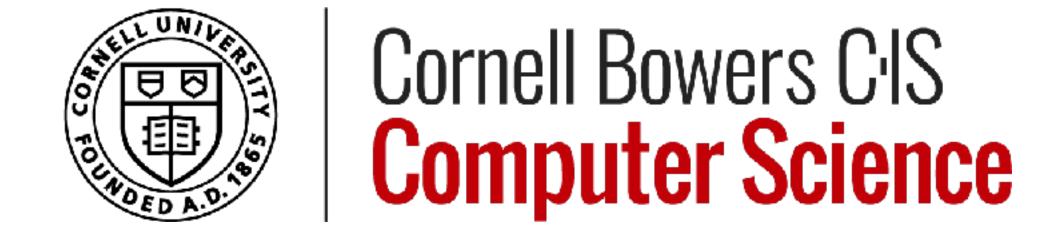
Markov Decision Process

Sanjiban Choudhury

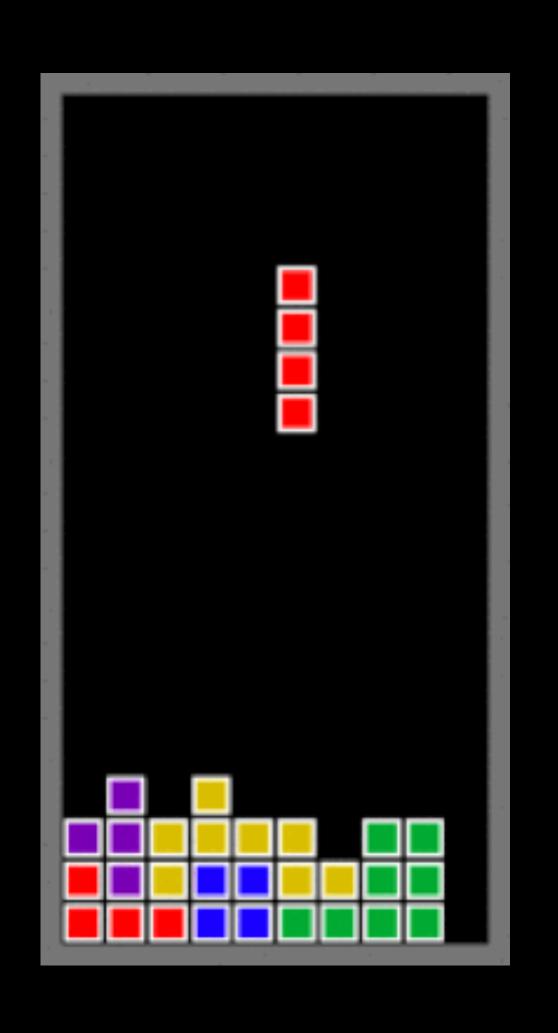


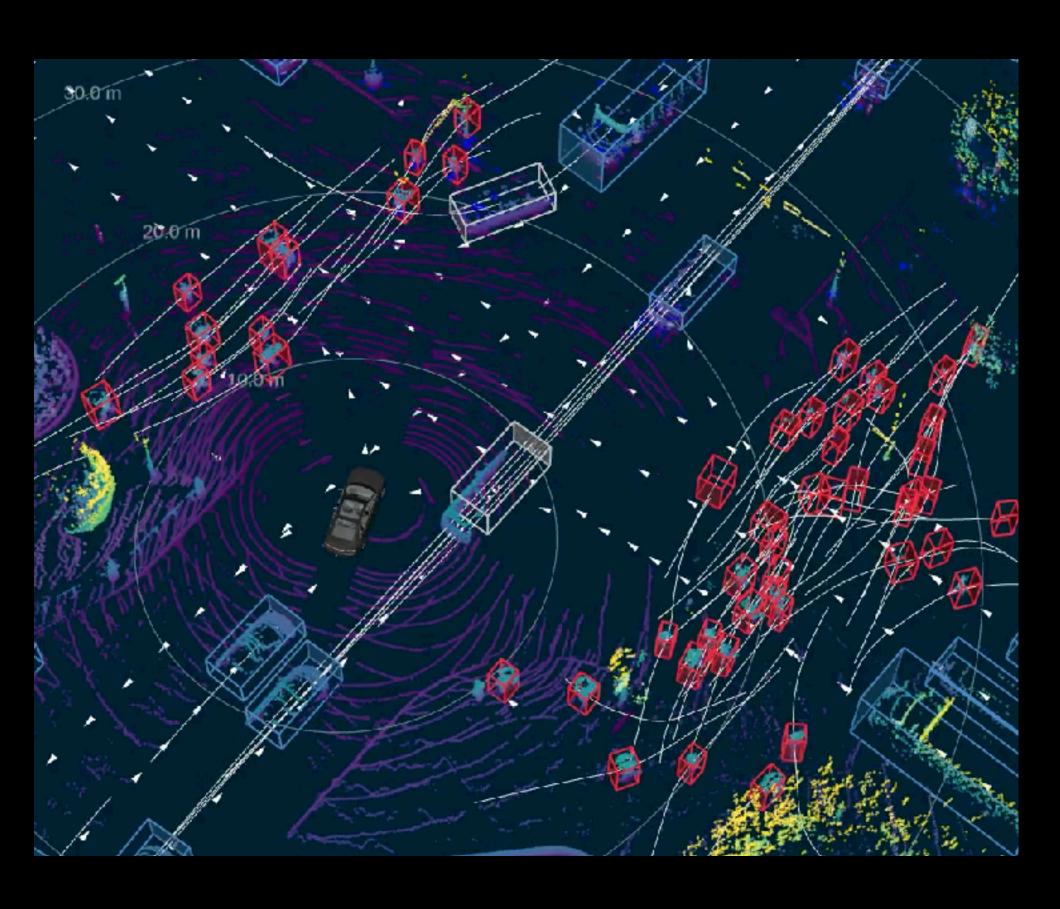
Learning

Robot Decision Making

Today!

