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Reinforcement Learning is Hard …



Nightmares of 
Policy Optimization

Many horror stories of RL!
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From Sutton and Barto



Need many tricks to make RL work in practice!
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Double Q Learning
Prioritized Replay
Dueling Networks

Multi-step Learning

Distributional RL
Noisy Nets
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Is there any hope?
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Supervised Learning success stories
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IDEA: 

Can we make 
Reinforcement Learning 

look like  
Supervised Learning?
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The Idea
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The Idea



13

The Idea



The Algorithm
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What are some choices for “outcomes”?
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Option 1:  What is the future state the agent ended up at?

RvS-G (Goal conditioned)

Option 2:  What is the total return that the agent got?

RvS-R (Return conditioned)



A very popular idea
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Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind 
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling

Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving 
via conditional imitation learning

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling 
problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and 
scalable off-policy reinforcement learning

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. ¨ Training 
agents using upside-down reinforcement learning



Do I really need to 
condition?
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Consider the following MDP
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Option 1: Return Conditioned Policy

19

+2
+3
+2

-3
-5-7

π(a |s, R)



Option 2: Train a policy on top returns!

20

+2
+3
+2

-3
-5-7

π(a |s)



An embarrassingly simply algorithm: BC%

21

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!



Does this even work ?!?
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A legit 
Offline RL 

Algo



Can we make this a bit more fancier?
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1. Handle noisy returns

2. Collect data on-policy



From Policy Gradient to Policy Search 
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Peng et al, 2019

Supervised 
Learning!

Supervised 
Learning!



I thought we were going 
to talk about 
transformers?

25



Transformers
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Given sequence of English words, predict sequence of French
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Transformer Architecture
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”The animal didn't cross the street because it was too tired”

Visualizing attentions



Attention as a soft-memory look up
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Back to 
Decision Making 
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Test Time
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Start at initial state s0

Specify the desired target return R0

 = Transformer( )a0 R0, s0

Execute action, observe reward and next state  (r0, s1)

Decrement the target return R1 = R0 − r0

 = Transformer( )a1 R0, s0, a0, R1, s1
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Seems to work!



Seems to work!
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Atari



Seems to work!
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D4RL



Why does context length matter?
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K=50
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Concurrent paper 

Think of it as model-based RL / IL



Trajectory Transformer
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Performs comparably to DT

44



Are we done?



Activity!



Consider the following MDP

s0
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50% 50%
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r = 1 r = − 6

r = 1



Consider the following MDP

s0
a0

a1

a2

50% 50%

r = − 5 r = − 15
50% 50%

r = 1 r = − 6

r = 1

What is the optimal action?  What will Decision Transformer play?



Think-Pair-Share!
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Think (30 sec): What is the optimal action? What would decision 
transformers play?

Pair: Find a partner 

Share (45 sec): 
Partners exchange 
ideas 

s0
a0

a1

a2

50% 50%

r = − 5 r = − 15
50% 50%

r = 1 r = − 6

r = 1
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methods that condition on outcomes such as return can 
make incorrect decisions in stochastic environments 

regardless of scale or the amount of data they are trained on
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methods that condition on outcomes such as return can 
make incorrect decisions in stochastic environments 

regardless of scale or the amount of data they are trained on
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But does it work in deterministic 
environments?



Activity!
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Consider the following deterministic MDP
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s0
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r = − 1

r = 0

r = 0

Let’s say we start from s0
What will DT learn?

What will Q learning learn?
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s0

s1 s2
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r = − 1

r = 0

r = 0

Let’s say we start from s0
What will DT learn?

What if the context length =1?
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Sufficient conditions for DT to work

1. Return coverage:

2. Near determinism:

Let’s data gathering policy be , and  be the optimal returnβ R*(s)

Assume

for all initial states Pβ(R = R*(s0) |s0) ≥ α s0

You will see all returns some fraction of the time from all initial states

     for all P(r ≠ r(s, a) or s′ ≠ T(s, a) |s, a) ≤ ϵ (s, a)

J(π*) − J(πDT) ≤ ϵ ( 1
α

+ 2) H2

Then



Research Questions
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Can we condition on better alternatives to return?

Train a value estimator (critic)


