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The Problem
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[Nvidia, 2018]

[Google, 2022]

[Toyota, 2020]

[Tesla, 2023]

What do we want from Personal Robots?
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Every home is different



The way we program robots today is … rigid!

Cannot be flexibly re-programmed by everyday users

Engineers hand-craft behaviors

Choose option
1. Start 
2. Clean 
3. Stop

Ship robot Frustrate users!



Instead of explicitly  
engineering behaviors

Can we implicitly program 
robots via natural interactions?



Programming via natural interactions

Demonstrations, 
Language

Feedback, 
Interactive QA



Question: How do we translate between humans and robots?

?



Large Language Models to the rescue!



An Example
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Activity!



Think-Pair-Share!
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Think (30 sec): Think of all the steps to go from what the human 
said to the code the robot has to execute. 

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 

Human: “Help me make vegetable soup”

Robot:
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How things 
worked 

pre-LLM



Two Fundamental Challenges

15



Two Fundamental Challenges
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Challenge 1: 
Ground natural language 

in robot state



Two Fundamental Challenges
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Challenge 1: 
Ground natural language 

in robot state

Challenge 2: 
Planning actions to  

solve a task

Find “salt” Find “pepper”



Two Fundamental Challenges
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Challenge 1: 
Ground natural language 

in robot state

Challenge 2: 
Planning actions to  

solve a task

Find “salt” Find “pepper”



What is grounding? Why is it hard?
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Natural Language MDP

Grounding: Mapping language to robot’s internal state

“Pick up the farthest 
red block” < S , A , R , 𝒯 >
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Natural Language MDP

Grounding: Mapping language to robot’s internal state

< S , A , R , 𝒯 >“Pick up the farthest 
red block”

obj1 obj2 obj3 obj4

on(‘obj1’,’table’) 
on(‘obj2’,’table’) 
on(‘obj3’,’table’) 
on(‘obj4’,’table’) 
left(‘obj2’,’obj1’) 
left(‘obj3’,’obj2’) 
left(‘obj4’,’obj3’) 

...



22

Natural Language MDP

Grounding: Mapping language to robot’s internal state

< S , A , R , 𝒯 >“Pick up the farthest 
red block”

obj1 obj2 obj3 obj4

R(in(obj4, hand)) = +1
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“Pick up the farthest 
red block”

obj1 obj2 obj3 obj4 R(in(obj4, hand)) = +1

How did we solve grounding?

Complex 
graphical 
models!

Train this on small, custom 
robot datasets!

Misra et al. Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions
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1. Failure to generalize to different 
human utterances  

2. Failure to capture common sense 

3. Failure to capture complex 
instructions (while loops)

Why did this not scale?



Two Fundamental Challenges
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Challenge 1: 
Ground natural language 

in robot state

Challenge 2: 
Planning actions to  

solve a task

Find “salt” Find “pepper”



What is task planning? Why is it hard?
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Take the apple from the shelf and 
put it on the table



What is task planning? Why is it hard?
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Take the apple from the shelf and 
put it on the table

1. Move to the shelf 
2. Pick up the apple 
3. Move back to the table 
4. Place the apple



What is task planning? Why is it hard?
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What is task planning? Why is it hard?
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What is task planning? Why is it hard?
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What is task planning? Why is it hard?

31
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What is task planning? Why is it hard?
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What is task planning? Why is it hard?



How did we solve it?
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Why did it not scale?

Good old fashioned search! 

Lots of heuristics to make it real time

Combinatorially large search tree

Had no notion of common sense



Two Fundamental Challenges
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Challenge 1: 
Ground natural language 

in robot state

Challenge 2: 
Planning actions to  

solve a task

Find “salt” Find “pepper”



Large Language MODELS



Many recent papers on LLM+Task Planning

SayCan [Ichter  et al.’22] Code-As-Policies [Liang et al.’22]

Also ProgPrompt [Singh et al. ’22], InnerMonologue [Huang et al.’22], Socratic [Zeng et al.’22], TidyBot [Wu et al’23],  
CLARIFY [Skreta et al.’23], Text2Motion [Lin et al. ’23], …



Can LLMs directly  
predict robot action?
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So … we just ask an 
LLM to tell us what to 

do?
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No! LLMs can say anything ..
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Idea: Constrain LLM by what the robot can do 
(affordance)
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The “SayCan” Approach
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Can LLMs predict  
robot code?
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Different policy representations
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Why choose code as a representation?

Interpretable

Verifiable

Composable
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Simple code generation examples
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How do we prompt LLMs to generate robot code?
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1. Instructions

2. Import Hints

You are an AI assistant writing robot code given natural language 
instructions. Please refer to the following API guidelines …

3. Few-shot Examples



Example: Using imported functions
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Example: Using control flows
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Example: Hierarchical Code Generation

56

Have the LLM recursively define functions!
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Verifiably solve a number of tasks!



Can LLMs convert  
demonstrations (non-language) 

to code? 
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User Story: Helping Grandma in the kitchen

Personalized 
Tasks

Robot  
Code

Language Narration: 
 “Here’s how to make vegetable fried rice.  

Heat up some water. While the water boils, keep 
stirring vegetables. Pour rice.”  
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User Story: Helping Grandma in the kitchen

Personalized 
Tasks

Robot  
Code

Language Narration: 
 “Here’s how to make vegetable fried rice.  

Heat up some water. While the water boils, keep 
stirring vegetables. Pour rice.”  

Language alone is insufficient to communicate the task

Lacks specificity

Leaves out implicit preferences

(e.g. Heat up water how? Pour rice where?)