Decision making across domains



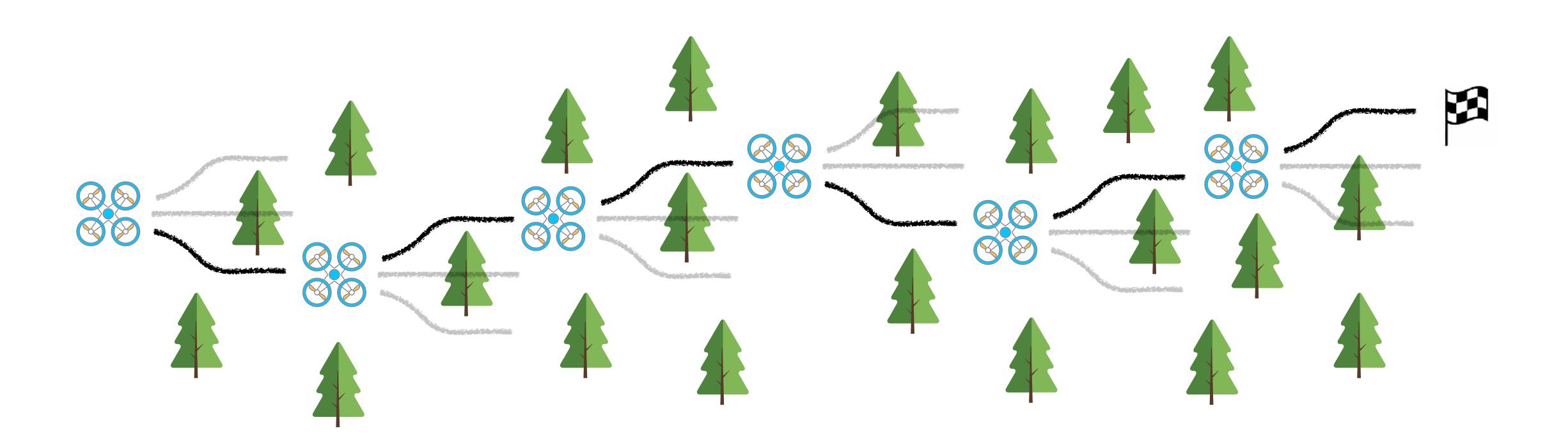


Tetris

Self-driving

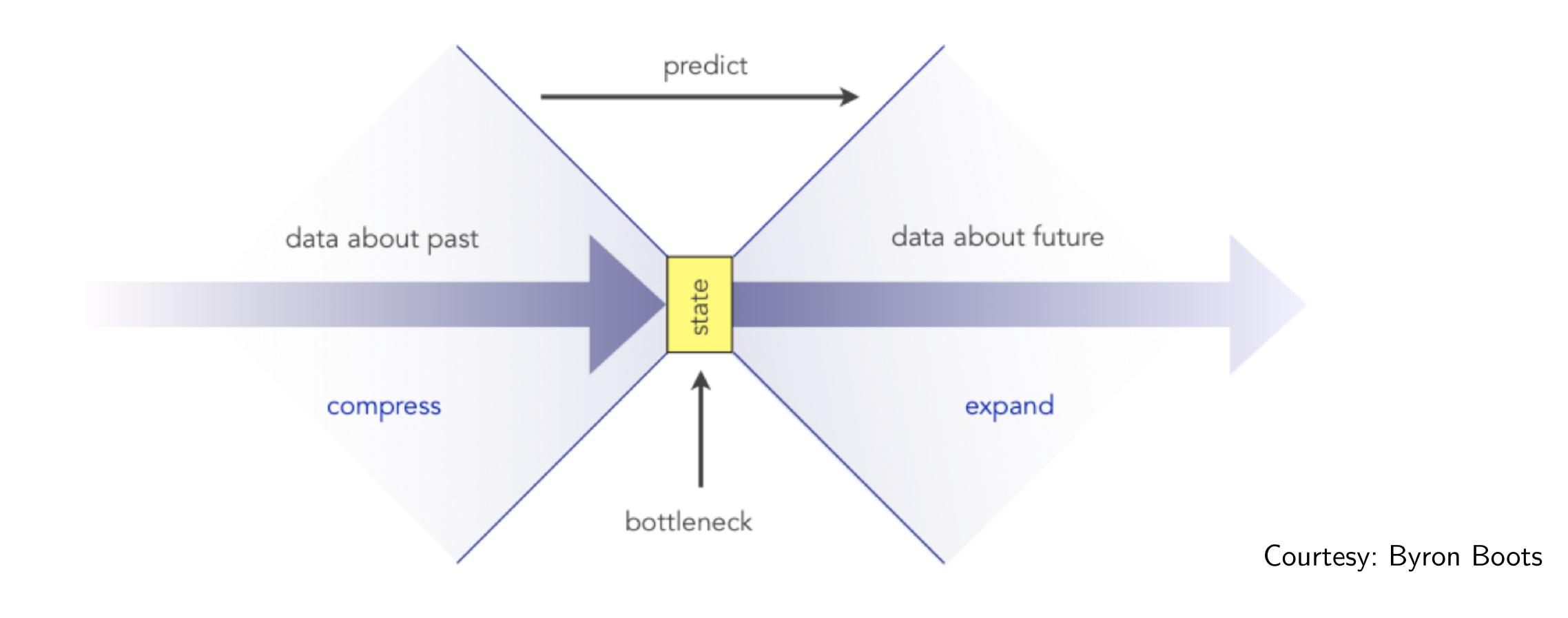
Robot Baristas

What makes decision making hard?



How do we tractably reason over a sequence of decisions?

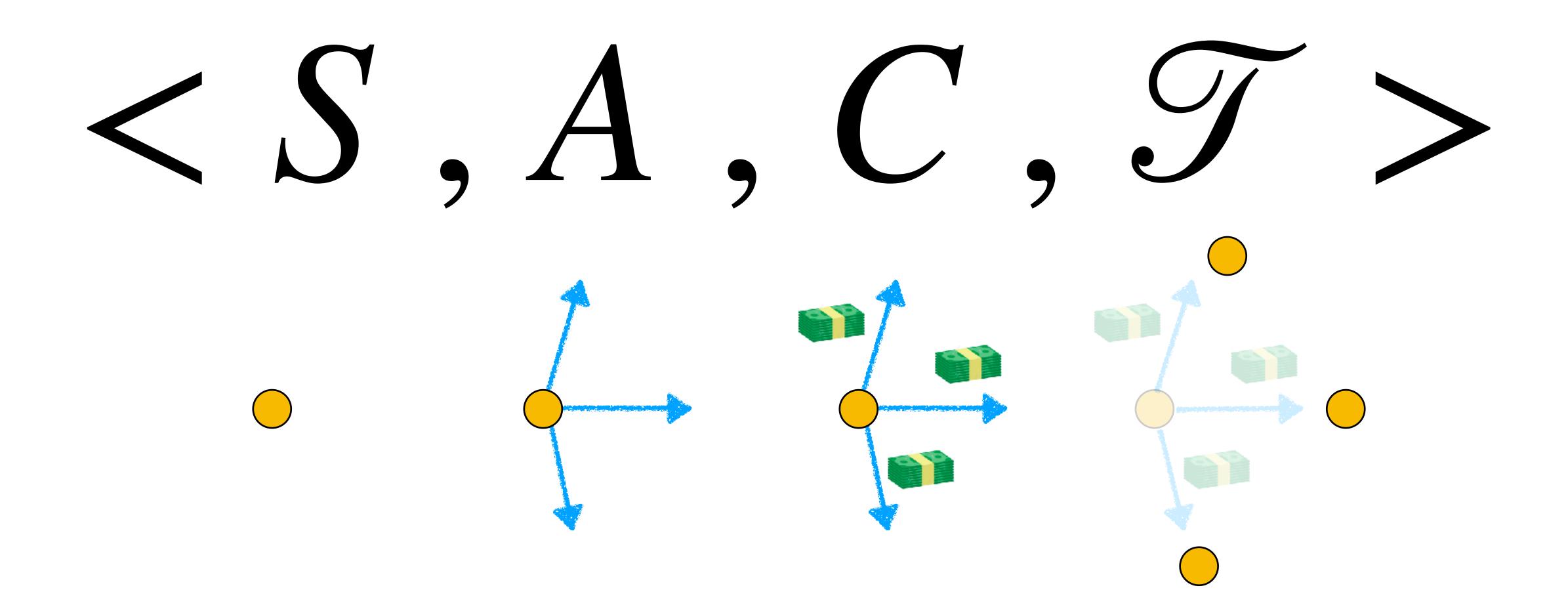
Markov to the rescue!



State: statistic of history sufficient to predict the future

Markov Decision Process

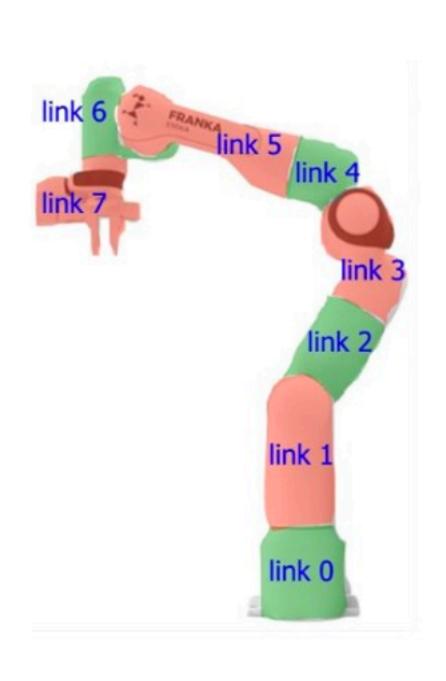
A mathematical framework for modeling sequential decision making



State

Sufficient statistic of the system to predict future disregarding the past

Position



(S, A, C, S)

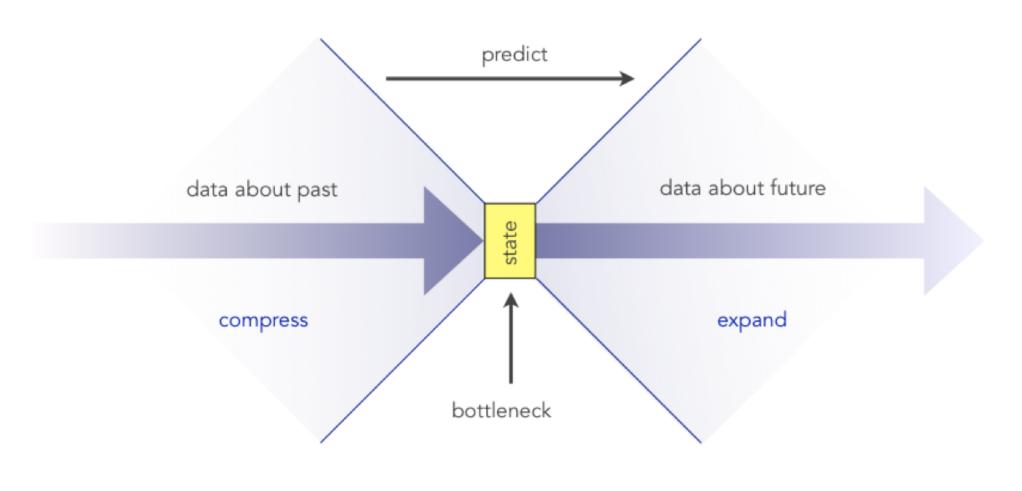
Activity!

Think-Pair-Share

Think (15 sec): Example of MDPs with shallow state? (Current observation good enough) Example of MDPs with deep state?

