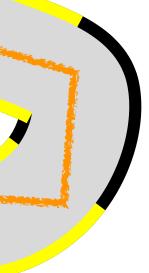


Think-Pair-Share! Policy π_1 Policy π_2

Think (30 sec): Which policy would DAGGER return? How would you get it to choose π_1 ? Is DAGGER really $O(\epsilon T)$?

Pair: Find a partner

Share (45 sec): Partners exchange ideas



What is theoretically the best we can do in imitation learning?

Performance Dífference Lemma

Is there a theoretically best imitation learning algorithm?

AGGREVATE

The Robotics Institute Carnegie Mellon University, Pittsburgh, PA, USA

Stéphane Ross J. Andrew Bagnell stephaneross@cmu.edu dbagnell@ri.cmu.edu

Reinforcement and Imitation Learning via Interactive No-Regret Learning

AGGREVATE: Expert provides values

Just like DAGGER

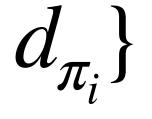
For i = 0 ... N-1

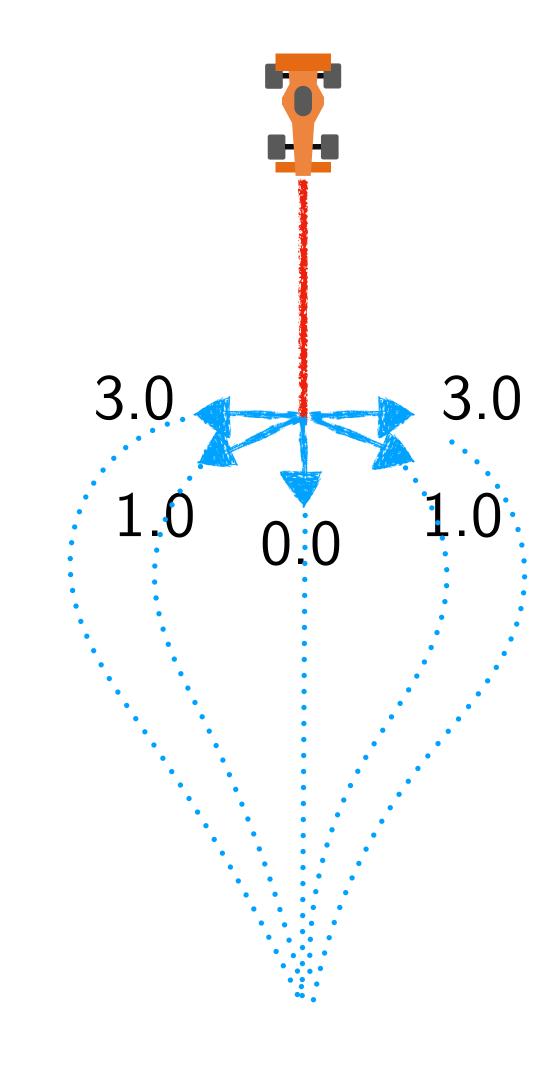
Roll-in learner π_i to get $\{s \sim d_{\pi_i}\}$

Query expert for advantage vector $A^*(s, .)$

Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \{s, A^*(s, .)\}$

Train policy $\pi_{i+1} = \mathbb{E}_{s,A^* \sim \mathcal{D}}(A^*(s, \pi(s)))$





AGGREVATE: Expert provides values Roll-in learner π_i to get $\{s \sim d_{\pi_i}\}$ Query expert for advantage vector $A^*(s, .)$ 1000.0 Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \{s, A^*(s, .)\}$ Train policy $\pi_{i+1} = \mathbb{E}_{s,A^* \sim \mathscr{D}}(A^*(s, \pi(s)))$

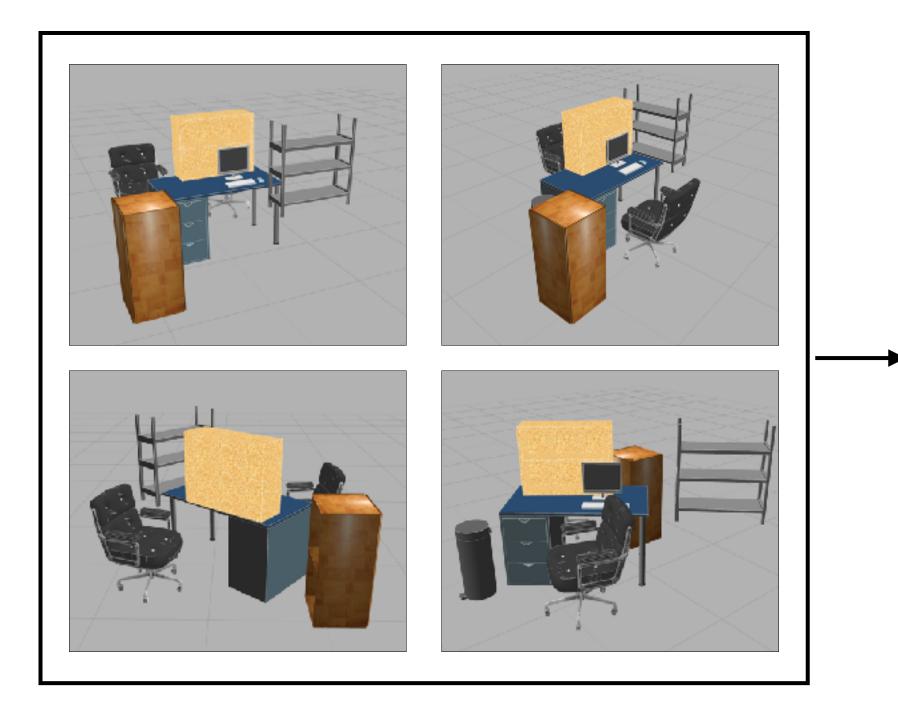
Just like DAGGER

For i = 0 ... N-1

Is Aggrevate even practical?

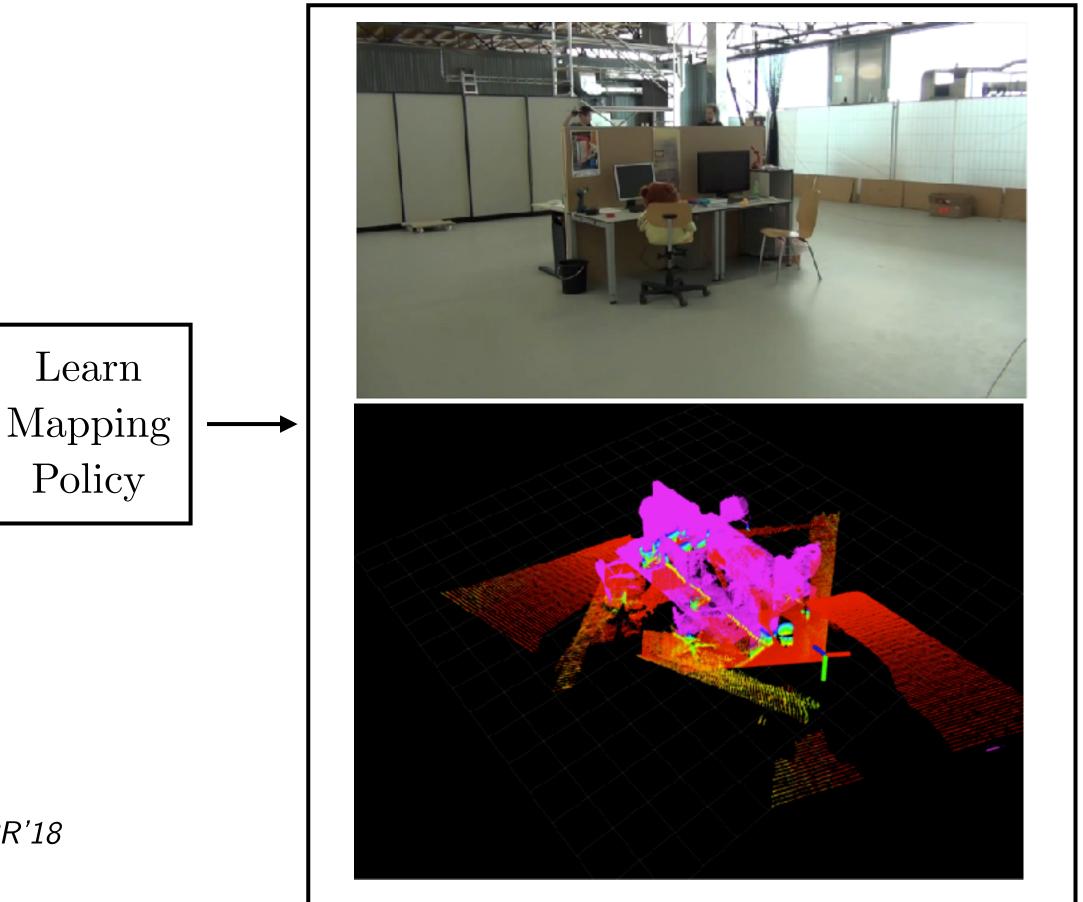
Yes*! When you are imitating algorithmic oracles