(e.g. Personal style of stirring?)
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User Story: Helping Grandma in the kitchen

Personalized 
Tasks

Robot  
Code

Language Narration: 
 “Here’s how to make vegetable fried rice.  

Heat up some water. While the water boils, keep 
stirring vegetables. Pour rice.”  

Demonstrations:

Demonstrations 
convey dense 

information on how 
states change

over(‘kettle’,  
‘left_pan’)

in(‘spatula’,  
‘hand’)

over(‘rice’,  
‘left_pan’)



Robot  
Code ?

Language: 
 “Here’s how to make vegetable fried rice.  

Heat up some water. While the water 
boils, keep stirring vegetables. Pour rice.”  

Demonstrations 
(Sequence of states  
represented as text)

s1 s2 s3

+

over(‘kettle’,  
‘left_pan’)

in(‘spatula’,  
‘hand’)

over(‘rice’,  
‘left_pan’)

Large  
Language 

Models!



Challenges



Challenge 1: Long Horizon Demonstrations



Long-horizon tasks can have >=hundreds of states

[Damen et al ’18]



Naively 
concatenating 

demonstrations will 
easily exhaust 
context length!

state_1 

state_2 

state_T

state_1 

state_2 

state_T

Multiple such demonstrations 



Challenge 2: Complex Task Code



Loops, checks, and calls to custom robot libraries ..
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Challenge 1:  
Long Horizon Demonstrations

Challenge 2:  
Complex Task Code

LLM

Directly generating code from demonstrations is intractable!
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Both  

demonstration and code 

share a latent, compact, 

specification



Make a burger. 

... 
State 5: 
'robot' is not holding 
'patty1' 
'patty1' is at 'stove1' 
... 

State 9: 
'patty1' is cooked 
... 

State 12: 
'robot' is not holding 
'patty1' 
'patty1' is on top of 
‘bottom_bun1' 
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

# Cook object at location 
def cook_object_at_loc(obj, 
loc): 

if not is_holding(obj): 
... 

move_then_place(obj, loc) 
cook_until_is_cooked(obj) 

# Move to a location and place 
object 
def move_then_place(obj, loc): 
 curr_loc = get_curr_loc() 
 if curr_loc != loc: 
      move(curr_loc, loc) 
 place(obj, place_location) 
... 
... 
def main(): 

...               
cook_object_at_loc(patty, 
stove) 
... 
stack_objects(top_bun, 
lettuce)

Make a burger with one patty and one 
lettuce. 

Specifically: 
… 
Cook a patty at that stove. 
… 
Stack that top bun on that lettuce.

Specification



Directly going from demo to code is hard …

Make a burger. 

... 
State 5: 
'robot' is not holding 
'patty1' 
'patty1' is at 'stove1' 
... 

State 9: 
'patty1' is cooked 
... 

State 12: 
'robot' is not holding 
'patty1' 
'patty1' is on top of 
‘bottom_bun1' 
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

# Cook object at location 
def cook_object_at_loc(obj, 
loc): 

if not is_holding(obj): 
... 

move_then_place(obj, loc) 
cook_until_is_cooked(obj) 

# Move to a location and place 
object 
def move_then_place(obj, loc): 
 curr_loc = get_curr_loc() 
 if curr_loc != loc: 
      move(curr_loc, loc) 
 place(obj, place_location) 
... 
... 
def main(): 

...               
cook_object_at_loc(patty, 
stove) 
... 
stack_objects(top_bun, 
lettuce)



Make a burger. 

... 
State 5: 
'robot' is not holding 
'patty1' 
'patty1' is at 'stove1' 
... 

State 9: 
'patty1' is cooked 
... 

State 12: 
'robot' is not holding 
'patty1' 
'patty1' is on top of 
‘bottom_bun1' 
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

# Cook object at location 
def cook_object_at_loc(obj, 
loc): 

if not is_holding(obj): 
... 

move_then_place(obj, loc) 
cook_until_is_cooked(obj) 

# Move to a location and place 
object 
def move_then_place(obj, loc): 
 curr_loc = get_curr_loc() 
 if curr_loc != loc: 
      move(curr_loc, loc) 
 place(obj, place_location) 
... 
... 
def main(): 

...               
cook_object_at_loc(patty, 
stove) 
... 
stack_objects(top_bun, 
lettuce)Every step along the chain 

 is small and easy for LLM  

Key Insight: Extended chain-of-thought

Specification



Demo2Code



Make a burger. 

... 
State 5: 
'robot' is not holding 
'patty1' 
'patty1' is at 'stove1' 
... 

State 9: 
'patty1' is cooked 
... 

State 12: 
'robot' is not holding 
'patty1' 
'patty1' is on top of 
‘bottom_bun1' 
...

[Demonstration 1]

[Demonstration 2]
[Demonstration N]

# Cook object at location 
def cook_object_at_loc(obj, 
loc): 

if not is_holding(obj): 
... 

move_then_place(obj, loc) 
cook_until_is_cooked(obj) 

# Move to a location and place 
object 
def move_then_place(obj, loc): 
 curr_loc = get_curr_loc() 
 if curr_loc != loc: 
      move(curr_loc, loc) 
 place(obj, place_location) 
... 
... 
def main(): 

...               
cook_object_at_loc(patty, 
stove) 
... 
stack_objects(top_bun, 
lettuce)

Demo2Code: Recursive Summarization and Expansion
Make a burger with one patty and one 
lettuce. 

