Decision Transformers

Sanjiban Choudhury

Reinforcement Learning is Hard ...

Many horror stories of RL!

Nightmares of Policy Optimization

Bootstrapping

Distribution shift

The deadly triad

- The risk of divergence arises whenever we combine three things:
 - 1. Function approximation

significantly generalizing from large numbers of examples

2. Bootstrapping

learning value estimates from other value estimates,

3. Off-policy learning (Why is dynamic programming off-policy?)

learning about a policy from data not due to that policy, data with a necessarily more exploratory policy

Any two without the third is ok

From Sutton and Barto

as in dynamic programming and temporal-difference learning

as in Q-learning, where we learn about the greedy policy from

4

Need many tricks to make RL work in practice!

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel DeepMind

Joseph Modayil DeepMind

Hado van Hasselt DeepMind

Tom Schaul DeepMind

Will Dabney DeepMind

Dan Horgan DeepMind

Bilal Piot DeepMind

Mohammad Azar DeepMind

Double Q Learning Prioritized Replay Dueling Networks Multi-step Learning Distributional RL Noisy Nets

Georg Ostrovski DeepMind

> David Silver DeepMind

DQN

- no double
- no priority
- no dueling
- no multi-step
- no distribution
- no noisy
- Rainbow

150 200 50 100 U Millions of frames

Is there any hope?

Input (s)

Output (a)

#2 Train Policy $\pi: S \to a$

#3 Deploy!

Supervised Learning success stories

IDEA:

Can we make Reinforcement Learning look like Supervised Learning?

RVS: WHAT IS ESSENTIAL FOR OFFLINE RL VIA SUPERVISED LEARNING?

Scott Emmons¹, Benjamin Eysenbach², Ilya Kostrikov¹, Sergey Levine¹ ¹UC Berkeley, ²Carnegie Mellon University emmons@berkeley.edu

(a) replay buffer

11

(b) training dataset

12

(c) network architecture

The Algorithm

Algorithm 1 RvS-Learning

- 1: Input: Dataset of traject
- 2: Initialize policy $\pi_{\theta}(a \mid s)$
- 3: while not converged do
- 4: Randomly sample tra
- 5: Sample time index f sample a corresponding
- 6: Compute loss: $\mathcal{L}(\theta)$
- 7: Update policy param
- 8: end while
- 9: return Conditional polic

For all achieved outcomes:

$$\mathbb{E}_{\omega \sim f(\omega \mid \tau_{t:H})}[\log \pi_{\theta}(a_t \mid s_t, \omega)].$$

tories,
$$\mathcal{D} = \{\tau\}$$

 (π, ω) .

ajectories:
$$\tau \sim \mathcal{D}$$
.
For each trajetory, $t \sim [1, H]$, and
outcome: $\omega \sim f(\omega \mid \tau_{t:H})$.
 $\leftarrow \sum_{(s_t, a_t, \omega)} \log \pi_{\theta}(a_t \mid s_t, \omega)$
neters: $\theta \leftarrow \theta + \eta \nabla_{\theta} \mathcal{L}(\theta)$

$$\operatorname{cy} \pi_{ heta}(a \mid s, \omega)$$

14

What are some choices for "outcomes"?

- Option 1: What is the future state the agent ended up at?
 - RvS-G (Goal conditioned)

Option 2: What is the total return that the agent got? RvS-R (Return conditioned)

A very popular idea

Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling

via conditional imitation learning

problem

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies

scalable off-policy reinforcement learning

agents using upside-down reinforcement learning

- Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
- Felipe Codevilla, Matthias Muller, Antonio Lopez, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving
- Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.
- Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
- Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
- Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaskowski, and Jurgen Schmidhuber. "Training

Do I really need to condition?

17

Consider the following MDP

-3 5

$\pi(a \mid s, R)$

Option 1: Return Conditioned Policy

5

Option 2: Train a policy on top returns!

An embarrassingly simply algorithm: BC%

1. Collect offline dataset using whatever behavior policy

2. Get the top % trajectories based on returns

3. Do BC on just that!

Does this even work ?!?

