
DAgger: Interactive Experts and
No-Regret Learning

Sanjiban Choudhury

1

2

Let’s travel to the INFINITE data limit!

The
Three Regimes

of
 Covariate

Shift

3

Easy
Se
tt
in
g

Expert is realizable

As , drive down
 (or Bayes error)

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.
Collect lots of data and

do Behavior CloningSo
lu
tio
n

Expert ρπE(s) Learner ρπ(s)≈

4

Hard

Non-realizable expert +
limited expert support

Easy
Se
tt
in
g

Expert is realizable

As , drive down
 (or Bayes error)

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.
Collect lots of data and

do Behavior CloningSo
lu
tio
n

5

No label for what to do
in this state!

Non-realizable expert + limited support?
Expert Learner

6

Hard

Behavior Cloning
compounds in error O(ϵT2)

[Ross & Bagnell ’10]

Non-realizable expert + limited support?

7

Hard

Non-realizable expert +
limited expert support

Even as ,
behavior cloning

N → ∞
O(ϵT2)

Easy
Se
tt
in
g

Expert is realizable

As , drive down
 (or Bayes error)

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.
Collect lots of data and

do Behavior CloningSo
lu
tio
n

?

Why can’t we just collect
data on the

distribution of states the
learner visits?

(s, a*)

8

Introducing an interactive expert!

9

To know the distribution, you need a learner
To train a learner, you need a distribution

10

Activity!

Brainstorm

12

How can we solve the chicken and egg problem, i.e. train the learner
on a distribution of states it visits?

An embarrassingly simple algorithm: FORWARD

13

for t = 0 … T-1

Train a learner policy at time t
πt = Train(st, a*t)

Idea: Train a different learner policy at every timestep by interactively querying expert

Get start state samples s0 ∼ d0(.)

Query interactive expert to get
a*t = π*(st)

Execute learner policy to get
next state samples

πt

st+1 ∼ dt+1
π (.)

But what if we want
ONE policy?

14

DAGGER

DAGGER: A meta-algorithm for imitation learning

16

DAgger: Iteration 0

17

Policy
π0

Data

[Ross et al’11]

Human drives

DAgger: Iteration 1

18

[Ross et al’11]

Robot drives π0

Human corrects!

Data

Old Data

Policy
π1AGGREGATE DATA

DAgger: Iteration 2

19

[Ross et al’11]

Robot drives π1

AGGREGATE DATA

DAgger: Iteration 1

20

[Ross et al’11]

Robot drives πN

After many iterations ….
we are able to drive like a human!

But why does
aggregating data work?

22

Learner

Initialize policy
Chooses loss

π2

l2(.)

Update policy
Chooses loss

π1 [policy]

l1(.) [loss]

The Imitation Game
Adversary

23

24

Imitation learning is
just a game

Be stable

Slowly change
predictions

Let’s prove!

25

How can I customize
DAGGER to be more

practical?

26

Customizing your DAGGER

27

Q1. The policy iteration at step 1 is crappy and visits irrelevant
states. What do I do?

Blend the expert and learner policy πi = (1 − βi) ̂πi + βiπ*

Q2. What if I can’t afford to store all the aggregated data?

Online gradient descent!

28

Original
results
from

DAGGER!

https://www.youtube.com/watch?v=V00npNnWzSU

DAGGER is a foundation

29
DAGGER

AGGREVATE(D)
HG-DAGGER

EIL

SHIV

DAEQUIL

DaaD
Agnostic
SysID

ExPLORE
SAIL

STROLL

Counterfactual Teaching

NRPI

DPI LOLS
Imitation under uncertainty

Model learning Imitation learning Query efficient
imitation learning

Reinforcement
Learning

Many cool applications of DAGGER in robotics

30

Lee et al, Learning quadrupedal locomotion over
challenging terrain (2020)

Choudhury et al, Data Driven Planning via
Imitation Learning (2018)

Chen et al Learning by Cheating(2020)

Pan et al Imitation learning for agile autonomous
driving (2019)

DAGGER is not just for imitation learning!

31

Model-based Reinforcement Learning

32

DAGGER is not just for imitation learning!

33

Hidden charges from DAGGER

Hidden charge #1: Not all mistakes are equal

34

Bad states
⇡(s1)

⇡(s2) ⇡(s3)s1

s2 s3

Expert always stays
on the race track

Sbad

which expert would never visit

Learner
imitates expert

perfectly in Sbad

Figure 1: Problem with the imitation learning formulation. The expert policy stays perfectly on the race track. The learner immediately
goes off the race track and visits bad states.

Consider the example shown in Fig.1. The expert stays on the track and never visits bad states s 2 Sbad.
The learner, on the other hand, immediately drifts off into Sbad. Moreover, for all s 2 Sbad, the learner can
perfectly imitate the expert. In other words, `(s, ⇡̂) = 0 for these states. In fact, it is likely that for certain
policy classes, this is the optimal solution! At the very least, DAGGER is susceptible to learn such policies
as is shown in the counter example in Laskey et al. [8].

4 Various alternate formulations for imitation learning

The phenomenon discussed in the previous section leads to a host of interesting questions and problems.
We will simply list them here and then tackle them one by one.

4.1 Constrained policy search

It seems we can overcome the ‘cheating in bad states’ phenomenon by constraining the space of policies to
not enter Sbad (or have state visitation probabilities to be low under the induced distribution). How do we
specify such constraints and how do we solve IL under such constraints?

4.2 Distribution matching

If we dig a little deeper, we realize that instead of minimizing imitation loss as we do in (1), what we really
care about is making sure our policy distribution is the same as the experts. This is exactly the premise of
GAIL [5].

4.3 Expert in the loop

Say we have an ‘expert-in-the-loop’ that overrides the learner during roll-out. This would cause a train test
distribution mismatch? How should we handle this?

4.4 Actively minimizing calls to the expert

It seems wasteful for the expert to have to label corrective actions that are not relevant to the task, e.g.
s 2 Sbad. That being said, it seems wasteful for the expert to have to label states where the policy has

1Do we need stationarity?
2Which we will not yet directly use
3For stochastic policies, we sample actions at ⇠ ⇡(st�1)
4We put in sto allow some flexibility incase we want non-uniform loss or we want to bring back the cost function into the loss

2

Dagger minimizes 0-1 loss, but what we really want to optimize are
advantages! (More next lecture)

Hidden charge #2: Dagger asks the expert for queries everywhere

35

?
?

?

?
?

We’ll see how to learn from
limited human feedback (interventions)

Hidden charge #3: Dagger expects at least one policy to be good
everywhere

36

Learner simply
can’t cross the

bridge! …

… but can take
the long way

round.

37

To know the distribution, you need a learner
To train a learner, you need a distribution

 X

Learner

Initialize policy
Chooses loss

π2

l2(.)

Update policy
Chooses loss

π1 [policy]

l1(.) [loss]

The Imitation Game
Adversary

 X

DAgger: Iteration 1

 X

[Ross et al’11]

Robot drives π0

Human corrects!

Data

Old Data

Policy
π1AGGREGATE DATA

tl;dr

