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Let’s travel to the INFINITE data limit! 

The  
Three Regimes  
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Hard
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No label for what to do 
in this state!

Non-realizable expert + limited support?
Expert Learner
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Hard

Behavior Cloning 
compounds in error  O(ϵT2)

[Ross & Bagnell ’10]

Non-realizable expert + limited support?
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Non-realizable expert +  
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Why can’t we just collect 
data  on the 

distribution of states the 
learner visits?

(s, a*)
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Introducing an interactive expert!
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To know the distribution, you need a learner 
To train a learner, you need a distribution
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Activity!



Brainstorm
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How can we solve the chicken and egg problem, i.e. train the learner 
on a distribution of states it visits?



An embarrassingly simple algorithm: FORWARD
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for t = 0 … T-1

Train a learner policy at time   t
πt = Train(st, a*t )

Idea: Train a different learner policy at every timestep by interactively querying expert 

Get start state samples   s0 ∼ d0( . )

Query interactive expert to get 
a*t = π*(st)

Execute learner policy  to get  
next state samples 

πt

st+1 ∼ dt+1
π ( . )



But what if we want 
ONE policy?
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DAGGER



DAGGER: A meta-algorithm for imitation learning
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DAgger: Iteration 0 
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Policy
π0

Data

[Ross et al’11]

Human drives



DAgger: Iteration 1 
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[Ross et al’11]

Robot  drives π0

Human corrects!

Data

Old Data

Policy
π1AGGREGATE DATA



DAgger: Iteration 2
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[Ross et al’11]

Robot  drives π1

AGGREGATE DATA



DAgger: Iteration 1 
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[Ross et al’11]

Robot  drives πN

After many iterations …. 
we are able to drive like a human!





But why does 
aggregating data work?
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Learner

Initialize policy
Chooses loss

π2

l2( . )

Update policy
Chooses loss

π1 [policy]

l1( . ) [loss]

The Imitation Game
Adversary
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Imitation learning is 
just a game 

Be stable 

Slowly change 
predictions



Let’s prove!
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How can I customize 
DAGGER to be more 

practical?
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Customizing your DAGGER
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Q1. The policy iteration at step 1 is crappy and visits irrelevant 
states. What do I do?

Blend the expert and learner policy πi = (1 − βi) ̂πi + βiπ*

Q2. What if I can’t afford to store all the aggregated data?

Online gradient descent!



28

Original  
results 
from  

DAGGER!

https://www.youtube.com/watch?v=V00npNnWzSU


DAGGER is a foundation
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DAGGER

AGGREVATE(D)
HG-DAGGER

EIL

SHIV

DAEQUIL

DaaD
Agnostic 
SysID

ExPLORE
SAIL

STROLL

Counterfactual Teaching

NRPI

DPI LOLS
Imitation under uncertainty

Model learning Imitation learning Query efficient 
imitation learning

Reinforcement 
Learning



Many cool applications of DAGGER in robotics
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Lee et al, Learning quadrupedal locomotion over 
challenging terrain (2020)

Choudhury et al, Data Driven Planning via 
Imitation Learning (2018)

Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous 
driving (2019)



DAGGER is not just for imitation learning!
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Model-based Reinforcement Learning
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DAGGER is not just for imitation learning!
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Hidden charges from DAGGER



Hidden charge #1: Not all mistakes are equal
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Bad states 
⇡(s1)

⇡(s2) ⇡(s3)s1

s2 s3

Expert always stays 
on the race track

Sbad

which expert would never visit

Learner 
imitates expert 

perfectly in Sbad

Figure 1: Problem with the imitation learning formulation. The expert policy stays perfectly on the race track. The learner immediately
goes off the race track and visits bad states.

Consider the example shown in Fig.1. The expert stays on the track and never visits bad states s 2 Sbad.
The learner, on the other hand, immediately drifts off into Sbad. Moreover, for all s 2 Sbad, the learner can
perfectly imitate the expert. In other words, `(s, ⇡̂) = 0 for these states. In fact, it is likely that for certain
policy classes, this is the optimal solution! At the very least, DAGGER is susceptible to learn such policies
as is shown in the counter example in Laskey et al. [8].

4 Various alternate formulations for imitation learning

The phenomenon discussed in the previous section leads to a host of interesting questions and problems.
We will simply list them here and then tackle them one by one.

4.1 Constrained policy search

It seems we can overcome the ‘cheating in bad states’ phenomenon by constraining the space of policies to
not enter Sbad (or have state visitation probabilities to be low under the induced distribution). How do we
specify such constraints and how do we solve IL under such constraints?

4.2 Distribution matching

If we dig a little deeper, we realize that instead of minimizing imitation loss as we do in (1), what we really
care about is making sure our policy distribution is the same as the experts. This is exactly the premise of
GAIL [5].

4.3 Expert in the loop

Say we have an ‘expert-in-the-loop’ that overrides the learner during roll-out. This would cause a train test
distribution mismatch? How should we handle this?

4.4 Actively minimizing calls to the expert

It seems wasteful for the expert to have to label corrective actions that are not relevant to the task, e.g.
s 2 Sbad. That being said, it seems wasteful for the expert to have to label states where the policy has

1Do we need stationarity?
2Which we will not yet directly use
3For stochastic policies, we sample actions at ⇠ ⇡(st�1)
4We put in sto allow some flexibility incase we want non-uniform loss or we want to bring back the cost function into the loss

2

Dagger minimizes 0-1 loss, but what we really want to optimize are 
advantages! (More next lecture)



Hidden charge #2: Dagger asks the expert for queries everywhere
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?
?

?

?
?

We’ll see how to learn from  
limited human feedback (interventions) 



Hidden charge #3: Dagger expects at least one policy to be good 
everywhere
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Learner simply 
can’t cross the 

bridge! …

… but can take 
the long way 

round. 
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To know the distribution, you need a learner 
To train a learner, you need a distribution
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