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Reinforcement Learning is Hard ...



Many horror stories of RL!

Bootstrapping Distribution shift

Iteration 101

Upper half of state
's BAD

Lower half of state
iIs GOOD

ghtmares of
Policy Optimization




From Sutton and Barto

The deadly triad

e The risk of divergence arises whenever we combine three things:

1. Function approximation

significantly generalizing from large numbers of examples

2. Bootstrapping

learning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

3. Off-policy learning  (Why is dynamic programming off-policy?)

learning about a policy from data not due to that policy,
as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

¢ Any two without the third is ok



Need many tricks to make RL work in practice!

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DeepMind DeepMind DeepMind DeepMind DeepMind

Double Q Learning
Prioritized Replay
Dueling Networks

Multi-step Learning

Distributional RL
Noisy Nets

DQN
- = no double
- = N0 priority
- =  no dueling
no multi-step
no distribution
- = N0 NOISY
- Rainbow

50 100 150 200
Millions of frames



Is there any hope?



#1 Get Data

Input (s

Output




Ing success stories

Supervised Learn
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IDEA:

Can we make
Reinforcement Learning

look like

Supervised Learning?




RVS: WHAT IS ESSENTIAL FOR OFFLINE RL VIA
SUPERVISED LEARNING?

Scott Emmons', Benjamin Eysenbach?, Ilya Kostrikov', Sergey Levine'

1UC Berkeley, 2Carnegie Mellon University
emmons@berkeley.edu
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The ldea

states S,
‘\ /!
actions > a3'
outcomes w, W,
0 g B

(a) replay butter

\ /.83
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The ldea

@I )
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(b) traiming dataset
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The ldea

state s

dropout| | dropout

concat— —>:|—> —>|:|—> .

action a

fc layer fc layer
outcome w

(c) network architecture
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IMax

The Algorithm

For all For all timesteps .
trajectories:  1n that trajectory: K orogltlcg%tllég?/ed
"
T€D 1<t<|T]

Algorithm 1 RvS-Learning

1

2:

S

A A

. Input: Dataset of trajectories, D = {7}
Initialize policy my(a | s,w).
: while not converged do
Randomly sample trajectories: 7 ~ D.
Sample time index for each trajetory, t ~ |1, H], and
sample a corresponding outcome: w ~ f(w | 7¢.1).
Compute loss: L(6) < D, 4, ) 108 To(as | st w)

Update policy parameters: 6 < 6 +nVL(0)
end while
return Conditional policy mg(a | s,w)

14



What are some choices for “outcomes ?

Option 1: What is the future state the agent ended up at?

RvS-G (Goal conditioned)

Option 2: What is the total return that the agent got?

RvS-R (Return conditioned)

15



A very popular idea

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling

Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving

via conditional imitation learning

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling

problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies
Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. ™ Training

agents using upside-down reinforcement learning .



Do | really need to
condition?
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onsider the following MDP

/// '
4
/
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Option 1: Return Cond

itioned Policy

19



Option 2: Train a policy on top returns!

20



An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!

21



Does this even work

17

Dataset Environment
Medium HaltCheetah
Medium Hopper
Medium Walker
Medium Reacher
Medium-Replay  HalfCheetah
Medium-Replay  Hopper
Medium-Replay  Walker
Medium-Replay  Reacher

Average

10%BC 25%BC 40%BC 100%2BC CQL
42.9 43.0 43.1 43.1 44.4
65.9 65.2 65.3 63.9 98.0
78.8 80.9 78.8 7.3 79.2
51.0 48.9 08.2 584  26.0
40.8 40.9 41.1 4.3 46.2
70.6 538.6 31.0 27.6  48.6
70.4 67.8 67.2 36.9  26.7
33.1 16.2 10.7 5.4 19.0
56.7 52.7 49.4 39.0 43.5

22



Can we make this a bit more fancier?