Train in Simulation



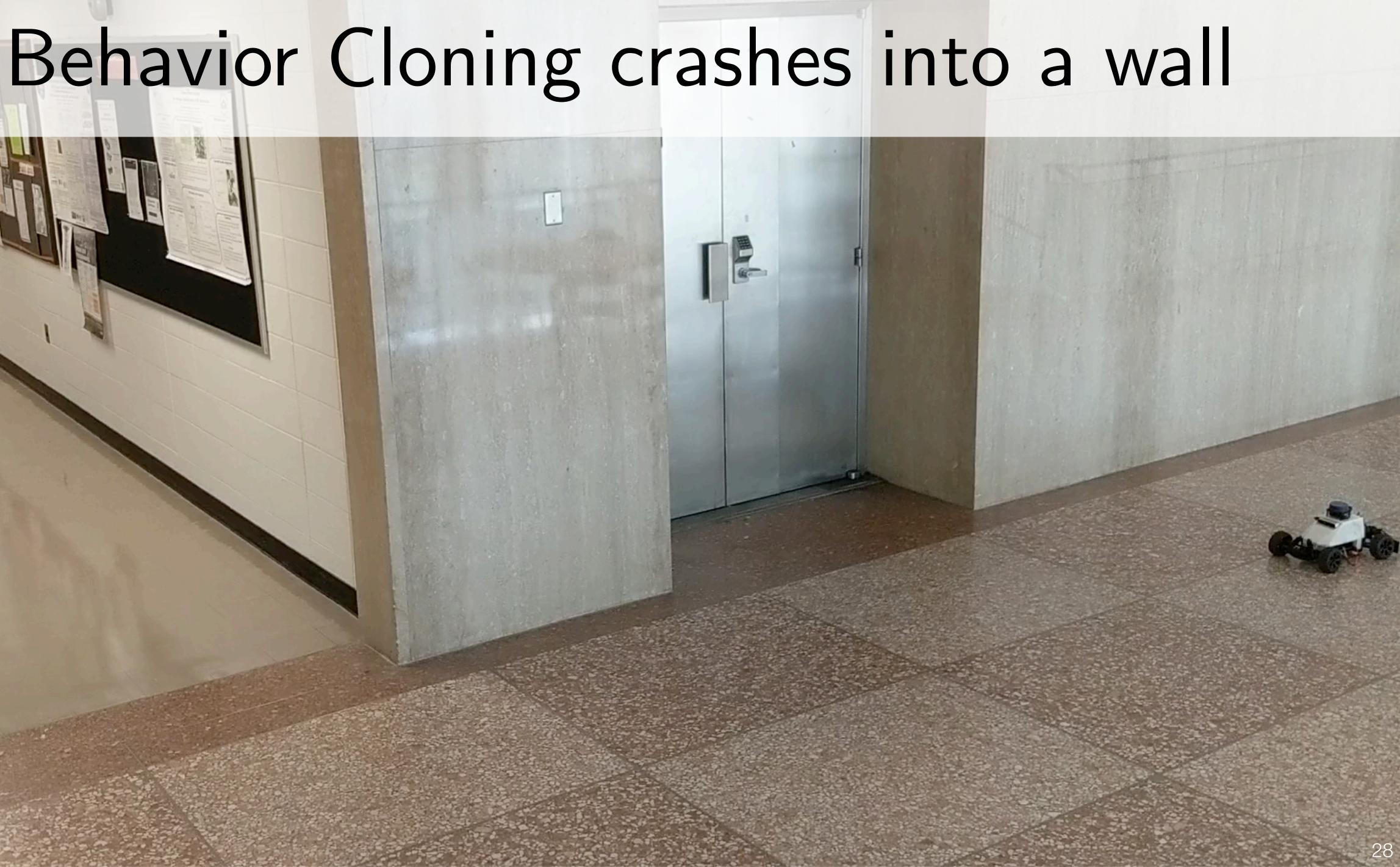
Choudhury, S. et al Data-driven planning via imitation learning. IJRR'18

Test in the real world

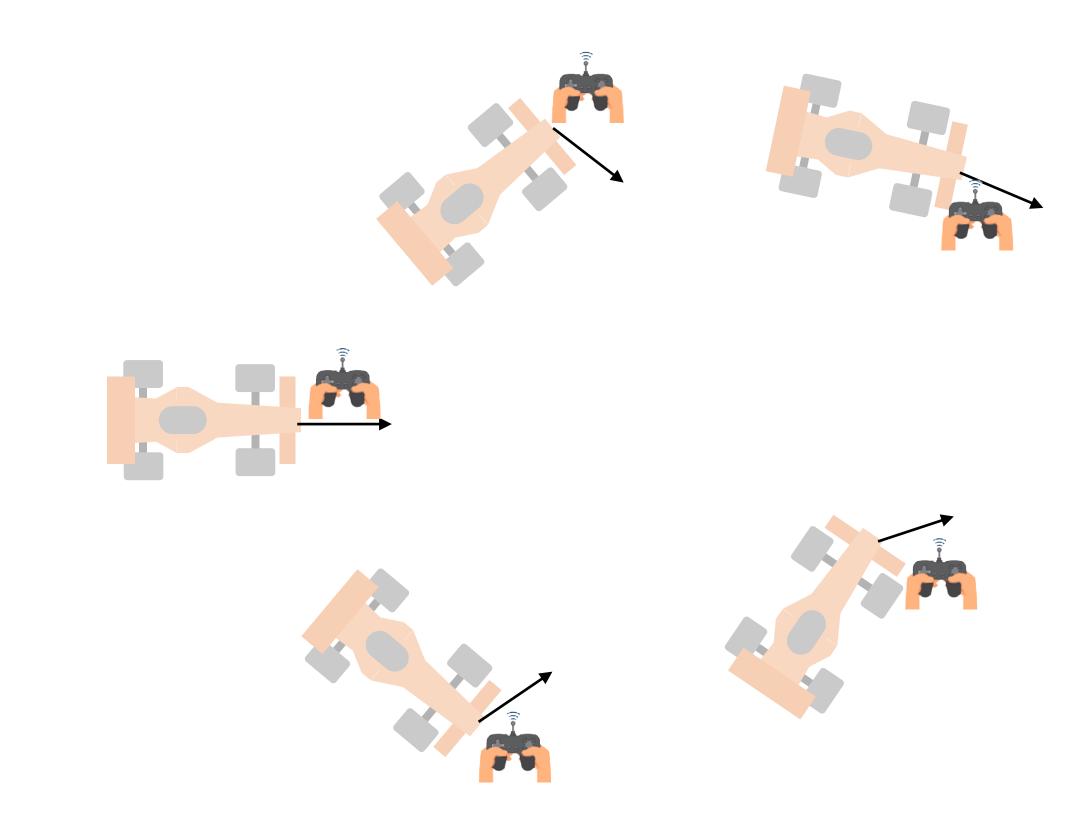


Okay ... But how do we learn from natural human feedback?