Pair: Find a partner

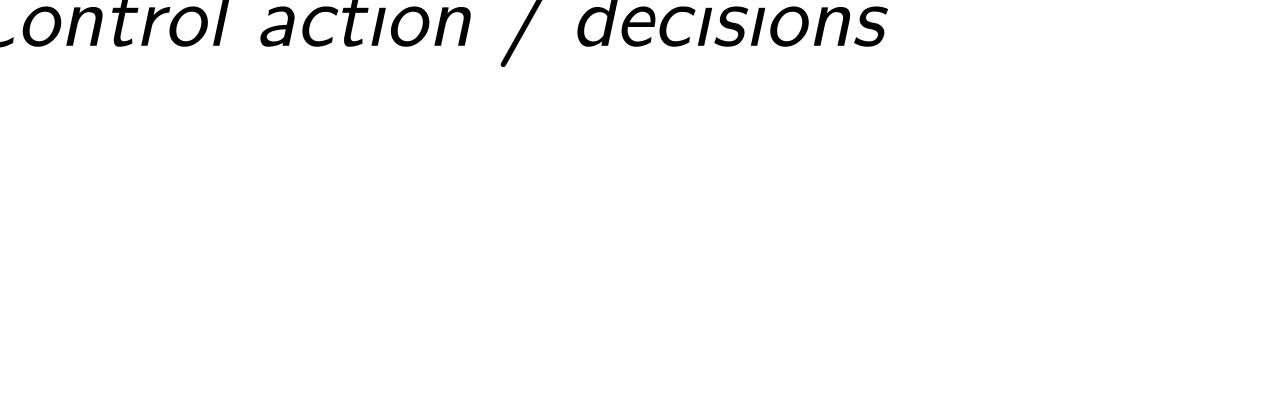
Share (30 sec): Partners exchange ideas

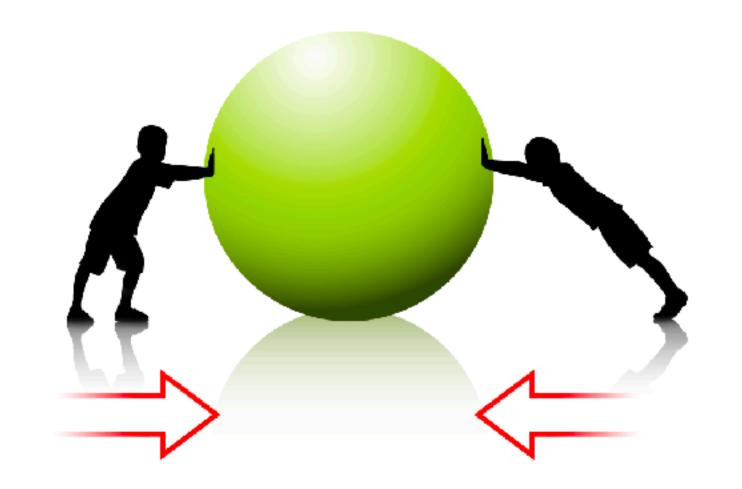


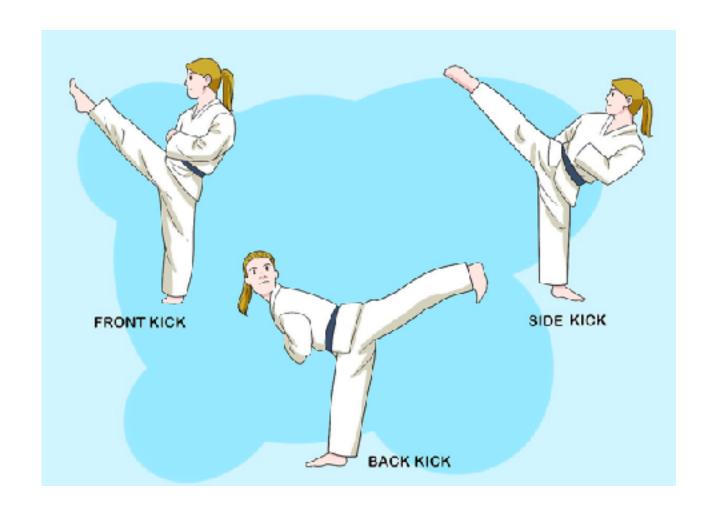
State: statistic of history sufficient to predict the future

