Diffusion Models and Imitation Learning

Sanjiban Choudhury

(Unknown) expert distribution

All we see are expert samples

The Distribution Matching Problem

Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$

What loss should we use?

Minimize discriminator loss!

for i = 1, ..., N# Loop over datapoints $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \quad \text{\# Update cost}$

(Push down human cost)

Call planner!

(Push up planner cost)

Adversarial games are challenging to solve!

Are there simpler ways to learn $p_{\theta}(\xi) \approx p^*(\xi)$?

The Problem

Typically require tricks to make sure discriminator does not get too powerful (gradient penalty, early stopping etc)

Steal from computer vision!

Diffusion Models: Latest Generative Model!

Samples from a Data Distribution

CVPR Tutorial on Diffusion Model https://cvpr2023-tutorial-diffusion-models.github.io/

Neural Network

"Voyage through Time" is my first artpiece using blown away with the pose

see

What you can do with this today

d_and_prom	ot_sequence = [
3764,	'in the beginning there was
1537,	'special effects render of t
6573,	'HD photo of a large amount
1791,	'early planet formation in t
9973,	'the Hadean earth was bombar
736,	'panoramic view of earth wit
3639,	'hydrothermal vents at the b
3559,	'bacteria under a microscope
4724,	'bacteria under a microscope
3359,	'ammonites floating in the o
6344,	'the first reptile to leave '
6344,	'the first reptile to leave
6813,	'massive brachiosaurus walki
6678,	'the exctinction of the dino
7450,	'small mammals thriving in a
9766,	'small, prehistoric mammals
5009,	'group of monkeys in the for
7287,	'HD photograph of neandertha
6008,	'cave painting',
208,	'cavemen tribe gathered arou
2222,	'maasai tribe hunting on the
571,	'homo sapiens using stone to
632,	'a small, tribal village wit
1332,	'at the dawn of civilization
2496,	'ancient egypt, the first ma
1869,	'the height of the roman emp
7559,	'medieval town square',
1265,	'medieval city',
6628.	'the skyline of New York cit

```
nothing, just darkness',
he big bang',
of spiral galaxies',
he solar system',
ded with asteroids and massive volcanic eruptions',
 ocean surrounding newly formed land and volcanos',
ottom of the ocean',
cean',
the ocean and crawl onto the land',
the ocean and crawl onto the land',
ng amidst a green mountain range',
saurs be a huge meteorite',
cave',
living in the jungle',
est',
l, the first man',
nd a fire at night looking at the stars',
savanna with spears',
ols',
h huts',
 small villages emerged',
ssive civiliation',
ire, incredible architecture, by Greg Rutkowski',
```

v'.

"Voyage through Time" is my first artpiece using blown away with the pos

What you can do with this today

Sanjiban + Al art (created with MidJourney)

Art is cute ... but what about robots??

Diffusion Policies!

Diffusion Policy

LSTM-GMM

BET

Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

Cheng Chi¹, Siyuan Feng², Yilun Du³, Zhenjia Xu¹, Eric Cousineau², Benjamin Burchfiel², Shuran Song¹ ¹ Columbia University ² Toyota Research Institute ³ MIT https://diffusion-policy.cs.columbia.edu

Imitation Learning

Diffusion Models

How have researchers in computer vision approached the problem of modeling distributions $p_{\theta}(x)$?

Option 1: Variational Autoencoder

VAE: maximize variational lower bound

Problem: Images were not very high quality!

Lilian Weng. "What are Diffusion Models?"

Option 2: Generative Adversarial Networks

VAE: maximize variational lower bound

GAN: Adversarial training

Problem: Failed to capture multiple modes / diversity

Lilian Weng. "What are Diffusion Models?"

Option 3: Diffusion Models

Problem: Currently too slow (but can be faster!)

Lilian Weng. "What are Diffusion Models?"

History of diffusion models

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015

Song and Ermon, "Generative Modeling by Estimating Gradients of the Data Distribution", NeurIPS, 2019

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

Denoising Diffusion Models

Data

Two main process

Reverse diffusion process that learns to generate data by denoising

Forward diffusion process gradually adds more noise to the input

Forward: Add a bit of Gaussian noise

Data

Variance schedule $\beta_1 < \beta_2 < \ldots < \beta_T$

Forward: Add a bit of Gaussian noise

Data

Stacking Gaussians gives you a Gaussian

 $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}$

$$x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

Forward: Add a bit of Gaussian noise

Data

Directly sample from this!

 $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$

Multipliers $\bar{\alpha}_1 > \ldots > \bar{\alpha}_T \approx 0$

Reverse: Learn to denoise

Data

Start from $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Learn a distri $p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})$

Noise

Learn a distribution $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

 $p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_{T}) \prod p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) \quad p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$

How do we train our model?