Specifically: 
… 
Cook a patty at that stove. 
… 
Stack that top bun on that lettuce.

Stage 1 
Recursive summarize 
demo to specification

Stage 2 
Recursive expand 

specification to task code
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Stage 1:  
Recursive  

Summarization  
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[Scenario 1] 
Make a burger. 

State 2: 
'patty1' is not at 'table1' 
'robot1' is holding 'patty1' 
State 3: 
'robot1' is at 'stove2' 
'robot1' is not at 'table1' 
State 4: 
'patty1' is at 'stove2' 
'robot1' is not holding 'patty1' 
State 5: 
State 6: 
State 7: 
State 8: 
'patty1' is cooked 
State 9: 
'patty1' is not at 'stove2' 
'robot1' is holding 'patty1' 
State 10: 
'robot1' is not at 'stove2' 
'robot1' is at 'table3' 
State 11: 
'patty1' is at 'table3' 
'patty1' is on top of 'bottom_bun1' 
'robot1' is not holding 'patty1' 
State 12: 
'robot1' is not at 'table3' 
... 
... 
State 35: 
'top_bun3' is at 'table5' 
'top_bun3' is on top of 'lettuce3' 
'robot1' is not holding 'top_bun3'

[Scenario 2] 
Make a burger. 

State 2: 
'patty3' is not at 'table6' 
'robot1' is holding 'patty3' 
State 3: 
'robot1' is at 'stove3' 
'robot1' is not at 'table6' 
State 4: 
'patty3' is at 'stove3' 
'robot1' is not holding 'patty3' 
State 5: 
State 6: 
... 
... 
State 35: 
'top_bun3' is at 'table5' 
'top_bun3' is on top of 'lettuce3' 
'robot1' is not holding 'top_bun3'

Stage 1:  
Recursive  

Summarization  
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* In [Scenario 1], at state 2, the robot picked up 'patty1'. 
* At state 3, the robot moved to 'stove2'. 
* At state 4, the robot placed 'patty1' on 'stove2'. 
* At state 5-7, the robot has cooked 'patty1'. 
* At state 8, the robot has finished cooking 'patty1'. 
* At state 9, the robot picked up ‘patty1'. 
* At state 10, the robot moved to 'table3'. 
* At state 11, the robot placed 'patty1' on top of 'bottom_bun1'. 
* At state 12, the robot moved to 'table6'. 
* At state 13, the robot picked up 'tomato1'. 
* At state 14, the robot moved to 'cutting_board1'. 
... 
* At state 33, the robot picked up 'top_bun1'. 
* At state 34, the robot moved to 'table3'. 
* At state 35, the robot placed 'top_bun1' on top of 'lettuce1'. 
<* In [Scenario 2], at state 2, the robot picked up 'patty3'. 
* At state 3, the robot moved to 'stove3'. 
* At state 4, the robot placed 'patty3' at location 'stove3'. 
... 
* At state 35, the robot stacked 'top_bun3' on top of 'lettuce3'.

Stage 1:  
Recursive  

Summarization  
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* In [Scenario 1], at state 2-8, the subtask is "cook", because: At state 5-7, 
the robot has cooked 'patty1'. The robot cooked a patty at a stove, where the 
patty is 'patty1', and the stove is 'stove2'. 
* At state 9-21, the subtask is "stack", because: At state 11, the robot placed 
'patty1' on top of 'bottom_bun1'. ... 
* At state 23-28, the subtask is "cut", because: ... 
* At state 29-35, the subtask is "stack", because: ... 
* In [Scenario 2], at state 2-8, the subtask is "cook", because: ... 
* At state 9-11, the subtask is "stack", because: ... 
* At state 13-18, the subtask is "cut", because: ... 
* At state 19-21, the subtask is "stack", because: ... 
* At state 23-28, the subtask is "cut", because: ... 
* At state 29-31, the subtask is "stack", because: ... 
* At state 33-35, the subtask is "stack", because: ...

Stage 1:  
Recursive  

Summarization  
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* The order of high level actions is: ['cook', 'stack', 'cut', 'stack', 
'cut', 'stack'] 
* In [Scenario 1], 'stove2' is always used for cooking. In [Scenario 2], 
'stove3' is always used for cooking. We assume that we just need to decide 
a random stove to use in the beginning. Then, we can keep using the same 
stove. 
* In both scenarios, 'cutting_board1' is used for cutting the lettuce and 
tomato. We assume that we just need to use 'cutting_board1' for cutting. 

Thus: 
Make a burger. 

Specifically: 
# Get a list of all the bottom buns in the kitchen. 
# Get a list of all the patties in the kitchen. 
... 
# Decide a stove to use. 
# Cook a patty at that stove. 
...

Stage 1:  
Recursive  

Summarization  
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from perception_utils import get_all_obj_names_that_match_type, ... 

... 

# Get a list of all the bottom buns in the kitchen. 
bottom_buns = get_all_obj_names_that_match_type('bottom bun') 
# Get a list of all the patties in the kitchen. 
patties = get_all_obj_names_that_match_type('patty') 

# Decide a stove to use. 
stove_to_cook_at = stoves[0] 
# Cook a patty at that stove. 
# Decide a patty to cook. 
patty_to_cook = patties[0] 
cook_object_at_location(obj=patty_to_cook, location=stove_to_cook_at) 

... 