Action

Doing something:
Control action / decisions

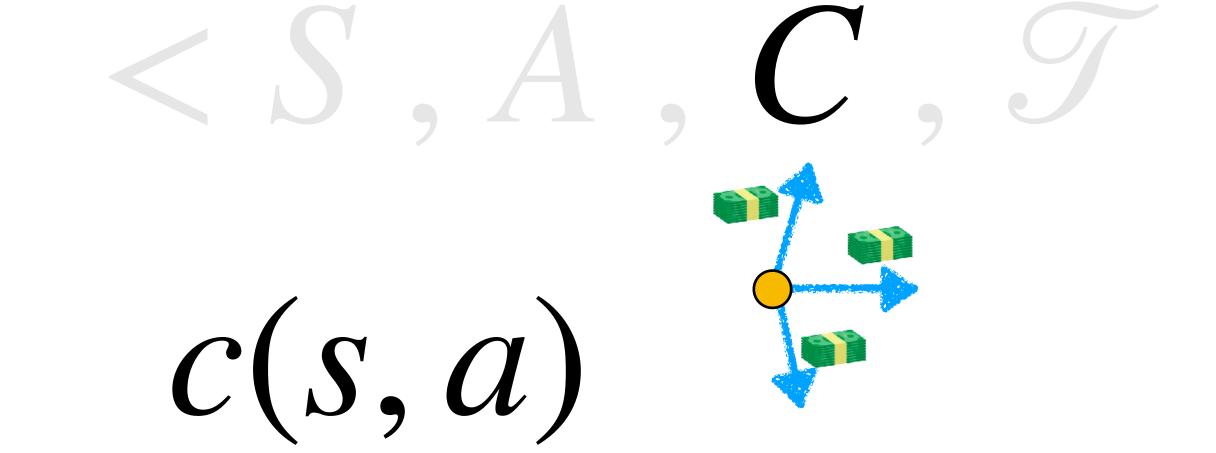


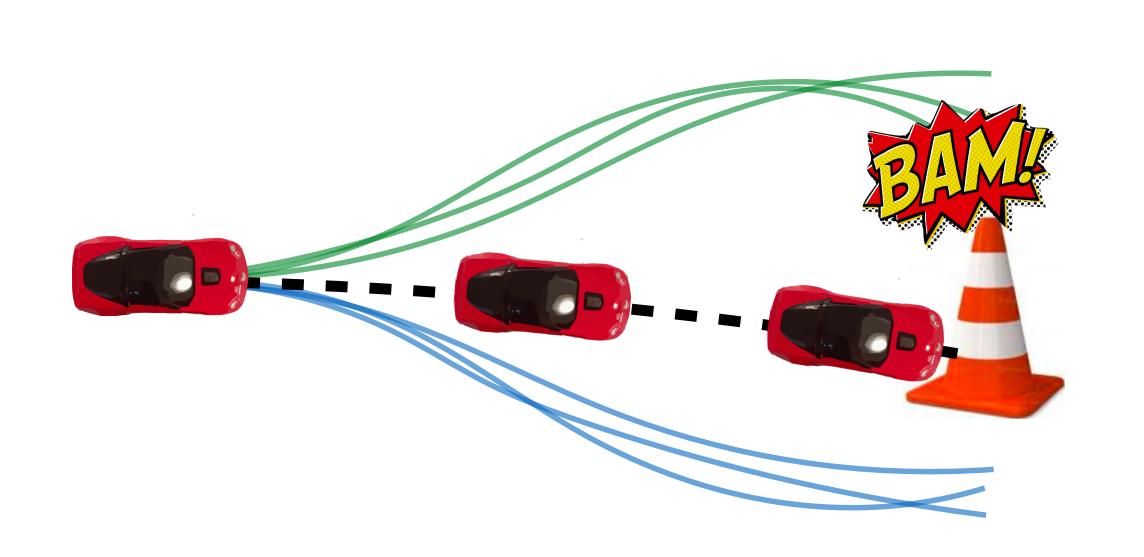


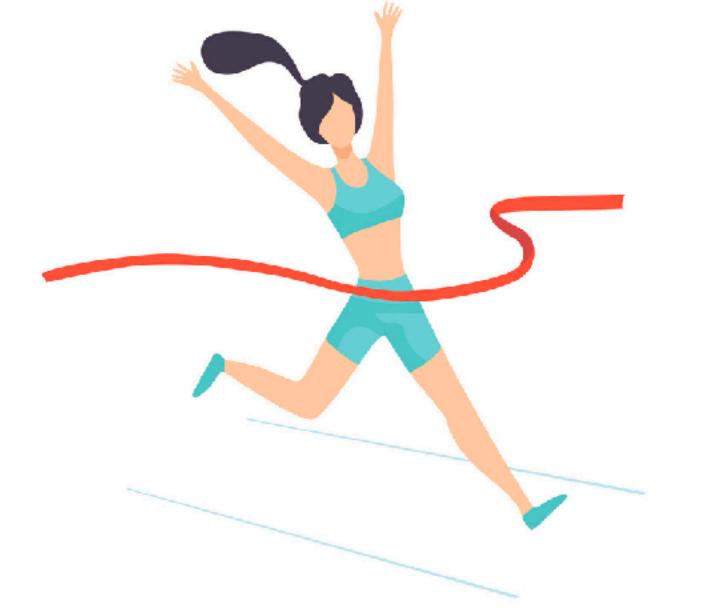


Cost

The instantaneous cost of taking an action in a state







Transition

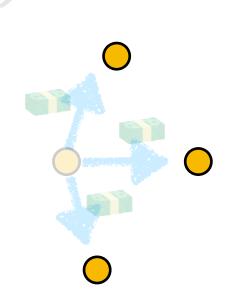
S, A, C, J

$$s' = \mathcal{I}(s, a)$$

$$s' \sim \mathcal{I}(s, a)$$

Deterministic

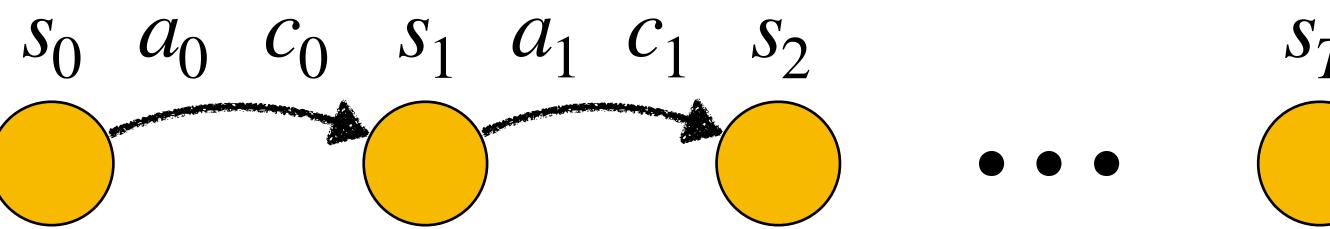
Stochastic

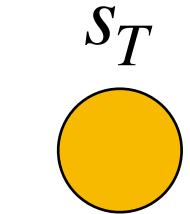


Markov Decision Process → Problem

Includes things to define an optimization problem

 $T \in \mathbb{N}$ Horizon





Discount
$$0 \le \gamma \le 1$$

Return:
$$c_0$$
 + γc_1 + • • • $\gamma^{T-1} c_{T-1}$

(Costs are more valuable if they happen soon)

Markov Decision Process → Problem

<u>Policy</u>

$$\pi \in \Pi$$

$$\pi: S_t \to a_t$$
 (Deterministic)

$$\pi: S_t \to P(a_t)$$
 (Stochastic)

A function that maps state (and time) to action

Objective Function

$$\min_{\pi} \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t) \right]$$

$$s_{t+1} \sim \mathcal{T}(s_t, a_t)$$

Find policy that minimizes sum of discounted future costs

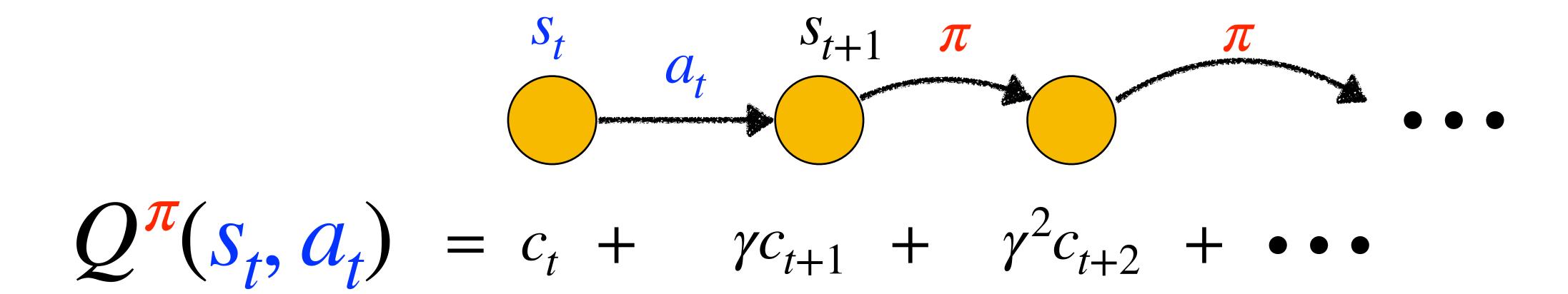
Value of a state

$$V^{\pi}(s_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} +$$

Expected discounted sum of cost from starting at a state and following a policy from then on