Dataset	Environment		
Medium	HalfCheetah		
Medium	Hopper		
Medium Walker			
Medium	Reacher		
Medium-Replay	HalfCheetah		
Medium-Replay	Hopper		
Medium-Replay	Walker		
Medium-Replay	Reacher		
Average			

A legit Offline RL Algo

10%BC	25%BC	40%BC	100%BC	CQL
42.9	43.0	43.1	43.1	44.4
65.9	65.2	65.3	63.9	58.0
78.8	80.9	78.8	77.3	79.2
51.0	48.9	58.2	58.4	26.0
40.8	40.9	41.1	4.3	46.2
70.6	58.6	31.0	27.6	48.6
70.4	67.8	67.2	36.9	26.7
33.1	16.2	10.7	5.4	19.0
56.7	52.7	49.4	39.5	43.5

Can we make this a bit more fancier?

1. Handle noisy returns

2. Collect data on-policy

From Policy Gradient to Policy Search

Algorithm 1 Advantage-Weighted Regression

- 1: $\pi_1 \leftarrow$ random policy
- 2: $\mathcal{D} \leftarrow \emptyset$
- 3: for iteration $k = 1, ..., k_{\text{max}}$
- add trajectories $\{\tau_i\}$ sample 4:
- 5: $V_k^{\mathcal{D}} \leftarrow \arg \min_V \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}}$
- $\pi_{k+1} \leftarrow \arg \max_{\pi} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}}$ 6:

7: end for

$$\begin{array}{l} \textbf{do} \\ \textbf{led via } \pi_k \text{ to } \mathcal{D} \\ \left[\left| \left| \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V(\mathbf{s}) \right| \right|^2 \right] & \begin{array}{c} \text{Supervised} \\ \text{Learning!} \\ \textbf{o} \left[\log \pi(\mathbf{a} | \mathbf{s}) \exp \left(\frac{1}{\beta} \left(\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V_k^{\mathcal{D}}(\mathbf{s}) \right) \right) \right] & \begin{array}{c} \text{Supervised} \\ \text{Learning!} \\ \text{Learning!} \end{array} \right]$$

Peng et al, 2019

I thought we were going to talk about transformers?

25

Transformers

Given sequence of English words, predict sequence of French

Transformer Architecture

Visualizing attentions

"The animal didn't cross the street because it was too tired"

\$ The_ animal_ didn_ t_ cross_ the_ street_ because_ it_ was_ too_ tire **d_**

Attention as a soft-memory look up

Input	Think
Embedding	X 1
Queries	q 1
Keys	k ₁
Values	V 1
Score	q 1 • k 1 =
Divide by 8 ($\sqrt{d_k}$)	14
Softmax	0.88
Softmax X Value	V 1
Sum	Z 1

Back to Decision Making

Decision Transformer: Reinforcement Learning via Sequence Modeling

Lili Chen^{*,1}, Kevin Lu^{*,1}, Aravind Rajeswaran², Kimin Lee¹, Aditya Grover², Michael Laskin¹, Pieter Abbeel¹, Aravind Srinivas^{†,1}, Igor Mordatch^{†,3} *equal contribution [†]equal advising ¹UC Berkeley ²Facebook AI Research ³Google Brain {lilichen, kzl}@berkeley.edu

Introducing Decision Transformers on Hugging Face 😂

Published March 28, 2022

Update on GitHub

Section Section Edward Beeching

Test Time

Start at initial state s_0 Specify the desired target return R_0 $a_0 = \text{Transformer}(R_0, s_0)$ Execute action, observe reward and next state (r_0, s_1) Decrement the target return $R_1 = R_0 - r_0$ $a_1 = \text{Transformer}(R_0, s_0, a_0, R_1, s_1)$

Game	DT (Ours)	CQL	QR-DQN	REM	BC
Breakout	267.5 ± 97.5	211.1	17.1	8.9	138.9 ± 61.7
Qbert	15.4 ± 11.4	104.2	0.0	0.0	17.3 ± 14.7
Pong	106.1 ± 8.1	111.9	18.0	0.5	85.2 ± 20.0
Seaquest	2.5 ± 0.4	1.7	0.4	0.7	2.1 ± 0.3

Seems to work!

