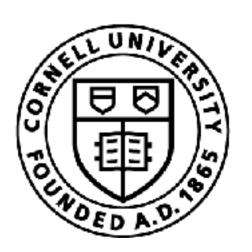
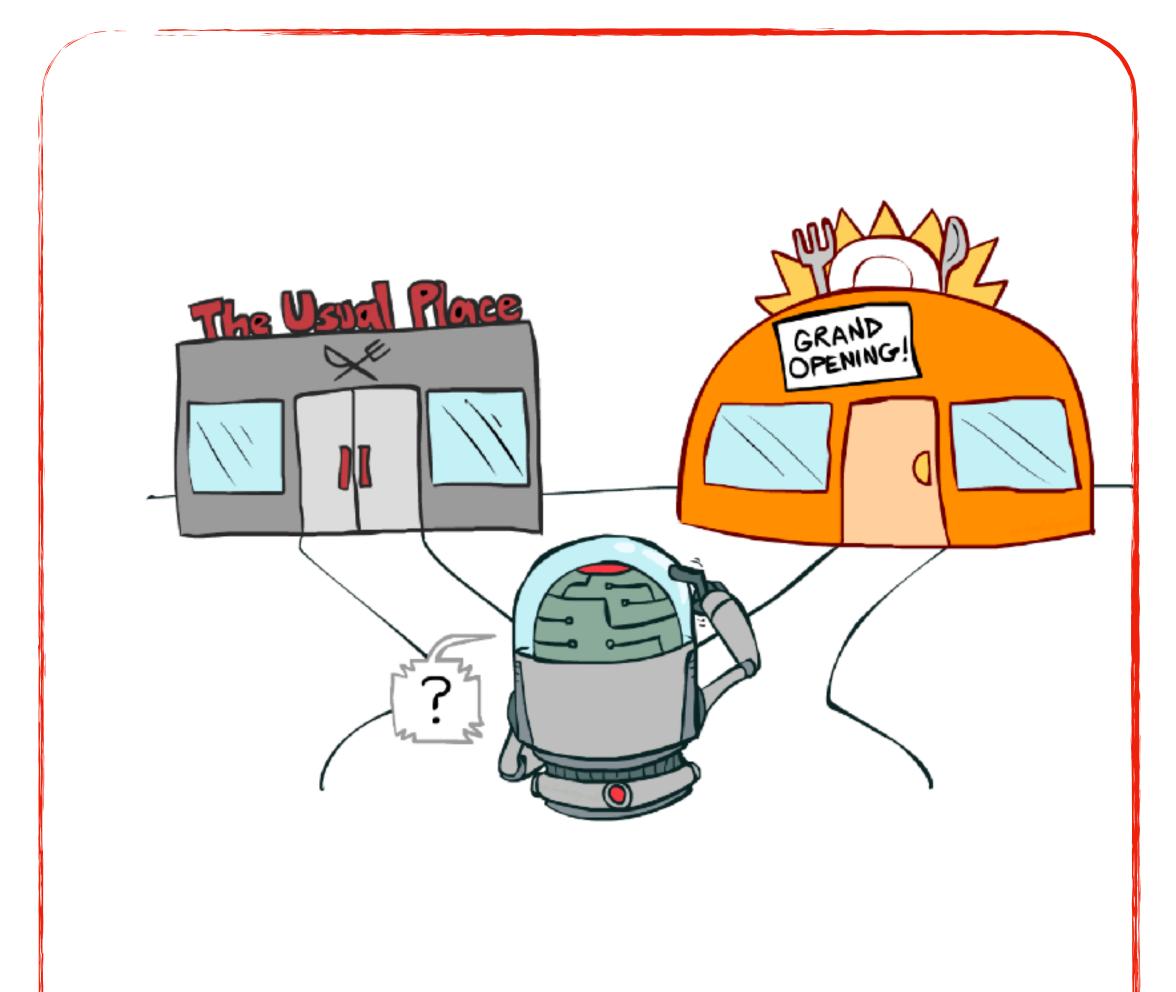
Dealing with Uncertainty