Stage 2:  
Recursive  
Expansion  
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from robot_utils import is_holding, is_in_a_stack, get_obj_that_is_underneath 

... 
def cook_object_at_location(obj, location): 
    # To cook an object, the robot first needs to be holding obj 
    if not is_holding(obj): 
        # If the robot is not holding obj, there are 2 scenarios:  
        #   (1) if obj is in a stack ,unstack obj 
        #   (2) else, pick up obj. 
        if is_in_a_stack(obj): 
            # Because obj is in a stack, robot need to move then unstack the obj 
from the obj_at_bottom first 
            obj_at_bottom = get_obj_that_is_underneath(obj_at_top=obj) 
            move_then_unstack(obj_to_unstack=obj, obj_at_bottom=obj_at_bottom, 
unstack_location=get_obj_location(obj_at_bottom)) 
        else: 
            # Since obj is not in a stack, robot can just move then pick it up 
            move_then_pick(obj=obj) 
    # place the object at the location to cook at 
    move_then_place(obj=obj, place_location=location) 
    # cook the object 
    cook_until_is_cooked(obj=obj) 
...

Stage 2:  
Recursive  
Expansion  
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from perception_utils import get_curr_location, get_obj_location, is_cooked 
from action_utils import move, unstack, start_cooking, noop 

... 

def move_then_unstack(obj_to_unstack, obj_at_bottom, unstack_location): 
    # For unstacking, we need to move to the location of the bottom object 
    if get_curr_location() != get_obj_location(obj_at_bottom): 
        move(get_curr_location(), get_obj_location(obj_at_bottom)) 
    unstack(obj_to_unstack, obj_at_bottom) 
    # After unstacking, we need to move to the unstack_location 
    if get_curr_location() != unstack_location: 
        move(get_curr_location(), unstack_location) 

def cook_until_is_cooked(obj): 
    start_cooking(obj) 
    while not is_cooked(obj): 
        noop() 

... 

Stage 2:  
Recursive  
Expansion  
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Challenge 1:  
Long Horizon Demonstrations

Challenge 2:  
Complex Task Code

LLM

Solution 1: 
Recursively 

summarize demo 
to specification

Solution 2: 
Recursively expand 

specification to  
task code



Experiments



Procedurally 
generated 

environment 
and recipes



88

Table 1: Results for Tabletop Manipulation simulator. The tasks are categories into 3 clusters:
Specificity ("Specific"), Hidden World Constraint ("Hidden"), and Personal Preference ("Pref").

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match. Exec. Pass. Match

Sp
ec

ifi
c Place A next to B 1.00 0.28 0.47 0.82 0.20 0.33 0.92 0.90 0.90

Place A at a corner of the table 1.00 0.18 0.05 0.82 0.20 0.33 0.92 0.90 0.90
Place A at an edge of the table 1.00 0.18 0.03 0.94 0.88 0.87 1.00 0.98 0.96

H
id

de
n Place A on top of B 1.00 0.20 0.26 0.93 0.00 0.04 1.00 0.73 0.41

Stack all blocks 0.93 0.00 0.08 0.98 0.73 0.56 1.00 0.97 0.99
Stack all cylinders 0.80 0.00 0.66 0.88 0.53 0.32 1.00 0.90 0.96

Pr
ef

s Stack all blocks into one stack 0.98 0.00 0.26 1.00 0.40 0.05 0.87 0.97 0.48
Stack all cylinders into one stack 0.93 0.13 0.01 0.97 0.43 0.11 0.87 0.93 0.42
Stack all objects into two stacks 0.95 0.30 0.09 0.85 0.40 0.50 0.80 1.00 0.63

Overall 0.95 0.14 0.21 0.91 0.42 0.34 0.93 0.92 0.74

Table 2: Results for Robotouille simulator ordered from shortest to longest horizon length.

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match. Exec. Pass. Match

Cook first then cut 1.00 1.00 0.18 0.00 0.00 0.19 1.00 1.00 0.39
Cut first then cook 1.00 1.00 0.11 0.00 1.00 0.10 1.00 1.00 0.34
Cook two patties 1.00 1.00 0.84 0.00 0.00 0.41 1.00 1.00 0.40
Cut two lettuces 1.00 1.00 0.11 0.00 0.00 0.46 1.00 1.00 0.57
Assemble two burgers one by one 0.00 0.00 0.09 0.00 0.60 0.10 0.60 0.60 0.09
Assemble two burgers in parallel 0.00 0.00 0.06 0.00 0.00 0.08 0.00 0.00 0.07
Make a cheese burger 0.00 0.00 0.11 0.50 0.50 0.19 1.00 1.00 0.17
Make a chicken burger 0.00 0.00 0.05 0.00 0.00 0.08 0.50 0.50 0.07
Make a burger stacking lettuce atop patty immediately 0.00 0.00 0.14 1.00 1.00 0.31 0.00 0.00 0.32
Make a burger stacking patty atop lettuce immediately 0.00 0.00 0.14 0.00 0.00 0.27 1.00 1.00 0.08
Make a burger stacking lettuce atop patty after preparation 0.00 0.00 0.14 0.00 0.00 0.29 0.00 0.00 0.16
Make a burger stacking patty atop lettuce after preparation 0.00 0.00 0.13 0.00 0.00 0.15 0.50 0.50 0.25
Make a lettuce tomato burger 1.00 0.00 0.07 0.00 0.00 0.19 1.00 1.00 0.23
Make two cheese burgers 0.00 0.00 0.13 0.00 0.00 0.17 0.00 0.00 0.22
Make two chicken burgers 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.07
Make two burgers stacking lettuce atop patty immediately 0.00 0.00 0.20 0.00 0.00 0.20 0.00 0.00 0.28
Make two burgers stacking patty atop lettuce immediately 0.00 0.00 0.20 0.00 0.00 0.26 0.00 0.00 0.09
Make two burgers stacking lettuce atop patty after preparation 0.00 0.00 0.13 0.00 0.00 0.28 0.00 0.00 0.12
Make two burgers stacking patty atop lettuce after preparation 0.00 0.00 0.14 1.00 1.00 0.08 0.00 0.00 0.25
Make two lettuce tomato burgers 1.00 0.00 0.10 1.00 0.00 0.26 0.70 0.70 0.27