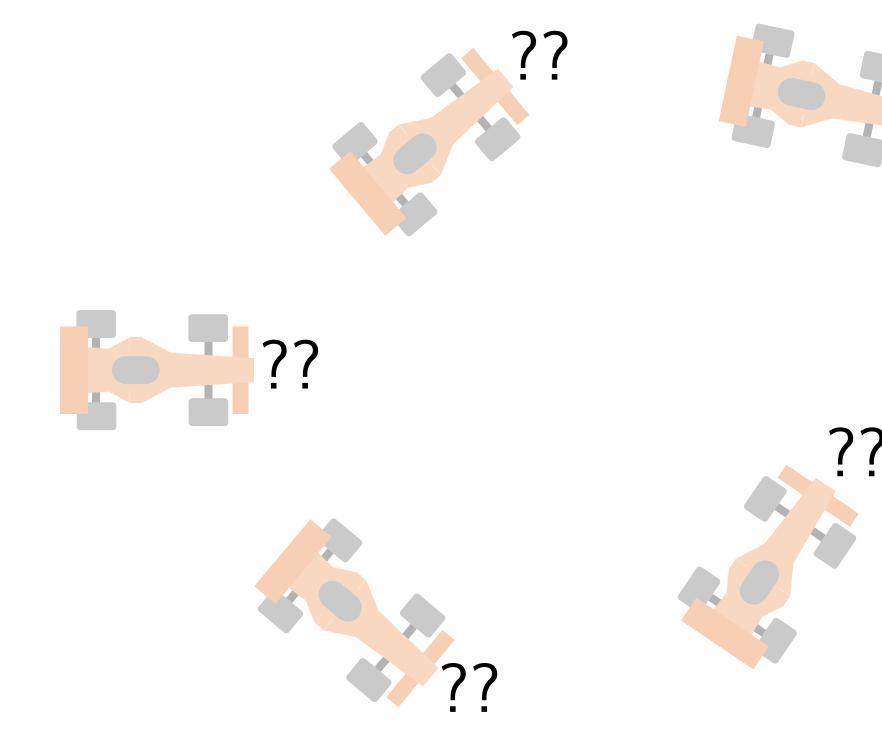
Hidden Charge #2: DAGGER queries the human at every state



DAGGER queries the human at every state!

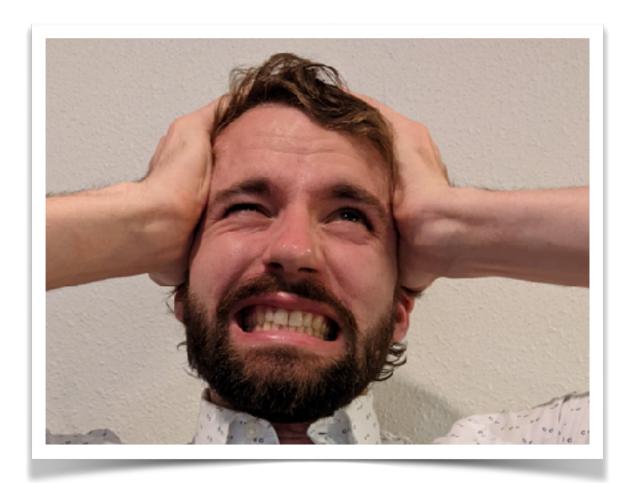


Impractical: Too much human effort!

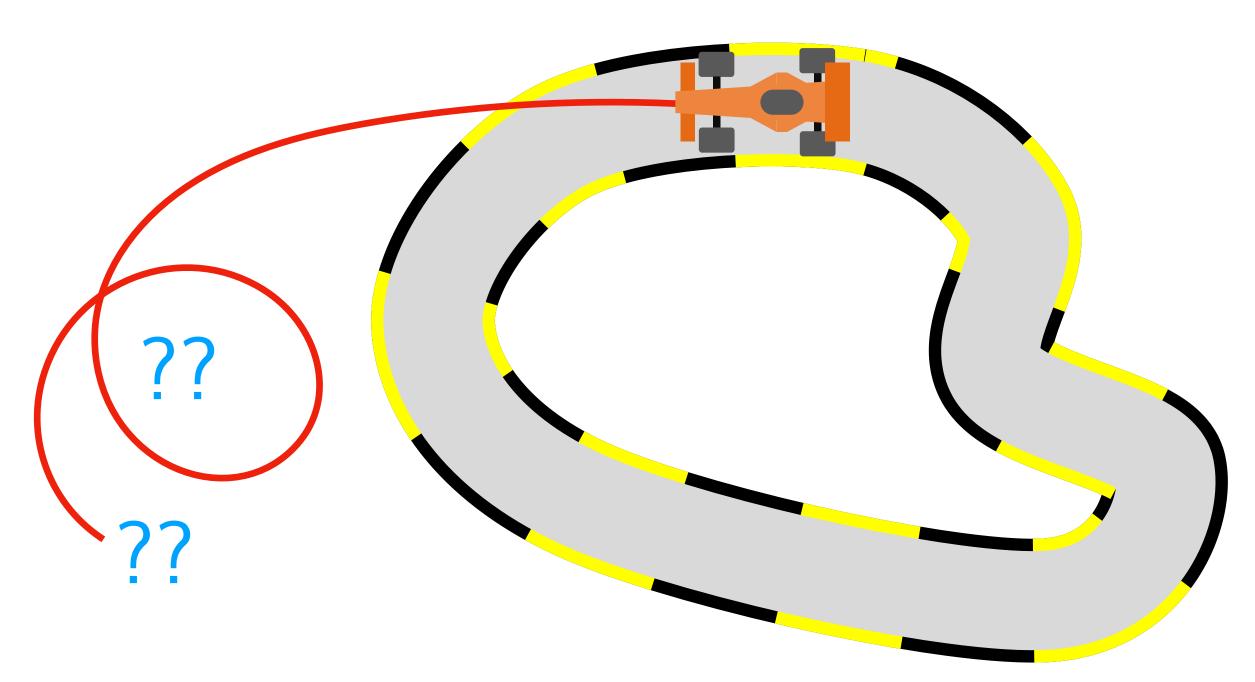


Can we learn from minimal human interaction?

??



Problem: Impractical to query expert everywhere

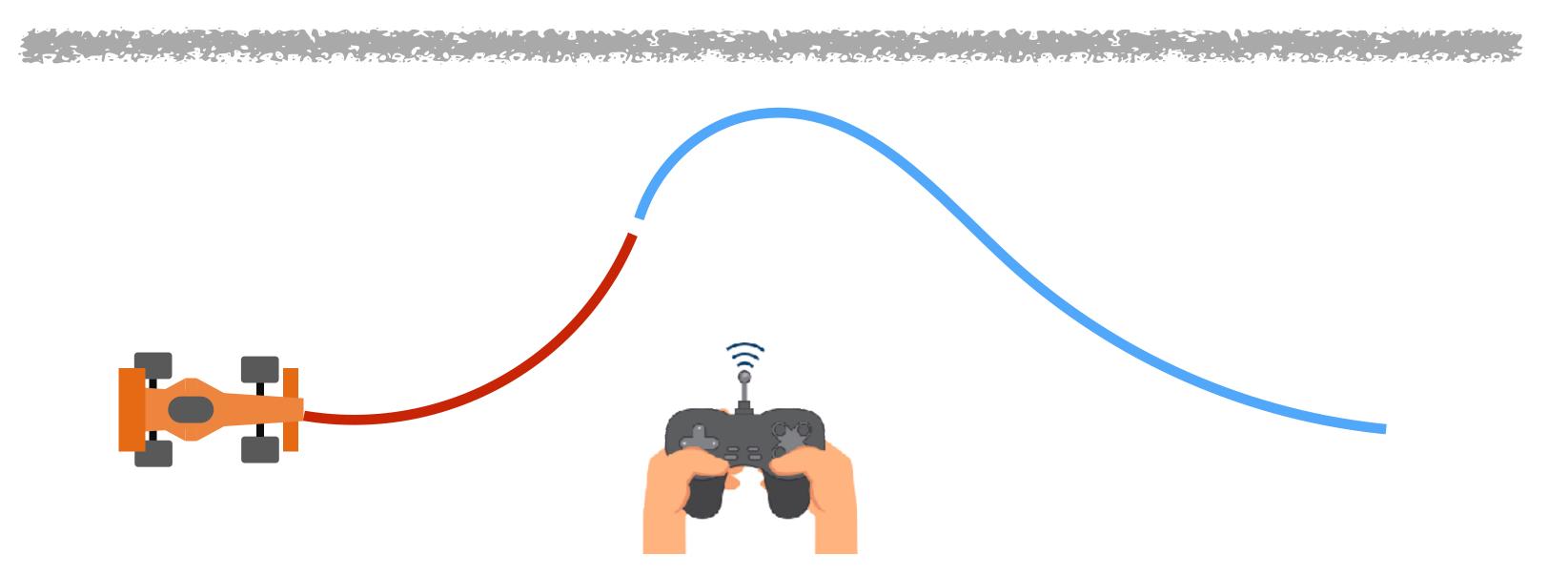


Can we learn from natural human interaction, e.g., interventions?