Data

Write out the variational upper bound and minimize that

$L_{\text{VUB}} = \mathbb{E}_{q(\mathbf{x}_0)}$

$$e_{0:T}\left[\log\frac{q(\mathbf{x}_{1:T} \mid \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})}\right]$$

How do we train our model?

Data

 $\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$

Noise

Simplifying trick: Don't predict the images, predict the noise ϵ_{θ}

How do we train our model?

Data

$L_t^{\text{simple}} = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \boldsymbol{\epsilon}_t} \left[\|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)\|^2 \right]$ $= \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \boldsymbol{\epsilon}_t} \left\| \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t, t) \|^2 \right\|$

Noise

Crunch through a ton of math, simplify terms and you get

Super simple training loop!

- $t \sim \operatorname{connorm}(1, \ldots, I)$ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 4:
- Take gradient descent step on 5:

 $\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$ 6: until converged

Super simple inference step!

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, \dots, 1$ do

Wait just a minute ... Isn't there a distribution shift issue here?

Expert distribution 1 \neq Learner distribution

Noise path

Unrealistic images produced by distribution shift!

Dire consequences when mistakes matter!

850	$\gamma^{\mu}_{n}=m^{\mu}_{n}+m$
750	$\gamma^{\mu}_{n} = \pi^{\mu}_{n} - \pi$
650	$\gamma_n^\mu = \alpha_m^\mu + \bar{\alpha}$
550	$\gamma_n^\mu = \alpha_n^\mu + \tilde{\alpha}_n^\mu$
450	$\gamma_n^\mu = \alpha_n^\mu + \tilde{\alpha}_n^\mu$
350	$\gamma_n^\mu = \alpha_n^\mu + \tilde{\alpha}_n^\mu$
250	$\gamma_n^\mu = \alpha_n^\mu + \tilde{\alpha}_n^\mu$
0	$\gamma_n^\mu = \alpha_n^\mu + \tilde{\alpha}_r^\mu$

Clean the data to remove any unrealistic images that may confuse it?

Take small steps so as to not leave the realistic manifold?

There must be a better way!

What do we do about this?

Can DAgger once again save the day?

DAgger for Diffusion

MARKUP-TO-IMAGE DIFFUSION MODELS WITH SCHEDULED SAMPLING

Yuntian Deng¹, Noriyuki Kojima², Alexander M. Rush²

¹ Harvard University dengyuntian@seas.harvard.edu

² Cornell University {nk654, arush}@cornell.edu

For $i = 0 \dots N$

Noise the input image

Add original image as target

Aggregate data!

Original diffusion

 $\gamma_n^{\mu} = \alpha_n^{\mu} - \alpha_n^{\mu}$ $\gamma_n^{\mu} = \alpha_n^{\mu} + \alpha_n^{\mu}$ $650 \quad \gamma_n^\mu = \alpha_m^\mu + \bar{\alpha}_n^\mu, \quad n \neq 0$ $\gamma_n^{\mu} = \alpha_n^{\mu} + \tilde{\alpha}_{n\mu}^{\mu\mu}, \ n \neq 2.00$ $\gamma_n^{\mu} = \alpha_n^{\mu} + \tilde{\alpha}_n^{\mu}, \quad n \, n \, d \neq 0.$ $\gamma_n^{\mu} = \alpha_n^{\mu} + \tilde{\alpha}_n^{\mu}, \quad n n \neq \neq 0.$ $\gamma_n^{\mu} = \alpha_n^{\mu} + \tilde{\alpha}_n^{\mu}$, $n n \neq \neq 0$. $0 \qquad \gamma_n^{\mu} = \alpha_n^{\mu} + \tilde{\alpha}_n^{\mu} , \quad n \, n \neq \neq 0.$

Does it work?

DAgger

 $\gamma^{\mu}_{\mu} := \alpha^{\mu}_{\mu} + \alpha^{\mu}_{\mu}$ $\gamma_n^\mu := \alpha_n^\mu + m_{n}^\mu$ $\gamma_n^{\mu\mu} = \alpha_n^{\mu} + i \epsilon_n^{\mu\nu}, \quad n = n = n = n$ $\gamma_n^\mu = \mathbb{R}_n^\mu + \mathbb{R}_n^\mu, \quad m \neq \mathbb{R}_n^\mu$ $\gamma_n^{\mu} = \alpha_{nn}^{\mu} + \tilde{\alpha}_n^{\mu}, \quad m \neq 0.0.$ $\gamma_n^{\mu} = \alpha_{n^n}^{\mu} + \tilde{\alpha}_n^{\mu}, \quad m \neq 0.$ $\gamma^{\mu}_{n} = \alpha^{\mu}_{n\nu} + \tilde{\alpha}^{\mu}_{n}, \quad n \neq 0.$ $\gamma_n^{\mu} = \alpha_{n\nu}^{\mu} + \tilde{\alpha}_n^{\mu}, \quad n \neq 0.$

DAgger feels like overkill!