Overall 0.27 0.18 0.15 0.20 0.23 0.21 0.42 0.42 0.22

EPIC Kitchens Dataset [12] EPIC Kitchens is a real-world, egocentric video dataset of users doing
tasks in their kitchen. We use this dataset to test if Demo2Code can infer users’ preferences from real
videos, with the hopes of eventually applying our approach to teach a real robot personalized tasks.
We focus on the subtask of dish washing as we found preferences in it easy to qualify. While each
video has annotations of low-level actions, these labels are insufficient for describing the tasks. Hence,
we choose 7 videos of 4 humans washing dishes and annotate each demonstration with dense state
information. We compare the code generated by Lang2Code, DemoNoLang2Code and Demo2Code

on whether it satisfies the annotated preference and how well it matches against the reference code.

5.2 Results and Analysis

Overall, Demo2Code has the closest performance to the oracle (Spec2Code). Specifically, our
approach has the highest unit test pass rates in all three benchmarks, as well as the highest execution
success in Robotouille (table 2) and the Epic Kitchens (table 3). Meanwhile, Lang2Code [30] has
a higher overall execution success than Demo2Code for the Tabletop simulator (table 1). However,
Lang2Code has the lowest unit test pass rate among all baselines because it cannot fully extract
users’ specifications without demonstrations. DemoNoLang2Code has a relatively higher pass rate,
but it sacrifices execution success because it is difficult to output plausible code without context from
language. We provide prompts, detailed results and ablations in the Appendix. We now ask a series
of questions of the results to characterize the performance difference between the approaches.

6

Demo2Code generates correct code that passes unit tests
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soapy(`mezzaluna_1`) in(`mezzaluna_1`, `sink_2`); 
inhand(`peeler:potato_1`);isdirty(`peeler:potato_1`)

inhand(`mezzaluna_1`); 
isdirty(`mezzaluna_1`)

soapy(`peeler:potato_1`)

soapy(`board:cutting_1`) in(`peeler:potato_1`, `sink_2`); 
inhand(`board:cutting_1`);isdirty(`board:cutting_1`)

ison(`tap_1`)

isoff(`tap_1`)

clean(`board:cutting_1`)

in(`board:cutting_1`, `dryingrack_1`) inhand(`mezzaluna_1`);clean(`mezzaluna_1`) in(`mezzaluna_1`, `dryingrack_1`)

in(`peeler:potato_1`, `dryingrack_1`)

inhand(`peeler:potato_1`); 
clean(`peeler:potato_1`)

EPIC Kitchen Tasks
Wash objects in sink. All clean objects must be placed in drying rack.
Specifically -
Get a list of all objects to wash
For each object in all objects:

Bring object from sink_1 to sink_2
Scrub object
Place object in sink_2

For each object in all objects:
Rinse object
Place object in dryingrack_1

Turn off tap_1

Here, the LLM captures that the objects are scrubbed first, placed in sink_2, then rinsed one by one
after, the chain of thought reasoning also shows this. The LLM is also able to generalize despite the
change in order of scrubbing and rinsing dishes.

Code Output:
say("Washing the objects by user 22's preferences")
objects = get_all_objects ()
for object in objects:

pick_up(object)
if check_if_dirty(object):

while check_if_dirty(object):
scrub(object)

place(object , "sink_2")
turn_on("tap_1")
for object in objects:

pick_up(object)
rinse(object)
place(object , "dryingrack_1")

turn_off("tap_1")
say("Done washing the objects by user 22's preferences")

D Chain-of-thought Ablation Experiment

This experiment studies the effect of the chain-of-thought’s length (in stage 1 recursive summarization)
on the LLM’s performance. We found:

• It is helpful to guide the LLM to take small recursive steps when summarizing demonstrations
(especially for tasks with long demonstrations).

• The LLM performs the worst if it is asked to directly generate code from demonstrations.

D.1 Experiment Detail

We defined 3 ablation models listed below from the shortest chain-of-thought length to the
longest chain length. In addition, because the tabletop’s Demo2Code pipeline is different from
Robotouille’s pipeline, we also describe how these pipelines are adapted to each ablation model:

• No-Cot: Tabletop and Robotouille has exactly the same process of prompting the LLM
ONCE to generate code given the language model and the demonstrations.

• 1-Step
– Tabletop: First, the LLM receives all the demonstrations concatenated together as

input to generate the specification without any intermediate reasoning. Next, the LLM
generates the code given the specification.

– Robotouille: First, the LLM receives all the demonstrations concatenated together
as input to generate the specification. It can have intermediate reasoning because the
tasks are much more complex. Next, the LLM generates the high-level code given the
specification and recursively expands the code by defining all helper functions.

• 2-Steps
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Tabletop Manipulation Tasks

Table 1: Results for Tabletop Manipulation simulator. The tasks are categories into 3 clusters:
Specificity ("Specific"), Hidden World Constraint ("Hidden"), and Personal Preference ("Pref").