Learn from natural human interventions?

TARAS STRAND SALE SALE AND STRAND S

Hands free, no corrections!



Take over and drive back!

Learn from natural human interventions?

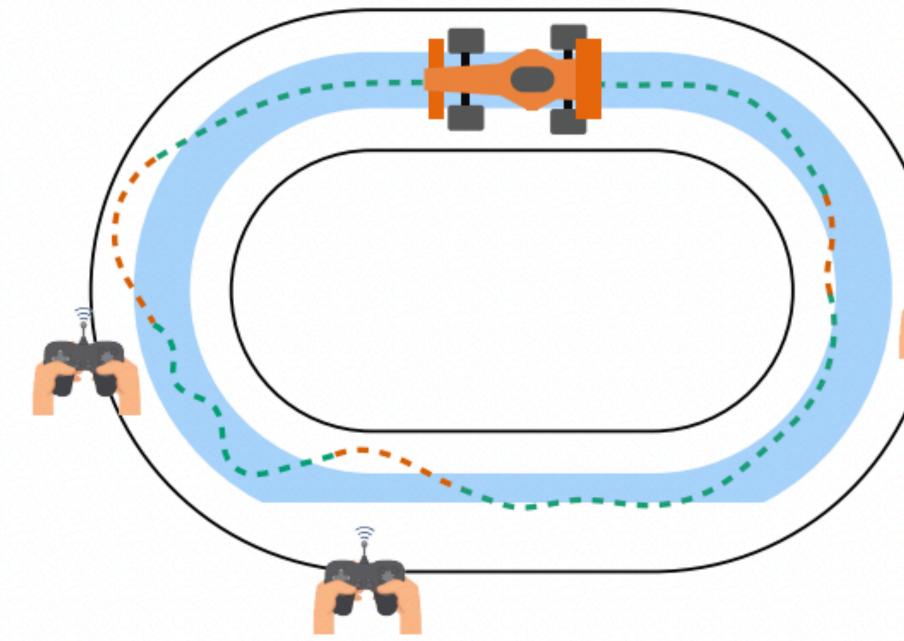
HG-DAGGER: Learning from interventions

Roll out a learner policy

Collect expert actions on states where expert intervened

Aggregate data

Update policy $\min \mathbb{E}_{s,a^* \sim \mathcal{D}} \mathbb{1}(\pi(s) \neq a^*)$ π

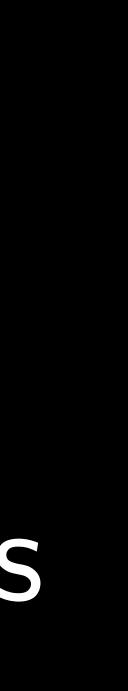


HG-DAgger: Interactive Imitation Learning with Human Experts

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer

Does this work?

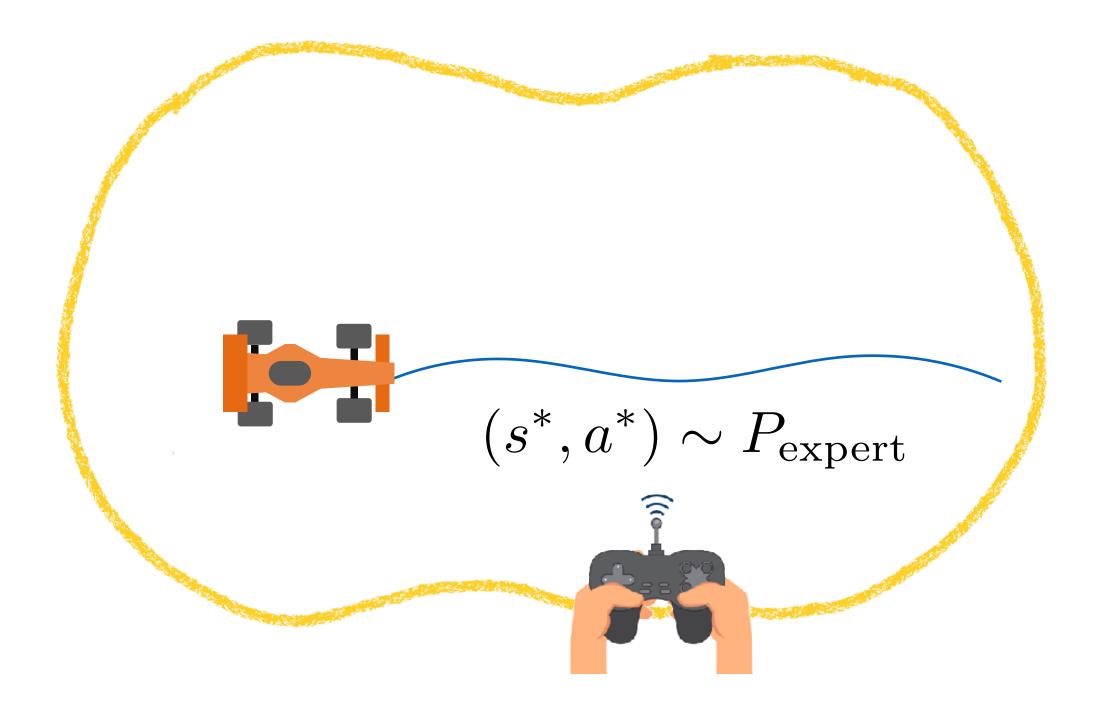
Interventions are tell us something about the expert's latent value function



The expert action-value function is latent ...

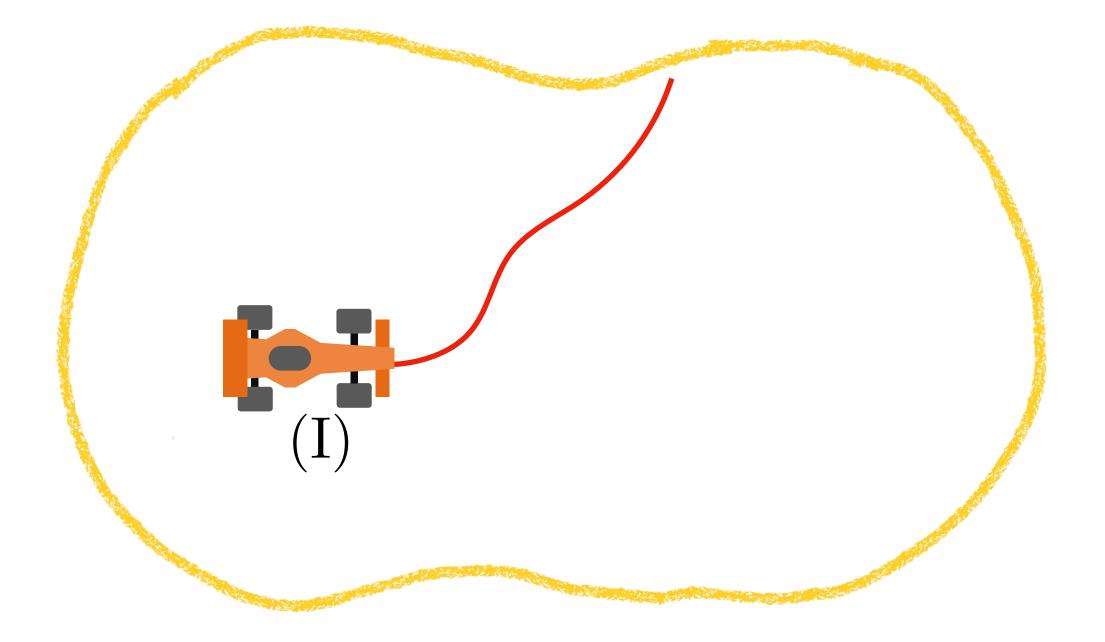
... and must be inferred from human interventions