We control both the noise and the denoise process

Can't we just noise / train more intelligently?

Is there another way?

What is our goal?

We want to model a distribution $p_{\theta}(x) \approx p^*(x)$

What is our goal?

We only see samples from $x_1, x_2, \dots x_N \sim p^*(x)$

Typically choose $p_{\theta}(x) = \frac{\exp(-f_{\theta}(x))}{Z(\theta)}$ (Recall MaxEnt!)

How do we do this?

$\max_{\theta} \sum_{i=1}^{N} \log p_{\theta}(x_i)$

******** *********

- Option 1: Restrict the model architecture

Option 2: Approximate the normalizing constant (e.g., variational inference in VAEs, or MCMC sampling used in contrastive divergence)

Is there another way to bypass the normalizing constant?

Model the score function

 $\nabla_x \log p_\theta(x)$

Score-based model

Why?

Bye bye normalizing constant!!!

 $= V_x - f_{\theta}(x) - V_x \log Z(\theta)$ (= 0!)

 $= \nabla_x - f_\theta(x)$

Probability functions $p_{\theta}(x)$ need to be normalized!

Score function $s_{\theta}(x)$ No normalization!

So ... how do we learn the score?

Consider the following optimization problem

$\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$

Consider the following optimization problem

$\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right|_2^2 \right]$ $\frac{1}{2} \mathbb{E}_{p^*} \left[\left| \left| \nabla_x \log p^*(x) - \nabla_x \log p_\theta(x) \right| \right]$

Can prove that $\frac{1}{2} \mathbb{E}_{p^*} \left[|| \nabla_x \log p^*(x) - \nabla_x \log p_{\theta}(x)|| \right]$

Math to the rescue!

is the same as

$\mathbb{E}_{p^*}\left[\operatorname{tr}(\nabla_x^2 \log p_{\theta}(x)) + \frac{1}{2} ||\nabla_x \log p_{\theta}(x)||_2^2\right] + \operatorname{const}$

We can compute all these terms!

Training score based models

$\mathscr{L}(\theta) = \mathbb{E}_{p^*}\left[\operatorname{tr}(\nabla_x^2 s_{\theta}(x)) + \frac{1}{2} ||\nabla_x s_{\theta}(x)||_2^2\right]$

Optimize this loss to get score $s_{\theta}(x)$

How can I sample from $p_{\theta}(x)$ using $\nabla_x \log p_{\theta}(x)$?

Langevin Dynamics

Initialize a random x_0

Update x using noisy gradient steps $x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p_{\theta}(x) + \sqrt{2\epsilon z_i}$

 $z_i \sim \mathcal{N}(0,I)$

Eventually x_i looks like they come from $p_{\theta}(x)$

Data samples

 $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$

Langevin dynamics

Scores

New samples

 $\mathbf{s}_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

Problem: Score inaccurate where there is no data

Data density

Data scores

Estimated scores

Estimated scores are only accurate in high density regions.

Idea: Add noise to the data!!

Perturbed density

Estimated scores are accurate everywhere for the noise-perturbed data distribution due to reduced low data density regions.

Sequence of Langevin chains with gradually decreasing noise scales.

Celeb-A

CIFAR

- Choose $\sigma_1 < \sigma_2 < \cdots < \sigma_L$ as a geometric progression, with σ_1 being sufficiently small and σ_L comparable to the maximum pairwise distance between all training data points [19]. L is typically on the order of hundreds or thousands.
- Parameterize the score-based model $\mathbf{s}_{\theta}(\mathbf{x}, i)$ with U-Net skip connections [18, 20].
- Apply exponential moving average on the weights of the score-based model when used at test time [19, 20].

Setting time resolution to zero (continuous time)

 $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w},$

Every SDE has a reverse SDE

$$\mathrm{d}\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - g^2]$$

Reverse stochastic process

 $^{2}(t)
abla_{\mathbf{x}}\log p_{t}(\mathbf{x})]\mathrm{d}t+g(t)\mathrm{d}\mathbf{w}.$

Reverse SDE (noise \rightarrow data)

Why do we care?

Consistency Models

Yang Song¹ Prafulla Dhariwal¹ Mark Chen¹ Ilya Sutskever¹

- Gives rise to a whole new landscape of ways to estimate score function
 - No longer restricted to small step size in diffusion models
 - Consistency models are one such example!

Open questions: Can we pull-back these ideas to decision making?