Atari

Dataset	Environment	DT (Ours)	CQL	BEAR	BRAC-v	AWR	BC
Medium-Expert	HalfCheetah	86.8 ± 1.3	62.4	53.4	41.9	52.7	59.9
Medium-Expert	Hopper	107.6 ± 1.8	111.0	96.3	0.8	27.1	79.6
Medium-Expert	Walker	108.1 ± 0.2	98.7	40.1	81.6	53.8	36.6
Medium-Expert	Reacher	89.1 ± 1.3	30.6	-	-	-	73.3
Medium	HalfCheetah	42.6 ± 0.1	44.4	41.7	46.3	37.4	43.1
Medium	Hopper	67.6 ± 1.0	58.0	52.1	31.1	35.9	63.9
Medium	Walker	74.0 ± 1.4	79.2	59.1	81.1	17.4	77.3
Medium	Reacher	51.2 ± 3.4	26.0	-	-	-	48.9
Medium-Replay	HalfCheetah	36.6 ± 0.8	46.2	38.6	47.7	40.3	4.3
Medium-Replay	Hopper	82.7 ± 7.0	48.6	33.7	0.6	28.4	27.6
Medium-Replay	Walker	66.6 ± 3.0	26.7	19.2	0.9	15.5	36.9
Medium-Replay	Reacher	18.0 ± 2.4	19.0	-	-	-	5.4
Average (Without Reacher)		74.7	63.9	48.2	36.9	34.3	46.4
Average (Al	l Settings)	69.2	54.2	-	-	-	47.7

Seems to work!

D4RL

Why does context length matter?

	K=50
Game	DT (Ours)
Breakout	267.5 ± 97.5
Qbert	$\bf 15.1 \pm 11.4$
Pong	106.1 ± 8.1
Seaquest	2.5 ± 0.4

DT with no context (K = 1)

 $\begin{array}{c} 73.9 \pm 10 \\ 13.6 \pm 11.3 \\ 2.5 \pm 0.2 \\ 0.6 \pm 0.1 \end{array}$

41

Concurrent paper

Offline Reinforcement Learning as One Big Sequence Modeling Problem

Michael Janner Qiyang Li Sergey Levine University of California at Berkeley {janner, qcli}@berkeley.edu svlevine@eecs.berkeley.edu

Think of it as model-based RL / IL

Trajectory Transformer

· 🗸

Performs comparably to DT

Are we done?

Consider the following MDP

What is the optimal action? What will Decision Transformer play?

Consider the following MDP

Think-Pair-Share!

Think (30 sec): What is the optimal action? What would decision transformers play?

50%

Pair: Find a partner

Share (45 sec): Partners exchange ideas

You Can't Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments

Keiran Paster

Department of Computer Science University of Toronto, Vector Institute keirp@cs.toronto.edu

methods that condition on outcomes such as return can make incorrect decisions in stochastic environments regardless of scale or the amount of data they are trained on

Sheila A. McIlraith & Jimmy Ba

Department of Computer Science University of Toronto, Vector Institute {sheila, jba}@cs.toronto.edu

You Can't Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments

Keiran Paster

Department of Computer Science University of Toronto, Vector Institute keirp@cs.toronto.edu

methods that condition on outcomes such as return can make incorrect decisions in stochastic environments regardless of scale or the amount of data they are trained on

Sheila A. McIlraith & Jimmy Ba

Department of Computer Science University of Toronto, Vector Institute {sheila, jba}@cs.toronto.edu

But does it work in deterministic environments?

Consider the following deterministic MDP

Data collection2 r=0100% a_1 a_0 *S*₂ S_1 a_1

Let's say we start from s0

What will DT learn? What will Q learning learn?

When does return-conditioned supervised learning work for offline reinforcement learning?

David Brandfonbrener

New York University david.brandfonbrener@nyu.edu

> Romain Laroche Microsoft Research

Alberto Bietti New York University Jacob Buckman MILA

Joan Bruna New York University

Sufficient conditions for DT to work

Assume 1. Return coverage: 2. Near determinism:

Then

$$J(\pi^*) - J(\pi_{DT}) \le \epsilon \left(\frac{1}{\alpha} + 2\right) H^2$$

Let's data gathering policy be β , and $R^*(s)$ be the optimal return

 $P_{\beta}(R = R^*(s_0) | s_0) \ge \alpha$ for all initial states s_0 You will see all returns some fraction of the time from all initial states

> for all (s, a) $P(r \neq r(s, a) \text{ or } s' \neq T(s, a) | s, a) \leq \epsilon$

Research Questions

Can we condition on better alternatives to return?

DICHOTOMY OF CONTROL: SEPARATING WHAT YOU CAN CONTROL FROM WHAT YOU CANNOT

Mengjiao Yang

University of California, Berkeley Google Research, Brain Team sherryy@google.com

Pieter Abbeel University of California, Berkeley **Dale Schuurmans** University of Alberta Google Research, Brain Team

Ofir Nachum Google Research, Brain Team

Train a value estimator (critic)

Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning

Adam Villaflor¹ Zhe Huang¹ Swapnil Pande¹ John Dolan¹ Jeff Schneider¹