Interventions are just constraints on latent action-value function



Interventions are just constraints on latent action-value function

 $\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$ classify demonstrations



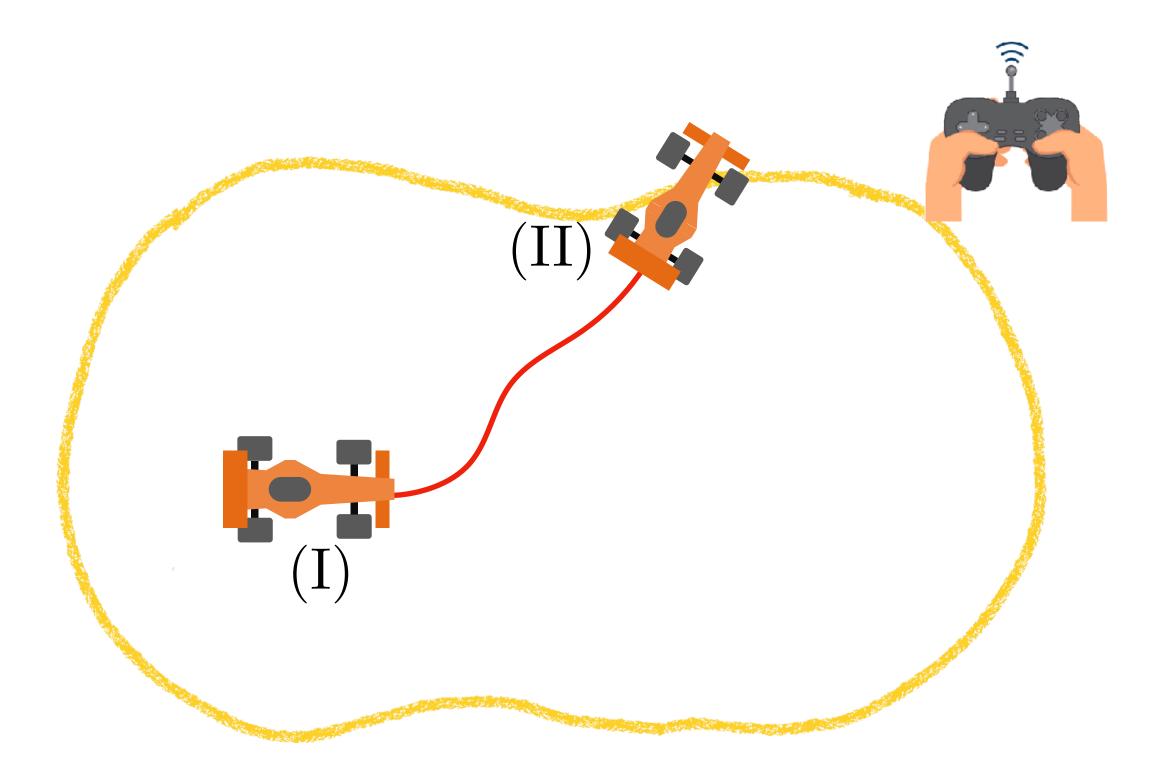
Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$
classify demonst

s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes





Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$

$$\underset{\text{classify demonst}}{\text{classify demonst}}$$

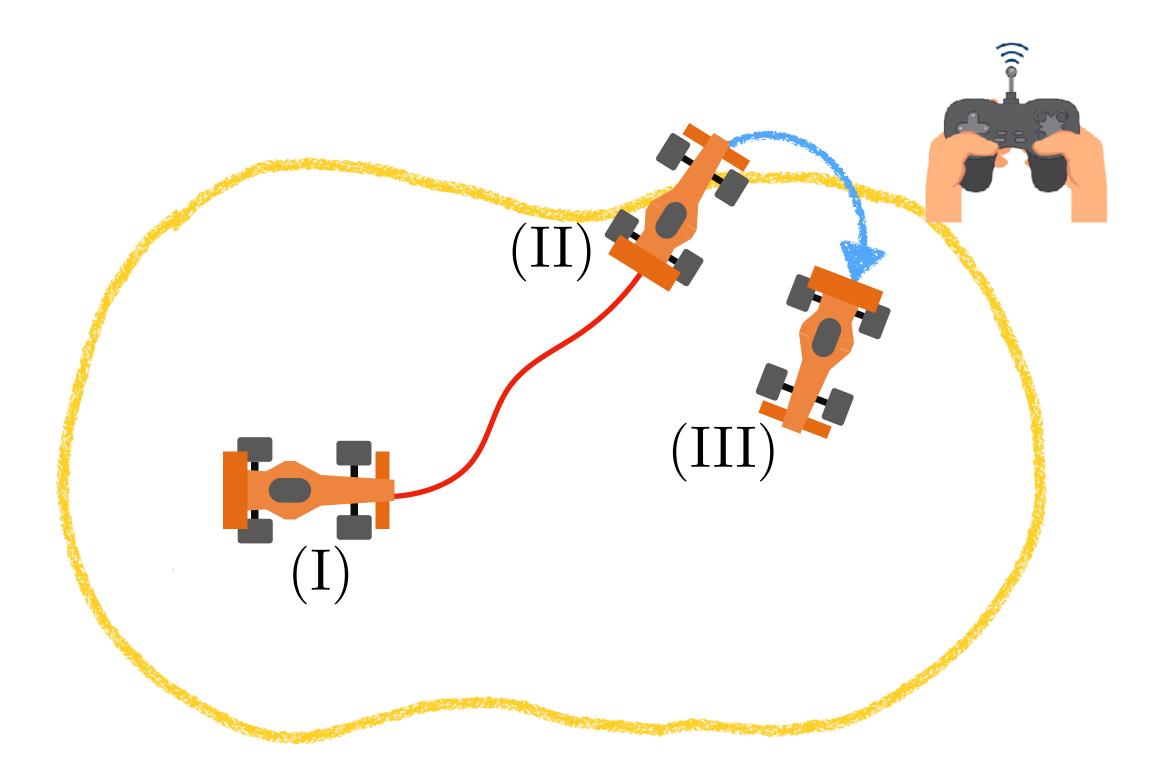
s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes

 $Q(s,a) \ge \delta_{\text{good}}$

 $\forall (s, a) \in (\mathrm{II})$ after expert intervenes

41



Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$

$$\underset{\text{classify demon}}{\text{monomega}}$$

s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes

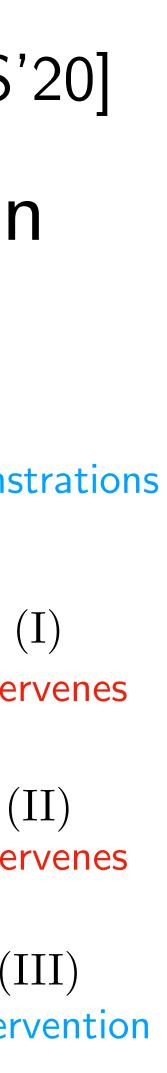
 $\forall (s, a) \in (\mathrm{II})$ $Q(s,a) \ge \delta_{\text{good}}$ after expert intervenes