$$\pi^* = \underset{\pi}{\operatorname{arg min}} \mathbb{E}_{s_0} V^{\pi}(s_0)$$

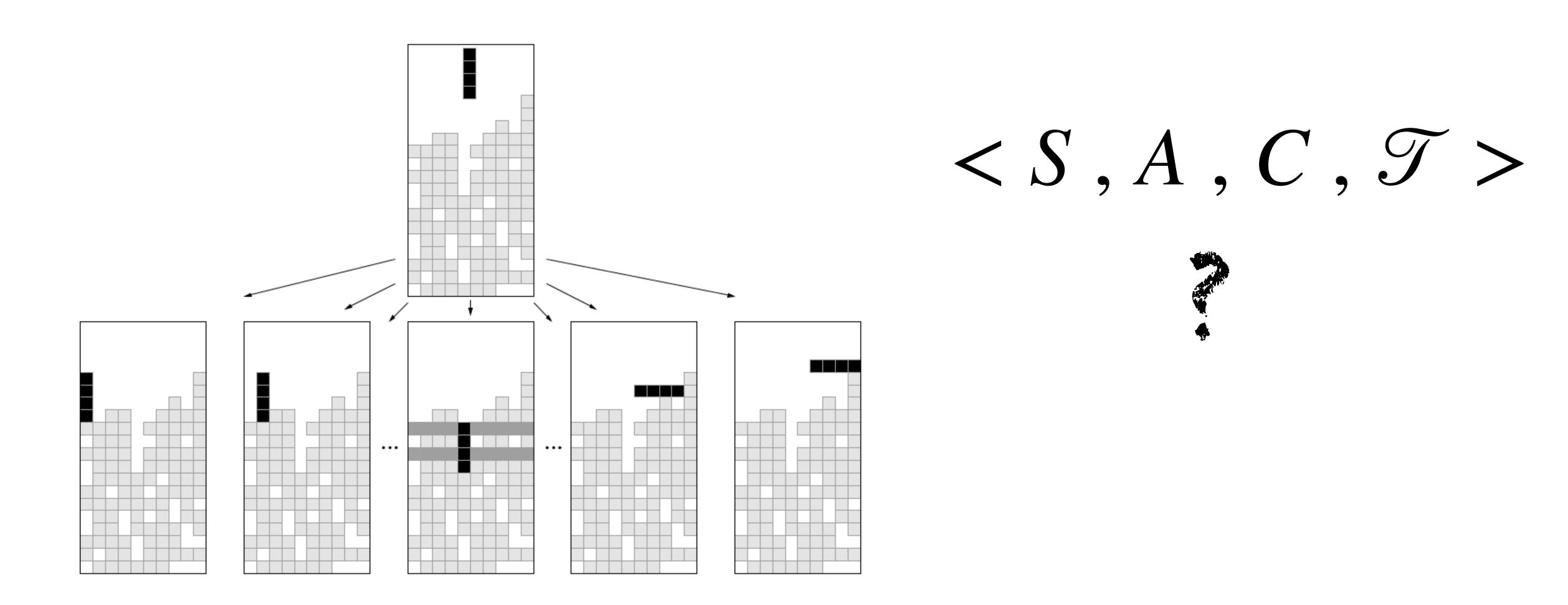
Value of a state-action



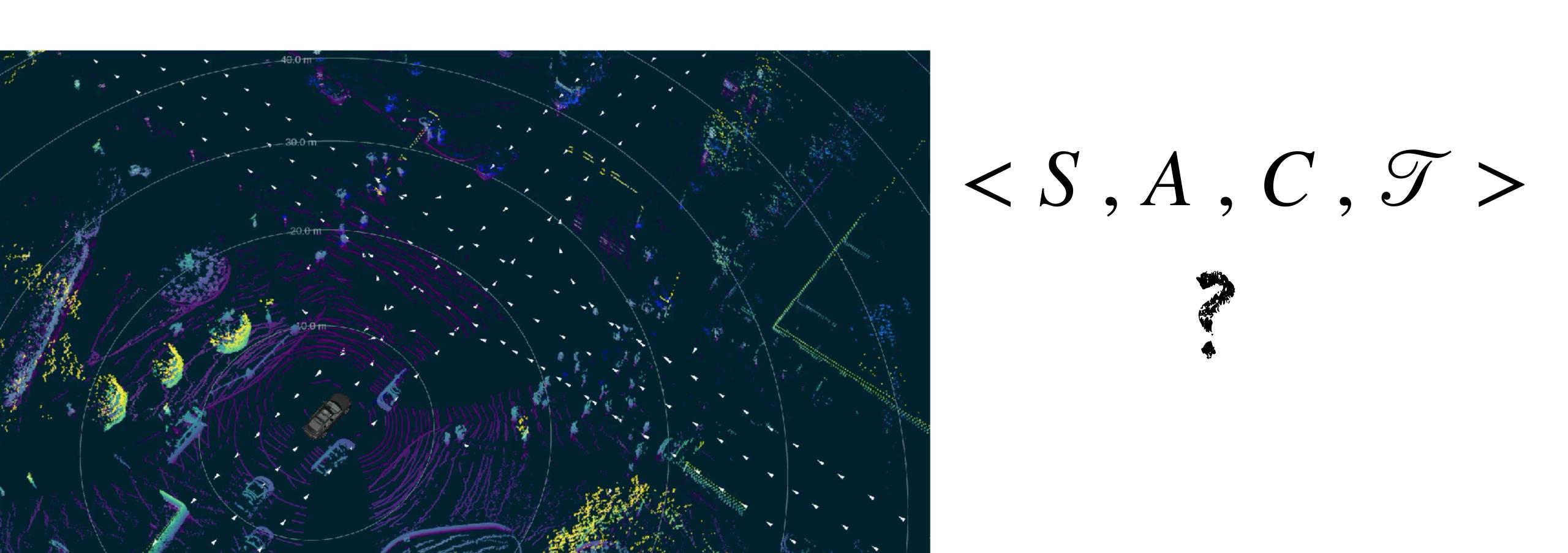
Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

$$Q^{\pi}(s_t, a_t) = c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^{\pi}(s_{t+1})$$

Example 1: Tetris!



Example 2: Self-driving



Example 3: Coffee making robot

Solving MDPs

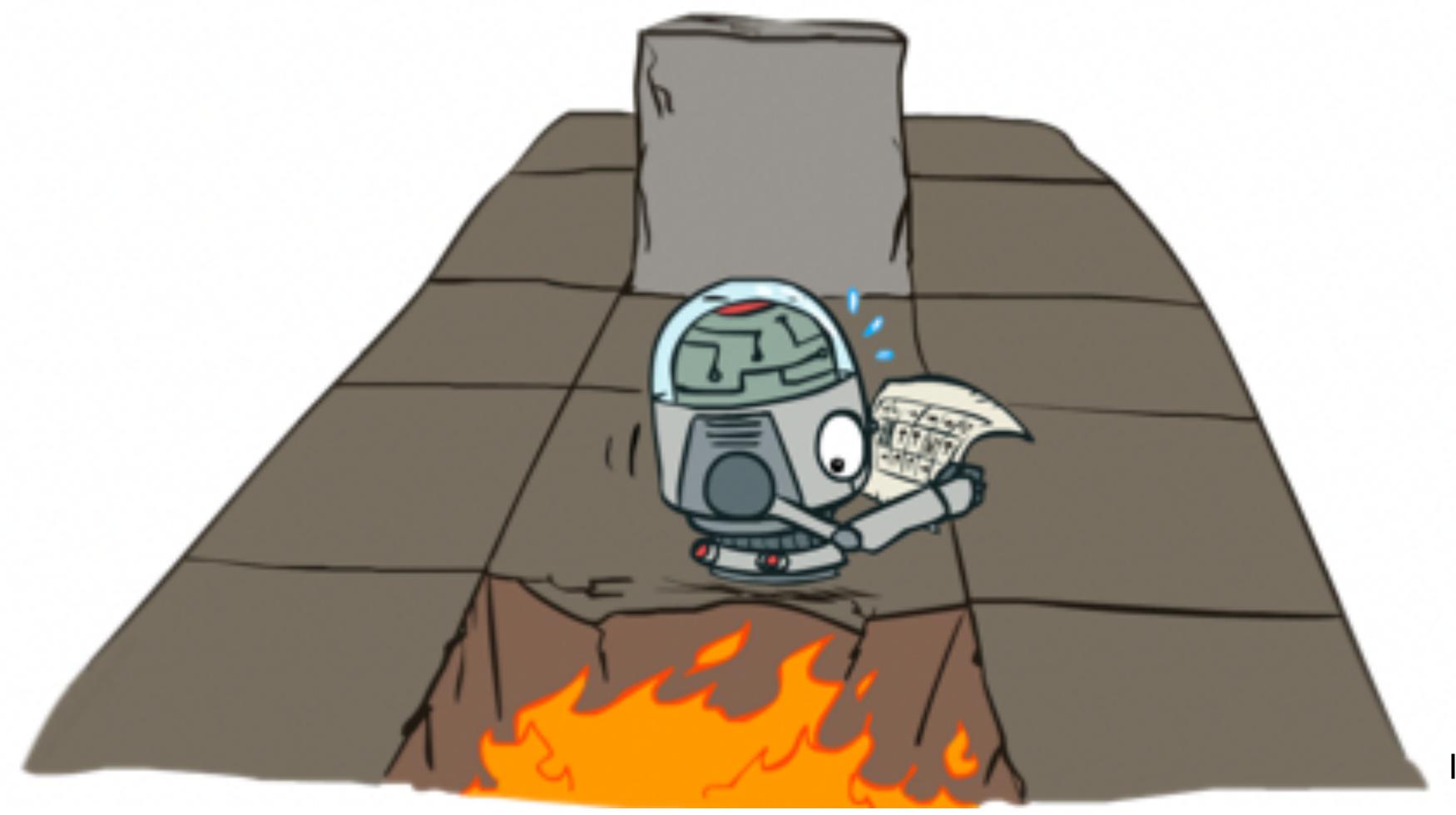
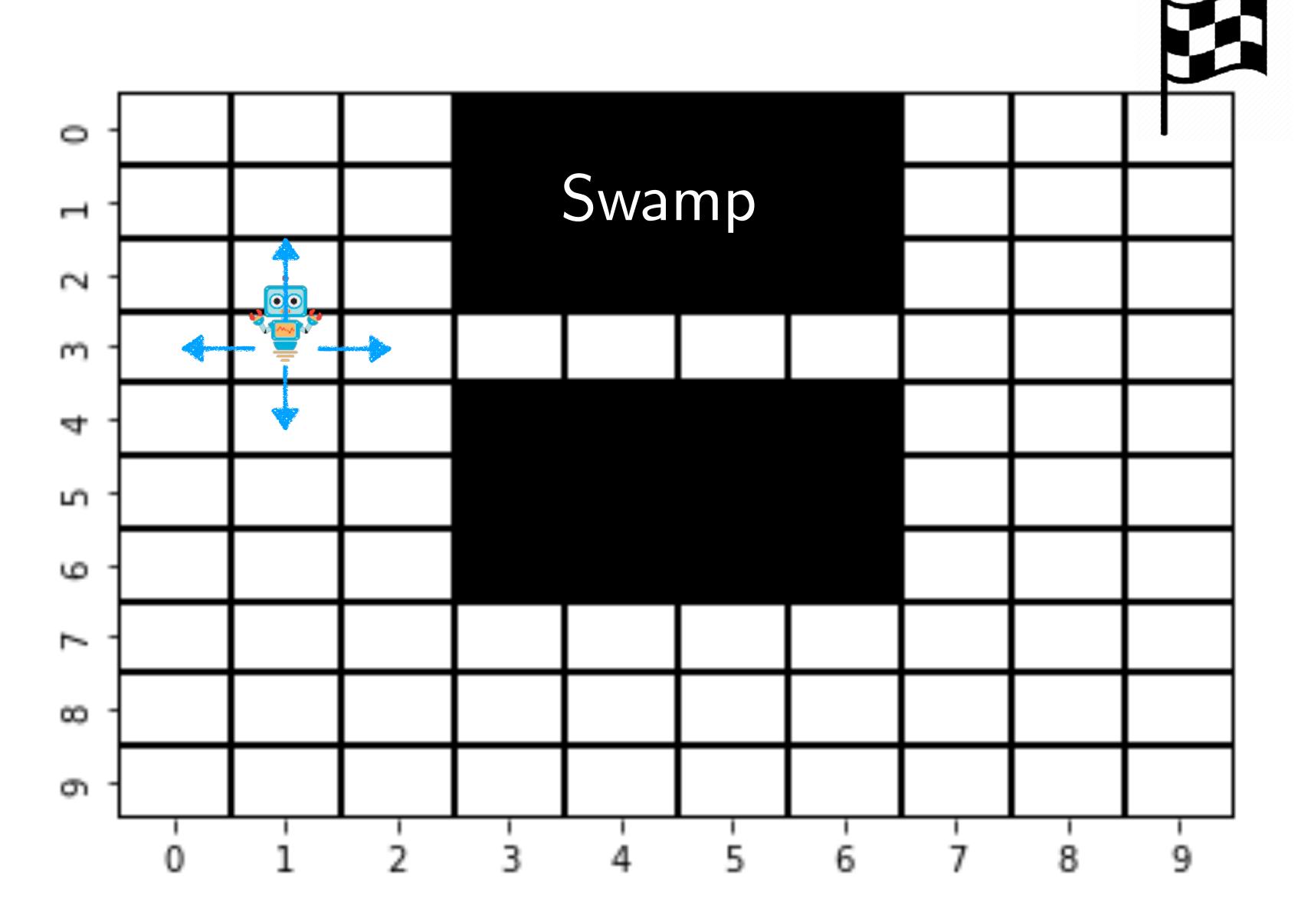