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match. Exec. Pass. Match

Sp
ec

ifi
c Place A next to B 1.00 0.28 0.47 0.82 0.20 0.33 0.92 0.90 0.90

Place A at a corner of the table 1.00 0.18 0.05 0.82 0.20 0.33 0.92 0.90 0.90
Place A at an edge of the table 1.00 0.18 0.03 0.94 0.88 0.87 1.00 0.98 0.96

H
id

de
n Place A on top of B 1.00 0.20 0.26 0.93 0.00 0.04 1.00 0.73 0.41

Stack all blocks 0.93 0.00 0.08 0.98 0.73 0.56 1.00 0.97 0.99
Stack all cylinders 0.80 0.00 0.66 0.88 0.53 0.32 1.00 0.90 0.96

Pr
ef

s Stack all blocks into one stack 0.98 0.00 0.26 1.00 0.40 0.05 0.87 0.97 0.48
Stack all cylinders into one stack 0.93 0.13 0.01 0.97 0.43 0.11 0.87 0.93 0.42
Stack all objects into two stacks 0.95 0.30 0.09 0.85 0.40 0.50 0.80 1.00 0.63

Overall 0.95 0.14 0.21 0.91 0.42 0.34 0.93 0.92 0.74

Table 2: Results for Robotouille simulator ordered from shortest to longest horizon length.

Task Lang2Code[30] DemoNoLang2Code Demo2Code(ours)
Exec. Pass. Match. Exec. Pass. Match. Exec. Pass. Match

Cook first then cut 1.00 1.00 0.18 0.00 0.00 0.19 1.00 1.00 0.39
Cut first then cook 1.00 1.00 0.11 0.00 1.00 0.10 1.00 1.00 0.34
Cook two patties 1.00 1.00 0.84 0.00 0.00 0.41 1.00 1.00 0.40
Cut two lettuces 1.00 1.00 0.11 0.00 0.00 0.46 1.00 1.00 0.57
Assemble two burgers one by one 0.00 0.00 0.09 0.00 0.60 0.10 0.60 0.60 0.09
Assemble two burgers in parallel 0.00 0.00 0.06 0.00 0.00 0.08 0.00 0.00 0.07
Make a cheese burger 0.00 0.00 0.11 0.50 0.50 0.19 1.00 1.00 0.17
Make a chicken burger 0.00 0.00 0.05 0.00 0.00 0.08 0.50 0.50 0.07
Make a burger stacking lettuce atop patty immediately 0.00 0.00 0.14 1.00 1.00 0.31 0.00 0.00 0.32
Make a burger stacking patty atop lettuce immediately 0.00 0.00 0.14 0.00 0.00 0.27 1.00 1.00 0.08
Make a burger stacking lettuce atop patty after preparation 0.00 0.00 0.14 0.00 0.00 0.29 0.00 0.00 0.16
Make a burger stacking patty atop lettuce after preparation 0.00 0.00 0.13 0.00 0.00 0.15 0.50 0.50 0.25
Make a lettuce tomato burger 1.00 0.00 0.07 0.00 0.00 0.19 1.00 1.00 0.23
Make two cheese burgers 0.00 0.00 0.13 0.00 0.00 0.17 0.00 0.00 0.22
Make two chicken burgers 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.07
Make two burgers stacking lettuce atop patty immediately 0.00 0.00 0.20 0.00 0.00 0.20 0.00 0.00 0.28
Make two burgers stacking patty atop lettuce immediately 0.00 0.00 0.20 0.00 0.00 0.26 0.00 0.00 0.09
Make two burgers stacking lettuce atop patty after preparation 0.00 0.00 0.13 0.00 0.00 0.28 0.00 0.00 0.12
Make two burgers stacking patty atop lettuce after preparation 0.00 0.00 0.14 1.00 1.00 0.08 0.00 0.00 0.25
Make two lettuce tomato burgers 1.00 0.00 0.10 1.00 0.00 0.26 0.70 0.70 0.27

Overall 0.27 0.18 0.15 0.20 0.23 0.21 0.42 0.42 0.22

EPIC Kitchens Dataset [12] EPIC Kitchens is a real-world, egocentric video dataset of users doing
tasks in their kitchen. We use this dataset to test if Demo2Code can infer users’ preferences from real
videos, with the hopes of eventually applying our approach to teach a real robot personalized tasks.
We focus on the subtask of dish washing as we found preferences in it easy to qualify. While each
video has annotations of low-level actions, these labels are insufficient for describing the tasks. Hence,
we choose 7 videos of 4 humans washing dishes and annotate each demonstration with dense state
information. We compare the code generated by Lang2Code, DemoNoLang2Code and Demo2Code

on whether it satisfies the annotated preference and how well it matches against the reference code.

5.2 Results and Analysis

Overall, Demo2Code has the closest performance to the oracle (Spec2Code). Specifically, our
approach has the highest unit test pass rates in all three benchmarks, as well as the highest execution
success in Robotouille (table 2) and the Epic Kitchens (table 3). Meanwhile, Lang2Code [30] has
a higher overall execution success than Demo2Code for the Tabletop simulator (table 1). However,
Lang2Code has the lowest unit test pass rate among all baselines because it cannot fully extract
users’ specifications without demonstrations. DemoNoLang2Code has a relatively higher pass rate,
but it sacrifices execution success because it is difficult to output plausible code without context from
language. We provide prompts, detailed results and ablations in the Appendix. We now ask a series
of questions of the results to characterize the performance difference between the approaches.
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Place the purple 
cylinder to the left 
of the green block.