$$Q(s,a) \le \min_{a'} Q(s,a)$$

 $\forall (s, a) \in (\mathrm{III})$

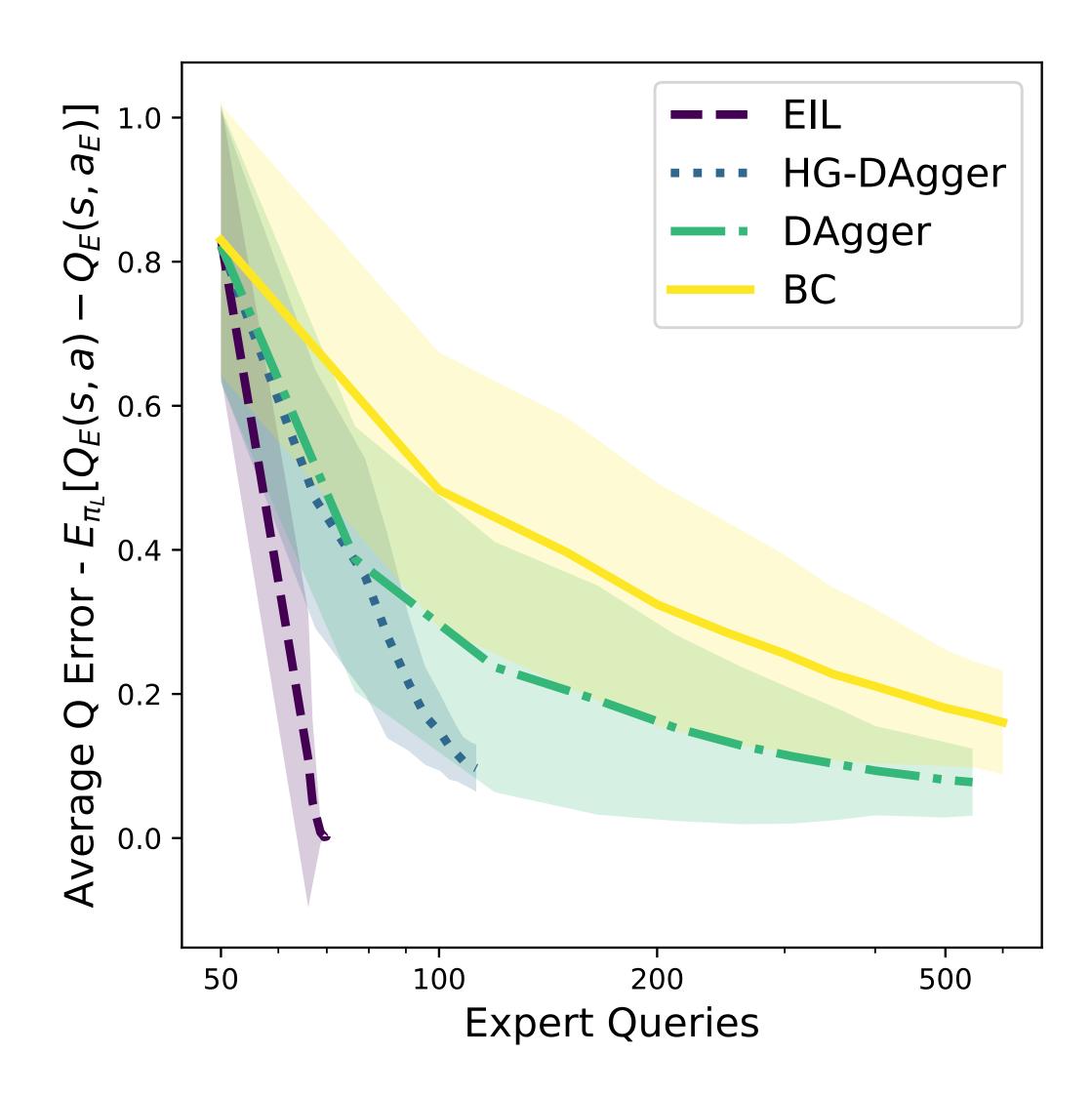
during expert intervention

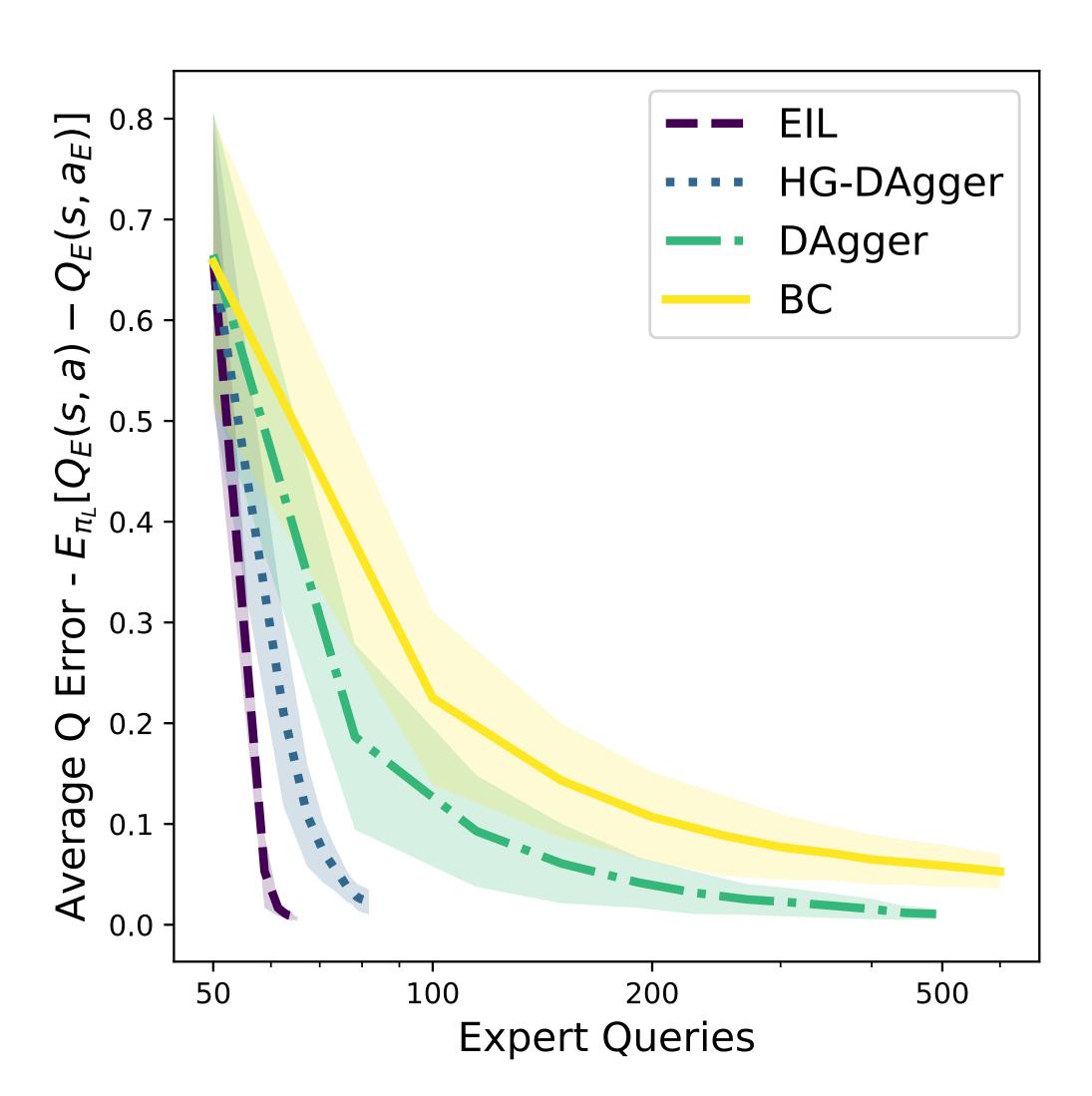
Reduce to online, convex optimization! $O(\epsilon I)$