Image courtesy Dan Klein

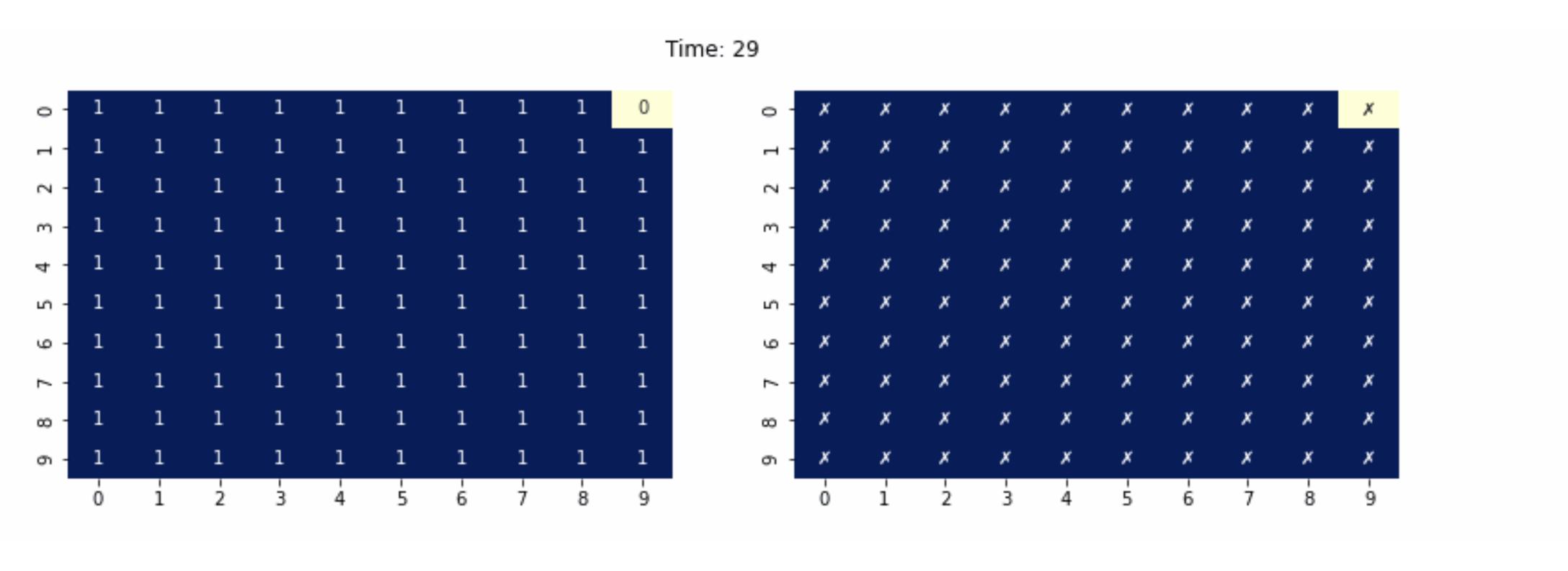
Setup



$$\langle S, A, C, \mathcal{I} \rangle$$

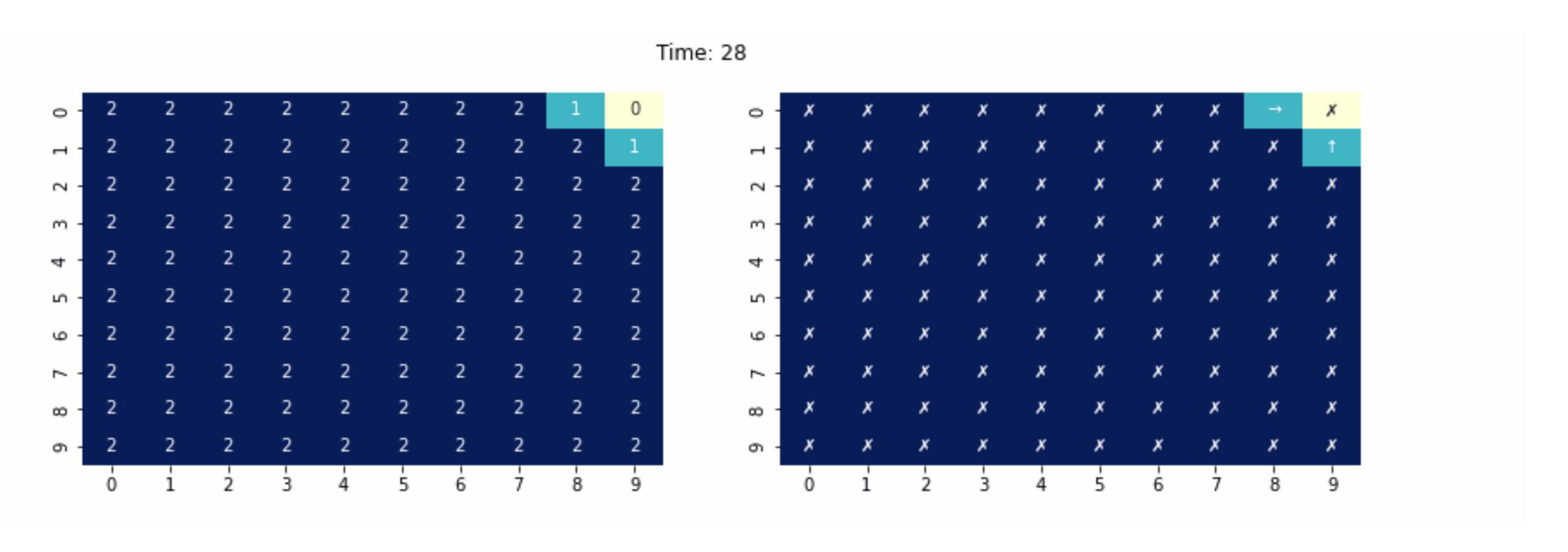
- Two absorbing states:Goal and Swamp
- Cost of each state is 1 till you reach the goal
- Let's set T = 30

What is the optimal value at T-1?