Stack all objects 
into two stacks 

(one stack has only 
blocks, other 

cylinder) 

Place the blue 
block on red 
cylinder (but 

blocked by yellow, 
red)



Demo2Code Learns 
Personalized Tasks



def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 lettuce = lettuces[0] 
 cut_obj_at_loc(lettuce, boards[0]) 
 stack_obj1_on_obj2(lettuce, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, lettuce)

def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 cheese = cheeses[0] 
 stack_obj1_on_obj2(cheese, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, cheese)

robot is at ‘table2’,… ’robot1’ is holding ‘patty1’,…

Make a burger. 
... 
Decide a patty to cook. 
Cook that patty at that stove. 
... 

Decide a lettuce to cut. 
Cut that lettuce on that  

cutting board. 
Stack that lettuce on that  

patty. 
... 
Stack that top bun on that lettuce.

Make a burger. 
... 
Decide a patty to cook.  
Cook that patty at that stove. 
... 

Decide a cheese to use. 
Stack that cheese on that 
patty. 
... 
Stack that top bun on that cheese.

User 1: Prefers lettuce on patty

User 2: Prefers cheese on patty

`patty 1’ is cooked,… ‘patty1’ is on top of 
‘bottom_bun1’,… 

‘robot1’ is holding ‘lettuce1’,… ‘lettuce1’ is on top of 
`patty1’,…

’top_bun1’ is on top of 
‘lettuce1’,…

robot is at ‘table1’,… ‘robot1’ is holding ‘patty1’,… ‘patty1’ is cooked 'patty1' is on top of 
‘bottom_bun1,…

‘robot1’ is holding ‘cheese1’ ‘cheese1’ is on top of 
‘patty1’,…

‘top_bun1’ is on top of 
‘cheese1’,…

Pick up cheese1 Stack cheese1

Pick up patty1 Cook patty1 Stack patty1

Pick up patty1 Cook patty1 Stack patty1

Pick up lettuce1 Stack lettuce1 Stack top_bun1

Stack top_bun1



def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 lettuce = lettuces[0] 
 cut_obj_at_loc(lettuce, boards[0]) 
 stack_obj1_on_obj2(lettuce, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, lettuce)

def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 cheese = cheeses[0] 
 stack_obj1_on_obj2(cheese, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, cheese)

robot is at ‘table2’,… ’robot1’ is holding ‘patty1’,…

Make a burger. 
... 
Decide a patty to cook. 
Cook that patty at that stove. 
... 

Decide a lettuce to cut. 
Cut that lettuce on that  

cutting board. 
Stack that lettuce on that  

patty. 
... 
Stack that top bun on that lettuce.

Make a burger. 
... 
Decide a patty to cook.  
Cook that patty at that stove. 
... 

Decide a cheese to use. 
Stack that cheese on that 
patty. 
... 
Stack that top bun on that cheese.

User 1: Prefers lettuce on patty

User 2: Prefers cheese on patty

`patty 1’ is cooked,… ‘patty1’ is on top of 
‘bottom_bun1’,… 

‘robot1’ is holding ‘lettuce1’,… ‘lettuce1’ is on top of 
`patty1’,…

’top_bun1’ is on top of 
‘lettuce1’,…

robot is at ‘table1’,… ‘robot1’ is holding ‘patty1’,… ‘patty1’ is cooked 'patty1' is on top of 
‘bottom_bun1,…

‘robot1’ is holding ‘cheese1’ ‘cheese1’ is on top of 
‘patty1’,…

‘top_bun1’ is on top of 
‘cheese1’,…

Pick up cheese1 Stack cheese1

Pick up patty1 Cook patty1 Stack patty1

Pick up patty1 Cook patty1 Stack patty1

Pick up lettuce1 Stack lettuce1 Stack top_bun1

Stack top_bun1



def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 lettuce = lettuces[0] 
 cut_obj_at_loc(lettuce, boards[0]) 
 stack_obj1_on_obj2(lettuce, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, lettuce)

def main(): 
 ... 
 patty = patties[0] 
 cook_obj_at_loc(patty, stoves[0]) 
 ... 
 cheese = cheeses[0] 
 stack_obj1_on_obj2(cheese, patty) 
 ... 
 stack_obj1_on_obj2(top_bun, cheese)

robot is at ‘table2’,… ’robot1’ is holding ‘patty1’,…

Make a burger. 
... 
Decide a patty to cook. 
Cook that patty at that stove. 
... 

Decide a lettuce to cut. 
Cut that lettuce on that  

cutting board. 
Stack that lettuce on that  

patty. 
... 
Stack that top bun on that lettuce.

Make a burger. 
... 
Decide a patty to cook.  
Cook that patty at that stove. 
... 

Decide a cheese to use. 
Stack that cheese on that 
patty. 
... 
Stack that top bun on that cheese.