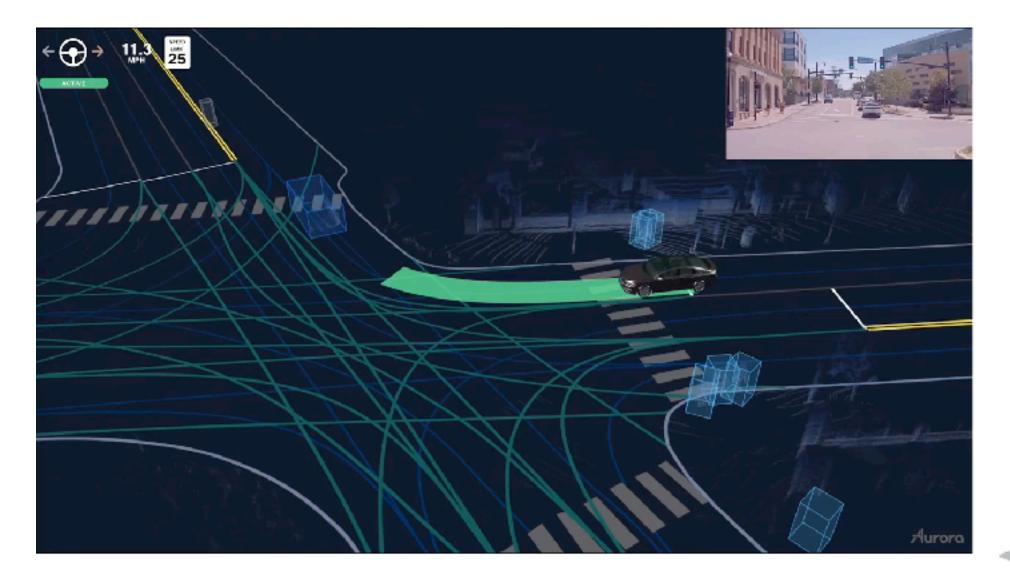
42

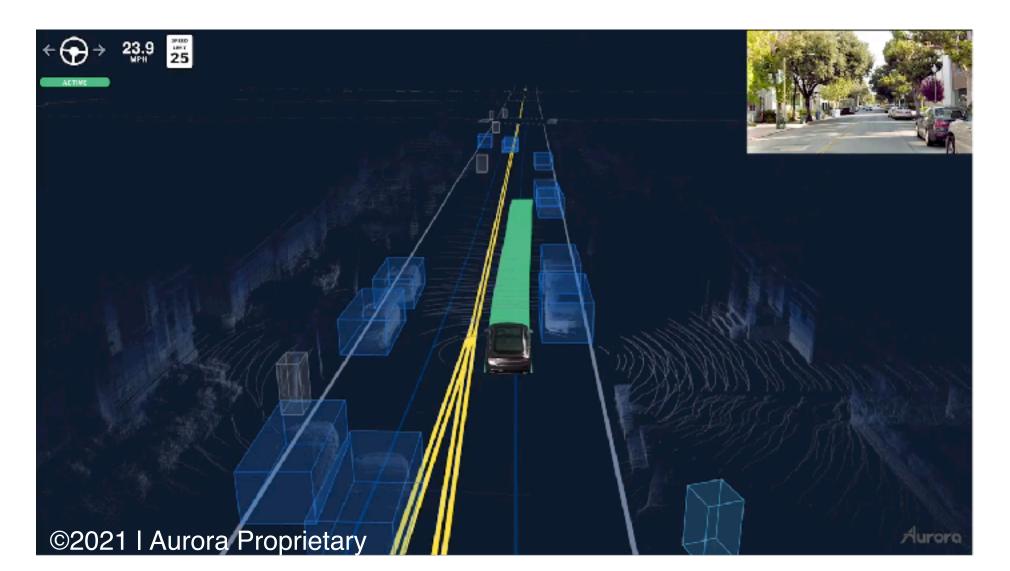
EIL drives down error with less expert query

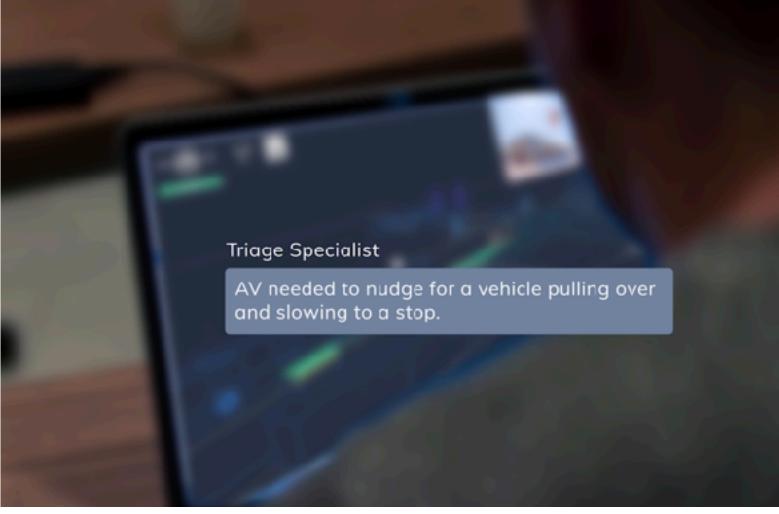


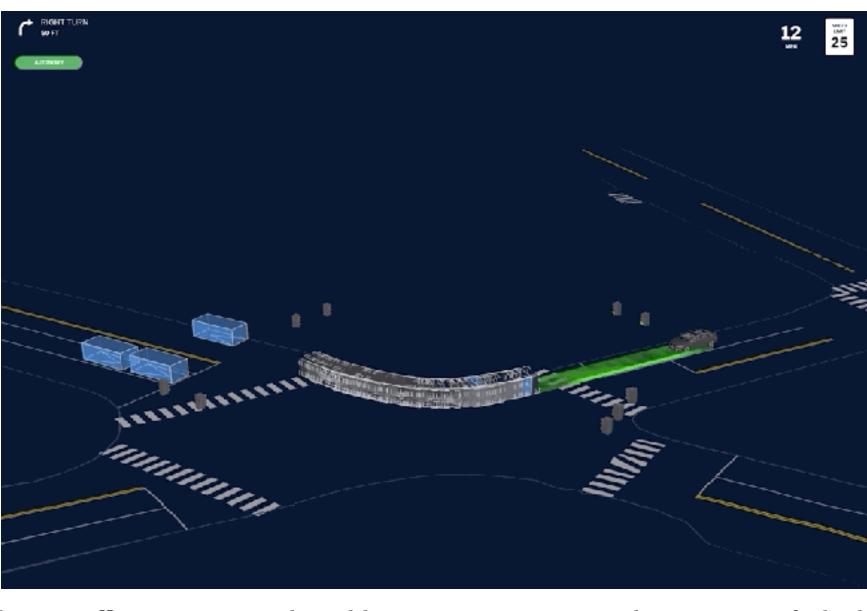


Turning interventions to simulations for learner









https://medium.com/aurora-blog/online-to-offline-turning-real-world-experience-into-virtual-tests-231c1cf8cbcd 45

The Big Picture

What we really want to solve is:

Data

"What is the distribution of states?"

Use interactive online learning!