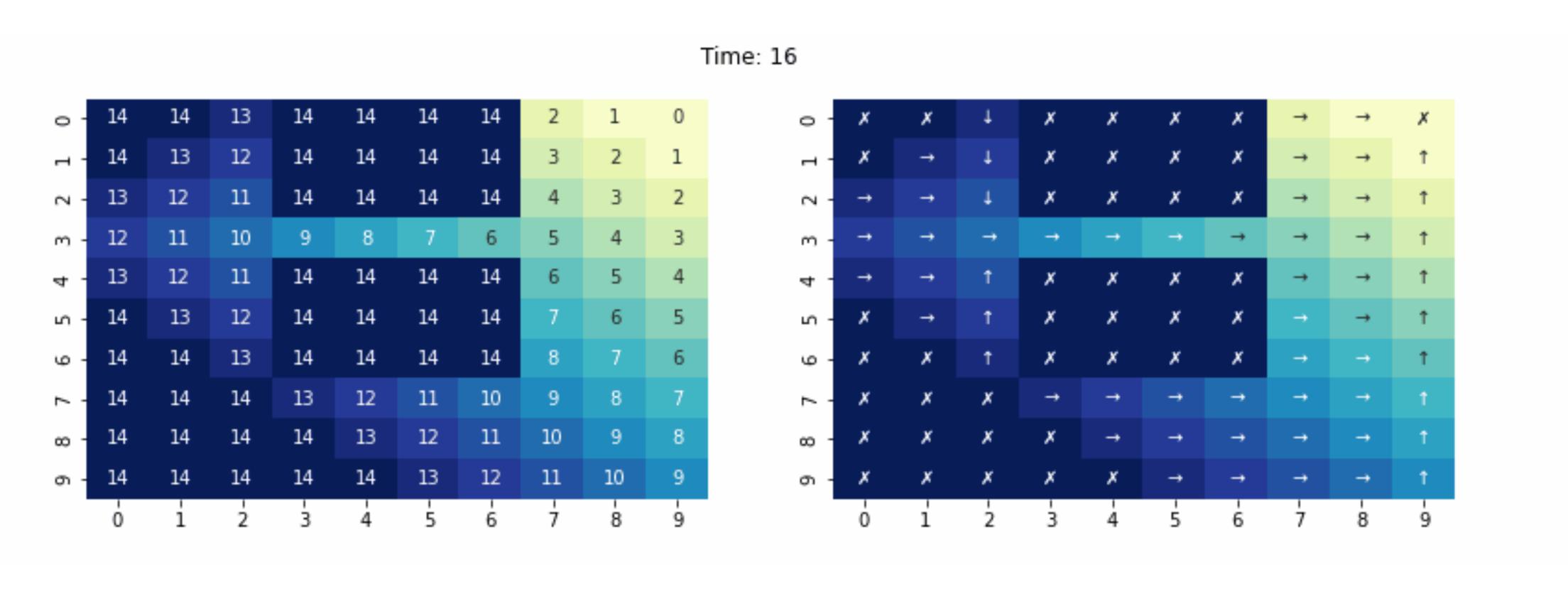
$$V^*(s_{T-1}) = \min_{a} c(s_{T-1}, a) \qquad \pi^*(s_{T-1}) = \arg\min_{a} c(s_{T-1}, a)$$

What is the optimal value at T-2?



$$V^*(s_{T-2}) = \min_{a} [c(s_{T-2}, a) + V^*(s_{T-1})] \qquad \pi^*(s_{T-2}) = \arg\min_{a} [c(s_{T-2}, a) + V^*(s_{T-1})]$$

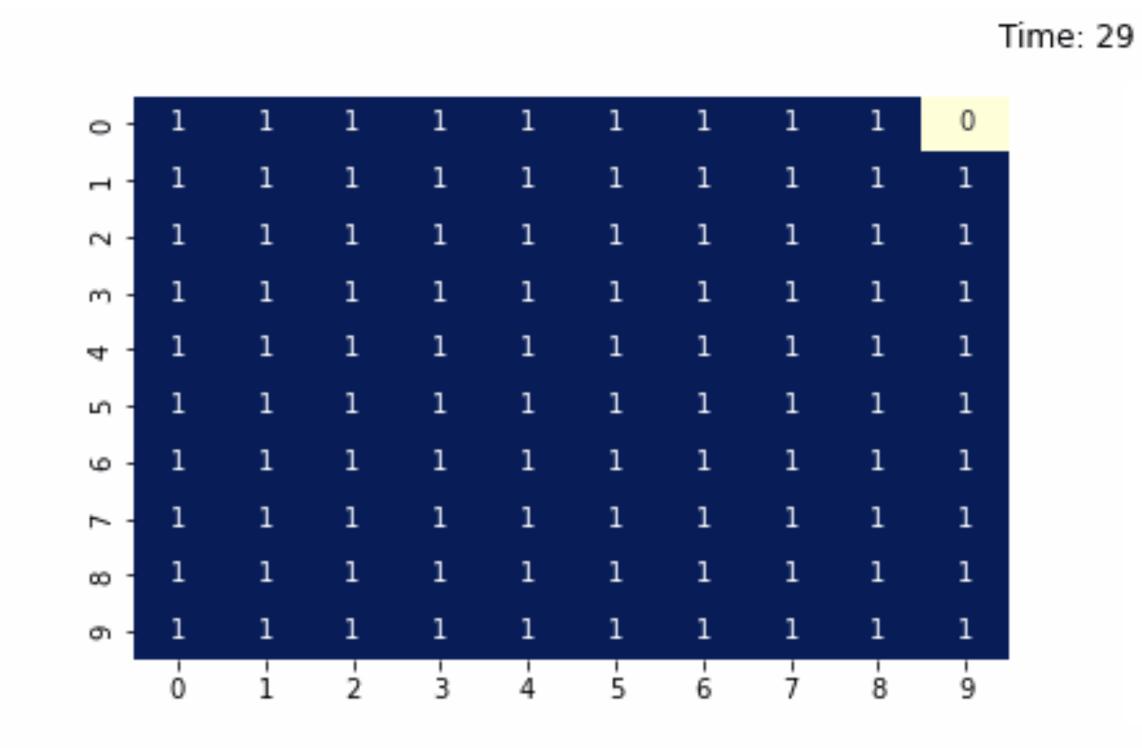
Dynamic Programming all the way!



$$V^*(s_t) = \min_{a} [c(s_t, a) + V^*(s_{t+1})]$$

$$\pi^*(s_t) = \arg\min_{a}[c(s_t), a) + V^*(s_{t+1})]$$

Value Iteration



Algorithm 4: Dynamic Programming Value Iteration for computing the optimal value function.

```
Algorithm OptimalValue(x,T)

for t=T-1,\ldots,0 do

for x\in\mathbb{X} do

if t=T-1 then

V(x,t)=\min_a c(x,a)

end

else

V(x,t)=\min_a c(x,a)+\sum_{x'\in\mathbb{X}} p(x'|x,a)V(x,t+1)

end

end

end
```

What is the complexity?

$$S \times A \times T$$

Deterministic

$$S^2 \times A \times T$$

Stochastic

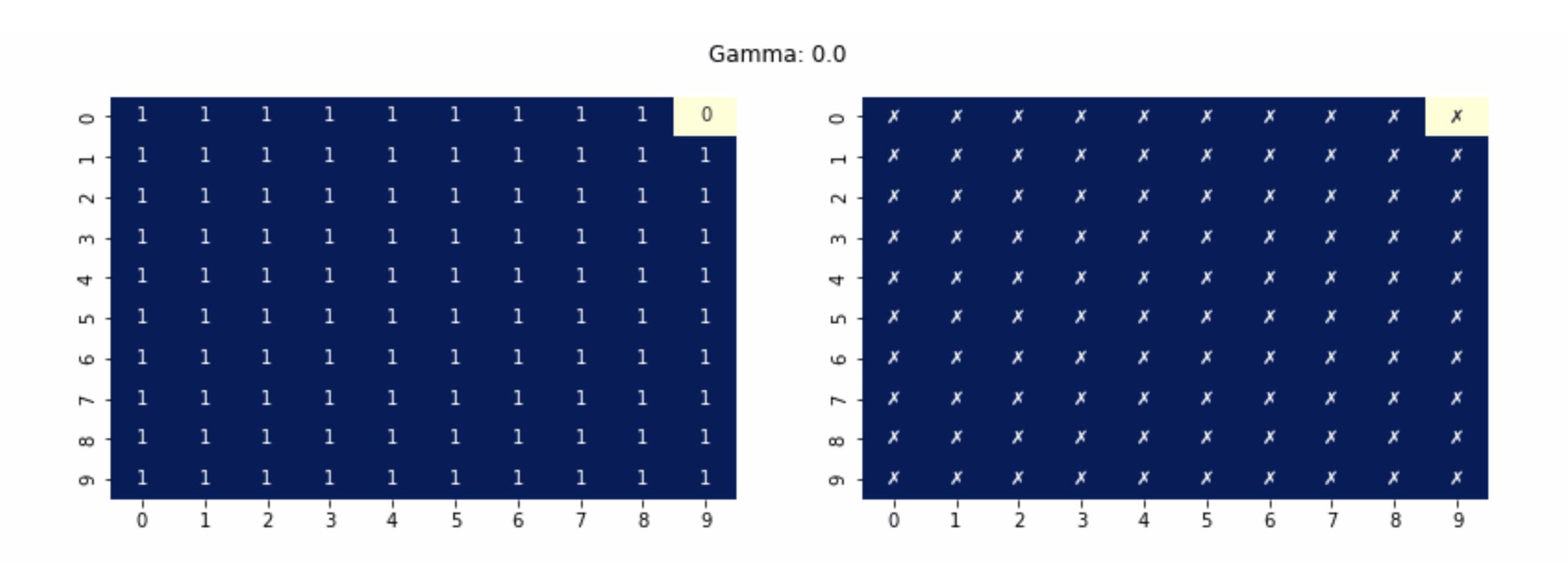
$$k \times S \times A \times T$$

Efficient

Why is the optimal policy a function of time?

Pulling the goalie when you are losing and have seconds left ...

What is the effect of discount factor?



Many questions!

Q1. What about continuous MDPs?