1. Handle noisy returns

2. Collect data on-policy

23



From Policy Gradient to Policy Search

1
2

3
4.
>

6:
7

. m1 < random policy
: D+ 0

VP « arg min,, F

\

Tk+1 $— arg max_
. end for

“s,a~D

s,a~D

. for iteration k =1, ..., kK ax dO
add trajectories {7; } sampled via 7y to D

Supervised

‘R?,a o V(S) | |2- Learning!

Supervised

log 7(als) exp (5 (RD, — VP(s)))

Learning!

Peng et al, 2019



| thought we were going
to talk about
transformers?
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Transformers



Given sequence of English words, predict sequence of French

27
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Visualizing attentions

"The animal didn't cross the street because it was too tired”

Layer:| S § | Attention:| Input - Input v

H
The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street
because because
it_ Lot
was_ was_
too_ too_
tire tire



Attention as a soft-memory look up

Query #9 50% value #2

30% value #1

30



Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( d) )

Softmax

Softmax
X
Value

Sum

Thinking
X1
g1
K1
Vi
gie ki=112

14

0.88
V1

Machines

g1 e kx =96

12

0.12
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Back to
Decision Making




Decision Transformer: Reinforcement
Learning via Sequence Modeling

Lili Chen*!, Kevin Lu*!, Aravind Rajeswaran?, Kimin Lee!,
Aditya Grover?, Michael Laskin', Pieter Abbeel!, Aravind Srinivas’', Igor Mordatch™?
*equal contribution Tequal advising
1UC Berkeley “Facebook AI Research °Google Brain
{lilichen, kzll}@berkeley.edu
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return

state

linear decoder

action

Introducing Decision Transformers on
Hugging Face &

Published March 28, 2022

ab

Ugdate en GitH
' LEdward Beeching Thomas Simonini
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Test Time

Start at initial state s,

Specity the desired target return R,

a, = Transformer(R,, sy)

Execute action, observe reward and next state (ry, 5)
Decrement the target return R; = Ry — r;

a, = Transformer(R,, sy, dy, R;, ;)

37



Performance

b
-
o

un
-

Seems to work!

meesm Decision Transformer (Ours) m=ss  TD Learning == Behavior Cloning

Atari OpenAl Gym Key-To-Door

38



Seems to work!

Game DT (Ours) CQL OQR-DQN REM BC
Breakout 267.51+97.5 211.1 17.1 8.9 138.9 =61.7
Qbert 154=11.4 104.2 0.0 0.0 17.3 =14.7
Pong 106.1 =8.1 111.9 18.0 0.5 85.2 = 20.0
Seaquest 25104 1.7 0.4 0.7 2.1 0.3

Atari



Seems to work!

Dataset Environment DT (Ours) CQL BEAR BRAC-v AWR BC
Medium-Expert = HalfCheetah 86.8 +-1.3 62.4 03.4 41.9 02.7  59.9
Medium-Expert = Hopper 1076 1.8 111.0 96.3 0.8 27.1 79.6
Medium-Expert  Walker 108.1 0.2 98.7 40.1 81.6 23.8  36.6
Medium-Expert  Reacher 89.11+1.3 30.6 - - - 73.3
Medium HaltCheetah 42.6 = 0.1 44.4 41.7 46.3 374  43.1
Medium Hopper 67.6 1.0 58.0 52.1 31.1 30.9 63.9
Medium Walker 74.0x1.4 79.2 59.1 81.1 174 77.3
Medium Reacher 51.2+3.4 26.0 - - - 489
Medium-Replay = HalfCheetah 36.6 £ 0.8 46.2 38.6 47.7 40.3 4.3
Medium-Replay  Hopper 82.71+7.0 48.6 33.7 0.6 284  27.6
Medium-Replay  Walker 66.6 - 3.0 26.7 19.2 0.9 155 36.9
Medium-Replay  Reacher 18.01+24 19.0 - - - 0.4

Average (Without Reacher) 74.7 63.9 48.2 36.9 34.3 46.4
Average (All Settings) 69.2 4.2 - - - 47.7

D4RL

40



Why does context length matter?