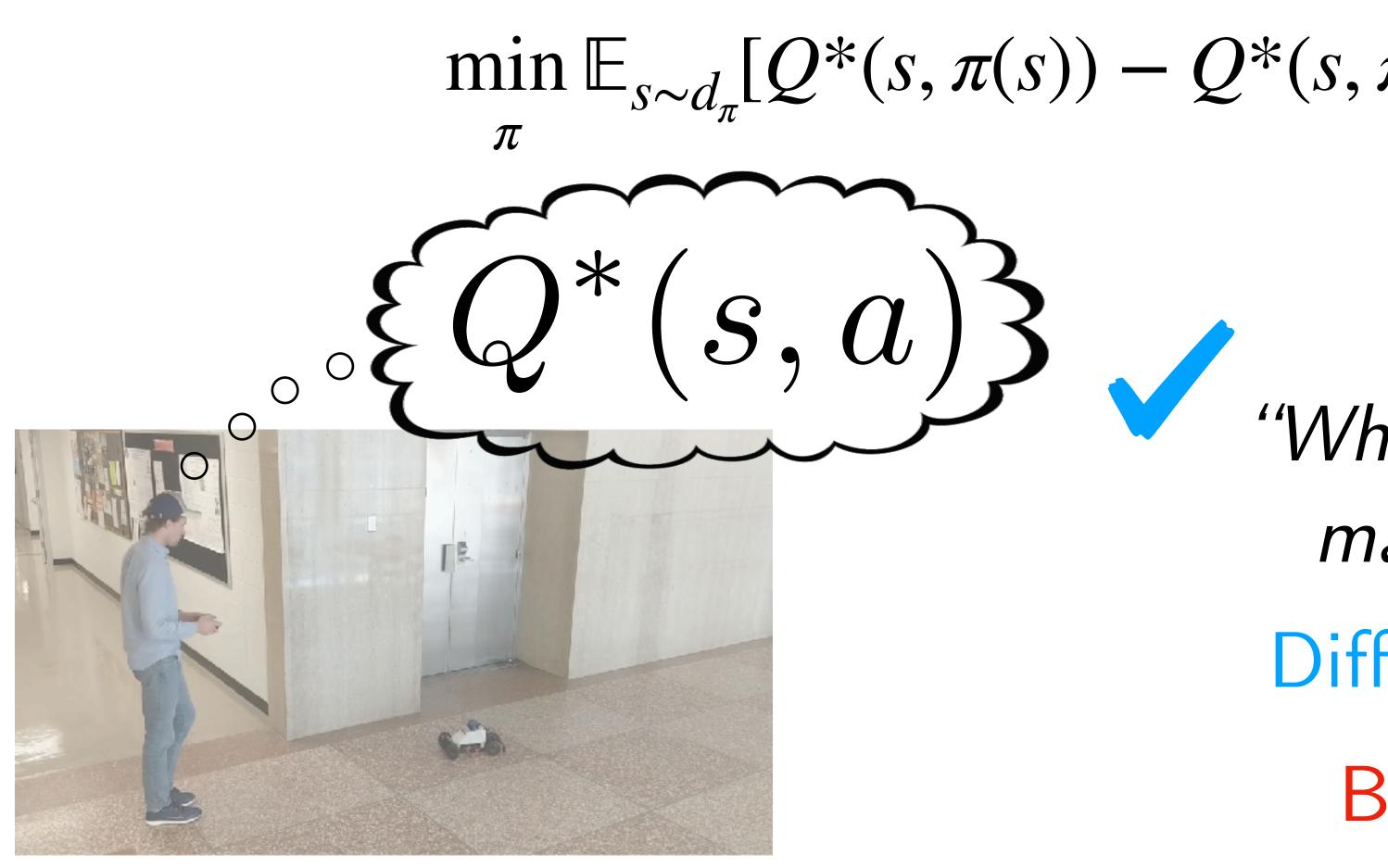
min $\mathbb{E}_{s \sim d_{\pi}}[Q^{*}(s, \pi(s)) - Q^{*}(s, \pi^{*}(s))]$

Loss

"What is the metric to match to human?"

Difference in Q values!

The Big Picture



What we really want to solve is:

min $\mathbb{E}_{s \sim d_{\pi}}[Q^*(s, \pi(s)) - Q^*(s, \pi^*(s))]$

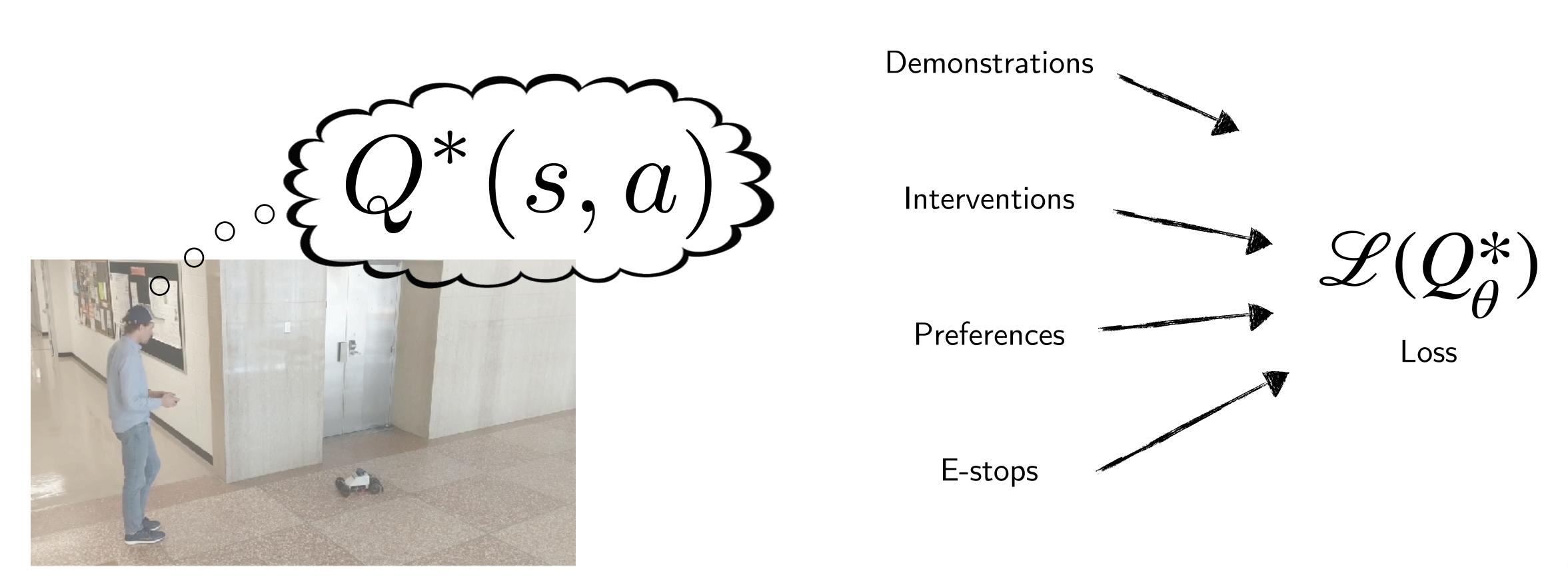
Loss

"What is the metric to match to human?"

Difference in Q values!

But Q* is latent!

The Big Picture



Estimate Q* from demonstrations, interventions, preferences, ... and even E-stops!

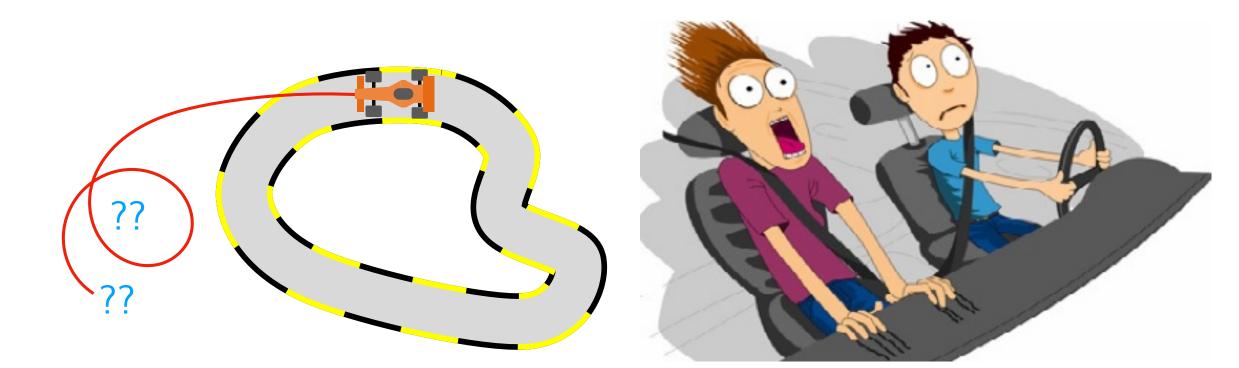
tl;dr

The Big Picture

Data *"What is the distribution"* of states?"

Use interactive online learning!

Problem: Impractical to query expert everywhere



Can we learn from natural human interaction, e.g., interventions?

What we really want to solve is:

 $\min \mathbb{E}_{s \sim d_{\pi}}[Q^*(s, \pi(s)) - Q^*(s, \pi^*(s))]$

Loss *"What is the metric to"* match to human?"

Difference in Q values!

Expert Intervention Learning (EIL)

Х

[SCB+ RSS'20]

The expert action-value function is latent ...

... and must be inferred from human interventions

Х

Х

Hidden charge #3: Dagger expects at least one policy to be good everywhere