Next class:)

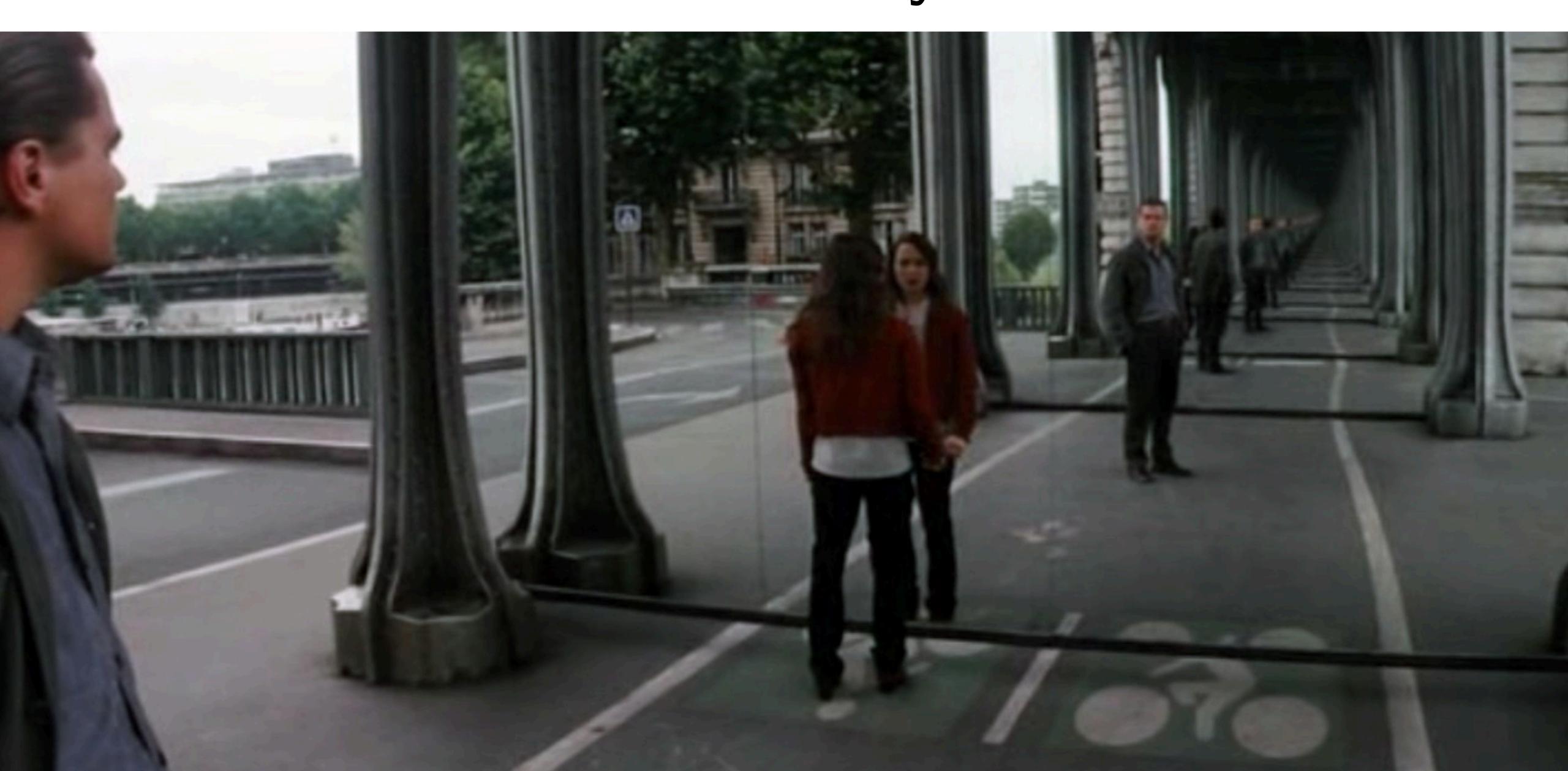
Q2. What if my horizon was infinite?

$$V^*(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^*(s_{t+1}) \right] \xrightarrow{} V^*(s) = \min_{a} \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$$
(Fixed point)

Q3. Is value iteration the only way?

No, but it will give us some mileage for now. Will cover policy iteration later!

To infinity!



Infinite horizon cases

$$V^*(s_t) = \min_{a_t} \left[c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^*(s_{t+1}) \right]$$

$$\downarrow \text{Fixed point as } t \to \infty$$

$$V^*(s) = \min_{a} \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$$

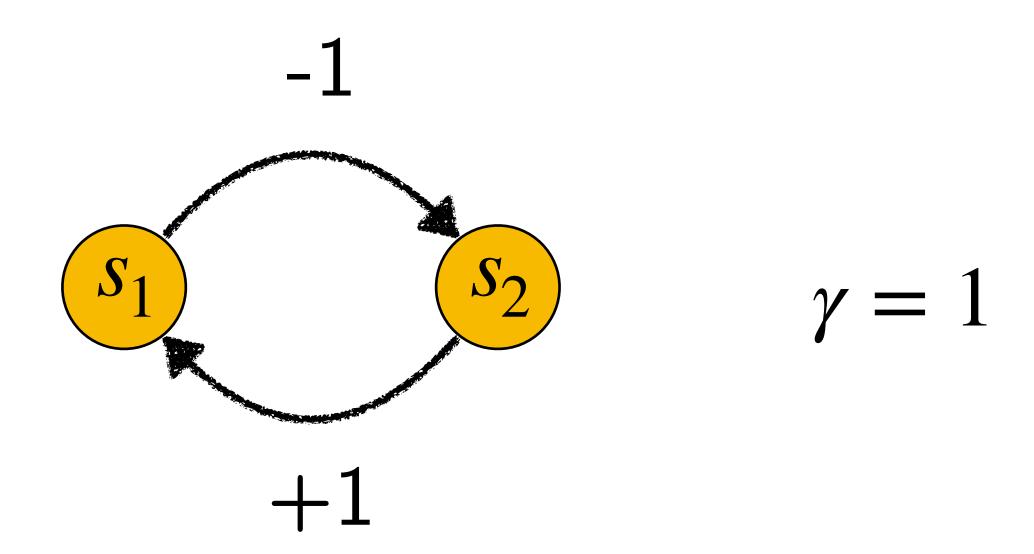
Bellman Equation

$$V^*(s) = \min_{a} \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$$

Does this converge?

How fast does it converge?

Does value iteration converge?

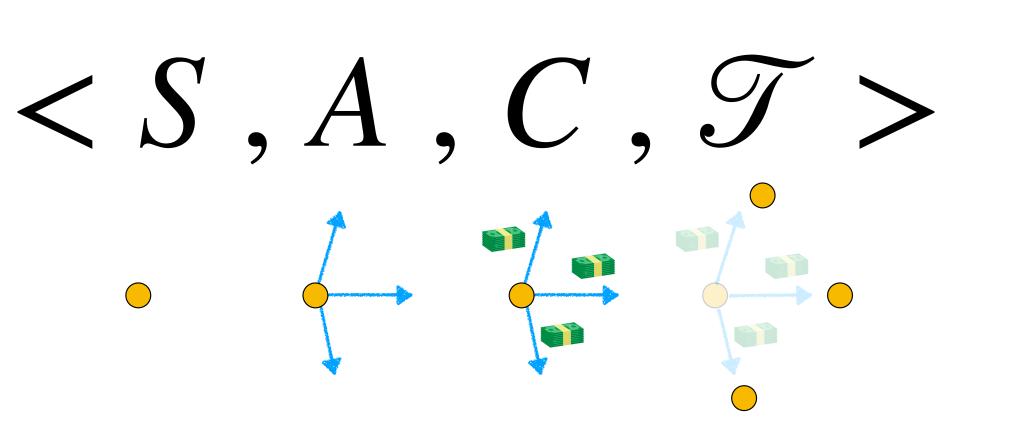


What is $V^*(s_1)$? What is $V^*(s_2)$?

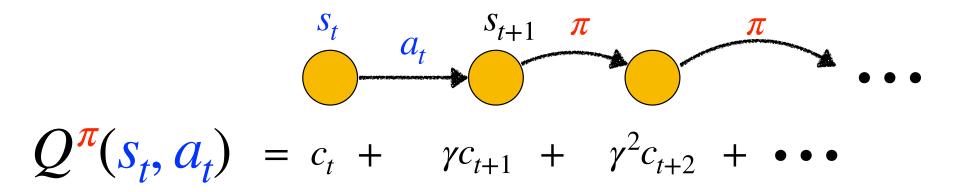
tl,dr

Markov Decision Process

A mathematical framework for modeling sequential decision making



Value of a state-action



Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

$$Q^{\pi}(s_t, a_t) = c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^{\pi}(s_{t+1})$$

Dynamic Programming all the way!