User 1: Prefers lettuce on patty

User 2: Prefers cheese on patty

`patty 1’ is cooked,… ‘patty1’ is on top of 
‘bottom_bun1’,… 

‘robot1’ is holding ‘lettuce1’,… ‘lettuce1’ is on top of 
`patty1’,…

’top_bun1’ is on top of 
‘lettuce1’,…

robot is at ‘table1’,… ‘robot1’ is holding ‘patty1’,… ‘patty1’ is cooked 'patty1' is on top of 
‘bottom_bun1,…

‘robot1’ is holding ‘cheese1’ ‘cheese1’ is on top of 
‘patty1’,…

‘top_bun1’ is on top of 
‘cheese1’,…

Pick up cheese1 Stack cheese1

Pick up patty1 Cook patty1 Stack patty1

Pick up patty1 Cook patty1 Stack patty1

Pick up lettuce1 Stack lettuce1 Stack top_bun1

Stack top_bun1
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place(‘bowl_1’)rinse(‘bowl_1’)

ison(`tap_1`);inhand(`bowl_1`); 
soapy(`bowl_1`); …

inhand(`bowl_1`); clean(`bowl_1`); …

Wash objects at the sink. 
... 
Get a list of all objects to wash 
Pick up scrub_1 

For each object in all objects: 
    Scrub object 
     Place object in sink_2 
Turn on tap_1 

For each object in all objects: 
    Rinse object 
     Place object in dishrack_1 
Turn off tap_1

objs = get_all_objs() 
for obj in objs: 
    bring_objs_to_loc([obj],  

"sink_1") 
    if check_if_dirty(obj): 
        scrub(obj) 
    while check_if_dirty(object): 
        rinse(obj) 
    turn_off("tap_1") 
    place(obj, "counter_1")

objs = get_all_objs() 
pick_up("scrub_1") 
for obj in objs: 
    scrub(obj) 
    place(obj, "sink_2") 
turn_on("tap_1") 
for obj in objs: 
    rinse(obj) 
    place(obj, "dishrack_1") 
turn_off("tap_1")

Wash objects at the sink. 
... 
Get a list of all objects to wash 
For each object in all objects: 
     Bring object to sink_1 

    Scrub object if object is 
dirty 
    Rinse object till clean 
     Turn off tap_1 
     Place object on counter_1

User 22: Prefers to first scrub all objects and then rinse

User 30: Prefers to scrub and rinse each object

scrub(‘bowl_1’)

inhand(`mug_1`); isdirty(`mug_1`); …

rinse(‘mug_1’)scrub(‘mug_1’)

ison(`tap_1`); inhand(`mug_1`); 
soapy(`mug_1`); …

clean(`mug_1`); at(`countertop_1`); …

scrub(‘glass_1’)

pickup(‘jug_1’) rinse(‘jug_1’)place(‘mug_1’) place(‘jug_1’)

at(`countertop_1`);on(`jug_1`, 
countertop_1`); …

ison(`tap_1`); inhand(`jug_1`); 
isnotdirty(`jug_1`); …

clean(`jug_1`);at(`countertop_1`); …

inhand(`bowl_1`); isdirty(`bowl_1`); … inhand(`glass_1`); isdirty(`glass_1`); …

place(‘glass_1’) …rinse(‘glass_1’)

inhand(`glass_1`); soapy(`glass_1`); … inhand(`glass_1`);clean(`glass_1`); …
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place(‘bowl_1’)rinse(‘bowl_1’)

ison(`tap_1`);inhand(`bowl_1`); 
soapy(`bowl_1`); …

inhand(`bowl_1`); clean(`bowl_1`); …

Wash objects at the sink. 
... 
Get a list of all objects to wash 
Pick up scrub_1 

For each object in all objects: 
    Scrub object 
     Place object in sink_2 
Turn on tap_1 

For each object in all objects: 
    Rinse object 
     Place object in dishrack_1 
Turn off tap_1

objs = get_all_objs() 
for obj in objs: 
    bring_objs_to_loc([obj],  

"sink_1") 
    if check_if_dirty(obj): 
        scrub(obj) 
    while check_if_dirty(object): 
        rinse(obj) 
    turn_off("tap_1") 
    place(obj, "counter_1")

objs = get_all_objs() 
pick_up("scrub_1") 
for obj in objs: 
    scrub(obj) 
    place(obj, "sink_2") 
turn_on("tap_1") 
for obj in objs: 
    rinse(obj) 
    place(obj, "dishrack_1") 
turn_off("tap_1")

Wash objects at the sink. 
... 
Get a list of all objects to wash 
For each object in all objects: 
     Bring object to sink_1 

    Scrub object if object is 
dirty 
    Rinse object till clean 
     Turn off tap_1 
     Place object on counter_1

User 22: Prefers to first scrub all objects and then rinse

User 30: Prefers to scrub and rinse each object

scrub(‘bowl_1’)

inhand(`mug_1`); isdirty(`mug_1`); …

rinse(‘mug_1’)scrub(‘mug_1’)

ison(`tap_1`); inhand(`mug_1`); 
soapy(`mug_1`); …

clean(`mug_1`); at(`countertop_1`); …

scrub(‘glass_1’)

pickup(‘jug_1’) rinse(‘jug_1’)place(‘mug_1’) place(‘jug_1’)

at(`countertop_1`);on(`jug_1`, 
countertop_1`); …

ison(`tap_1`); inhand(`jug_1`); 
isnotdirty(`jug_1`); …

clean(`jug_1`);at(`countertop_1`); …

inhand(`bowl_1`); isdirty(`bowl_1`); … inhand(`glass_1`); isdirty(`glass_1`); …

place(‘glass_1’) …rinse(‘glass_1’)

inhand(`glass_1`); soapy(`glass_1`); … inhand(`glass_1`);clean(`glass_1`); …
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Many open research questions!
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What is the right level of abstraction for LLMs to generate?

Can language help for non-language tasks?

(Growing support for LLMs generating reward functions)

(Growing evidence that language captures useful invariances)

Can LLMs solve planning problems?

(Growing evidence that says No)

Huang et al. VoxPoser

Mirchandani et al. 
Large Language Models as 
General Pattern Machines

Valmeekam et al. 
Large Language Models Still 

Can’t Plan