K=50
Game DT (Ours) DT with no context (X = 1)
Breakout 267.5 4+ 97.5 73.9 = 10
Qbert 15.1=11.4 13.6 =11.3
Pong 106.1 =8.1 2.0 = 0.2
Seaquest 25104 0.6 =0.1

41



Concurrent paper

Offline Reinforcement Learning as One Big
Sequence Modeling Problem

Michael Janner Qiyang Li  Sergey Levine
University of California at Berkeley
{janner, qclil}@berkeley.edu svlevine@eecs.berkeley.edu

oo (57 )((sf ] oo (s)(al)( 8t )(al) e (@) r (5] oo
T I O 1

{ Trajectory Transformer J

T 1 | 1

Think of it as model-based RL / IL

42



Trajectory Transformer

——
R
-



Performs comparably to DT

30
=
-
2
= 60
i,
S
=
g 40
-
&0
< 20
=
<t
0

BC MBOP BRAC CQL Deccision Trajectory
Transtormer Transformer

. Behavior Cloning Trajectory Optimization 00 Temporal Difference  EEE Sequence Modeling



Are we done?






Consider the following MDP




Consider the following MDP

What is the optimal action? What will Decision Transformer play?



Think-Pair-Share!

Think (30 sec): What is the optimal action? What would decision
transformers play?

Pair: Find a partner

Share (45 sec):
Partners exchange
ideas




You Can’t Count on Luck:
Why Decision Transformers and RvS
Fail in Stochastic Environments

Keiran Paster Sheila A. Mcllraith & Jimmy Ba
Department of Computer Science Department of Computer Science
University of Toronto, Vector Institute University of Toronto, Vector Institute

keirp@cs.toronto.edu {sheila, jbal}@cs.toronto.edu

methods that condition on outcomes such as return can
make incorrect decisions in stochastic environments
regardless of scale or the amount of data they are trained on

50



You Can’t Count on Luck:
Why Decision Transformers and RvS
Fail in Stochastic Environments

Keiran Paster Sheila A. Mcllraith & Jimmy Ba
Department of Computer Science Department of Computer Science
University of Toronto, Vector Institute University of Toronto, Vector Institute

keirp@cs.toronto.edu {sheila, jbal}@cs.toronto.edu

methods that condition on outcomes such as return can
make incorrect decisions in stochastic environments
regardless of scale or the amount of data they are trained on

51



But does it work in deterministic
environments?






Consider the following deterministic MDP




Data collection 1

50%

55



Data collection?2

)

]":

100% Cl
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Let's say we start from sO

What will DT learn?

What will Q learning learn?

57



Let's say we start from sO

What will DT learn?

Qr What if the context length =17
r = ()

@ﬁIﬁrﬁ?
—» r=0 Q\‘
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When does return-conditioned supervised learning
work for offline reinforcement learning?

David Brandfonbrener Alberto Bietti Jacob Buckman

New York University New York University MILA
david.brandfonbrener@nyu.edu

Romain Laroche Joan Bruna
Microsoft Research New York University
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Sufficient conditions for DT to work

Let's data gathering policy be f, and R*(s) be the optimal return

Assume

1. Return coverage: PyR = R*(sp) | sp) = a for all initial states s

You will see all returns some fraction of the time from all initial states

2. Near determinism:
P(r #r(s,a)ors’"# 1(s,a)|s,a) <e for all (s,a)

Then

J(7*) — J(mpy) < € (l + 2) H?
a
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Research Questions

Can we condition on better alternatives to return?

Train a value estimator (critic)

DICHOTOMY OF CONTROL: SEPARATING WHAT YOU
CAN CONTROL FROM WHAT YOoU CANNOT

Mengjiao Yang Dale Schuurmans Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning
University of California, Berkeley University of Alberta
Google Research, Brain Team Google Research, Brain Team

sherryy@google.com
Adam Villaflor! Zhe Huang' Swapnil Pande' John Dolan! Jeff Schneider !

Pieter Abbeel Ofir Nachum
University of California, Berkeley Google Research, Brain Team
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