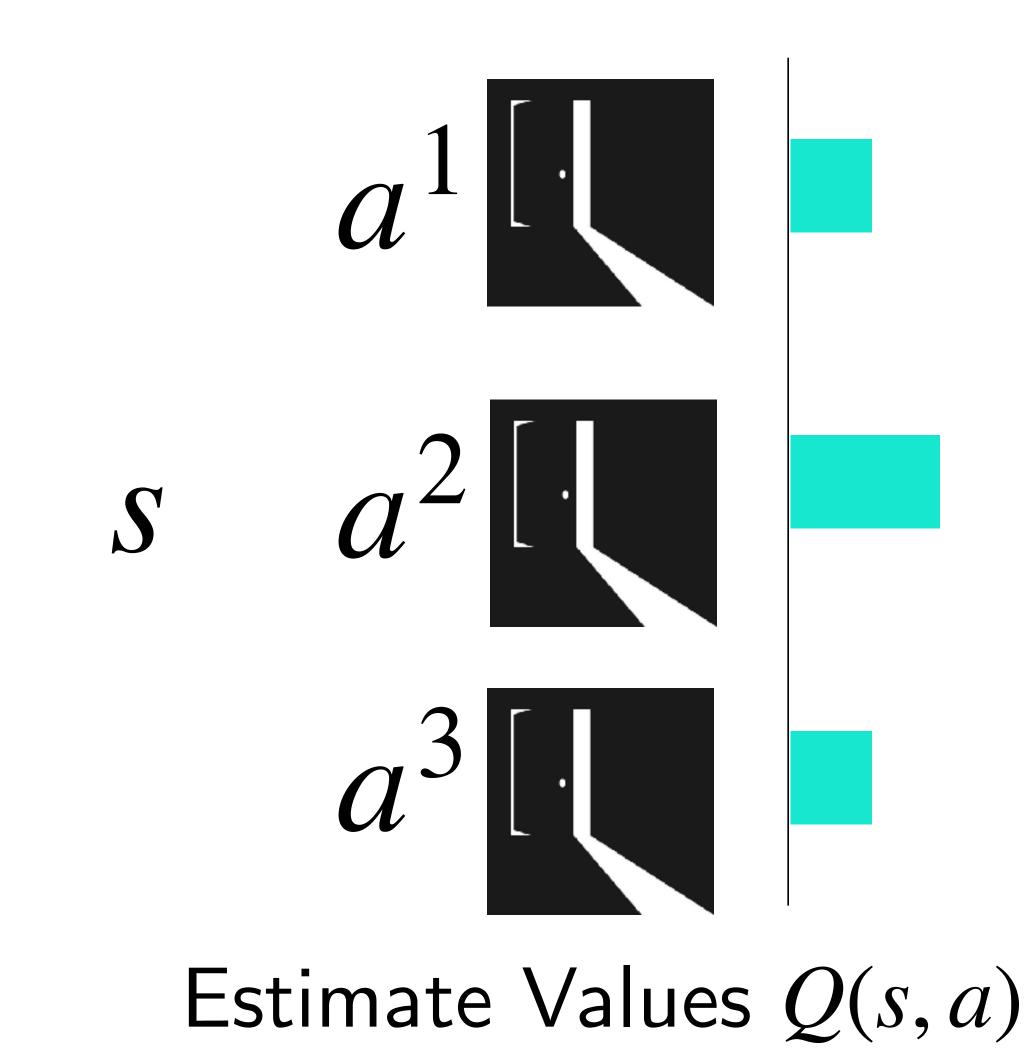
Sanjiban Choudhury



Two Ingredients of RL



Exploration Exploitation



Uncertainty

Types of Aleatoric uncertainty

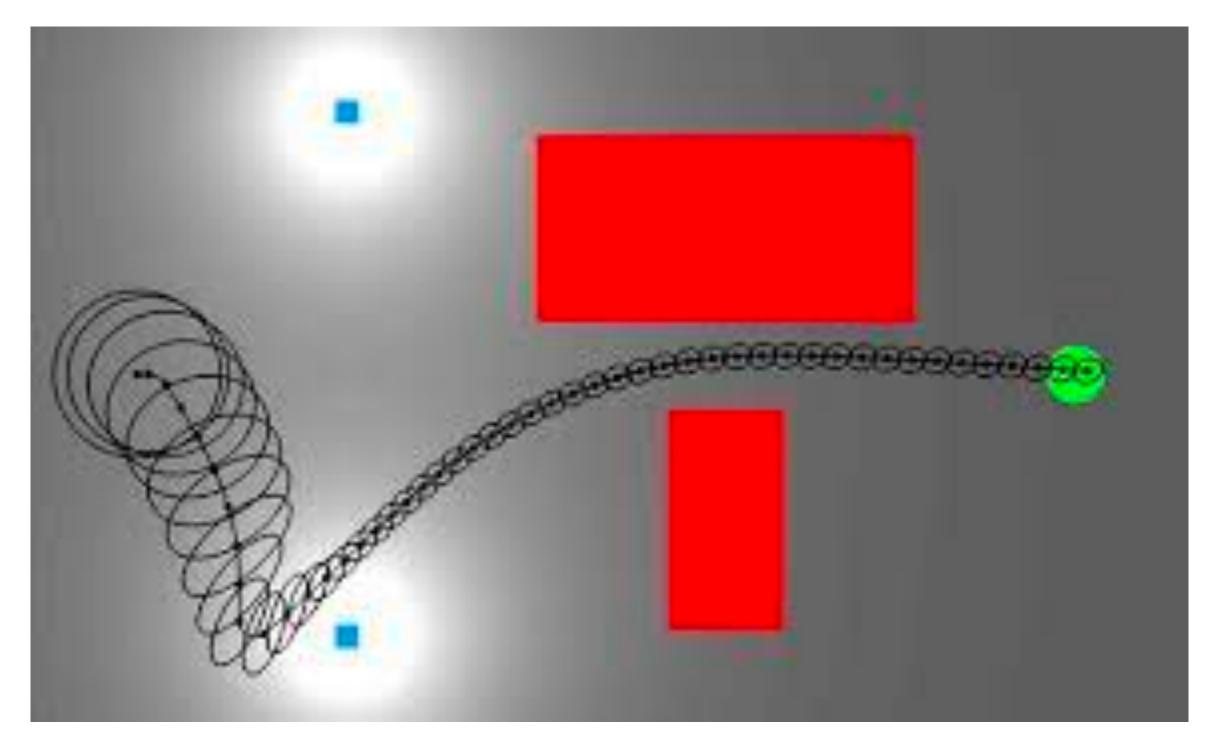


(Inherent randomness that cannot be explained away)

Types of uncertainty

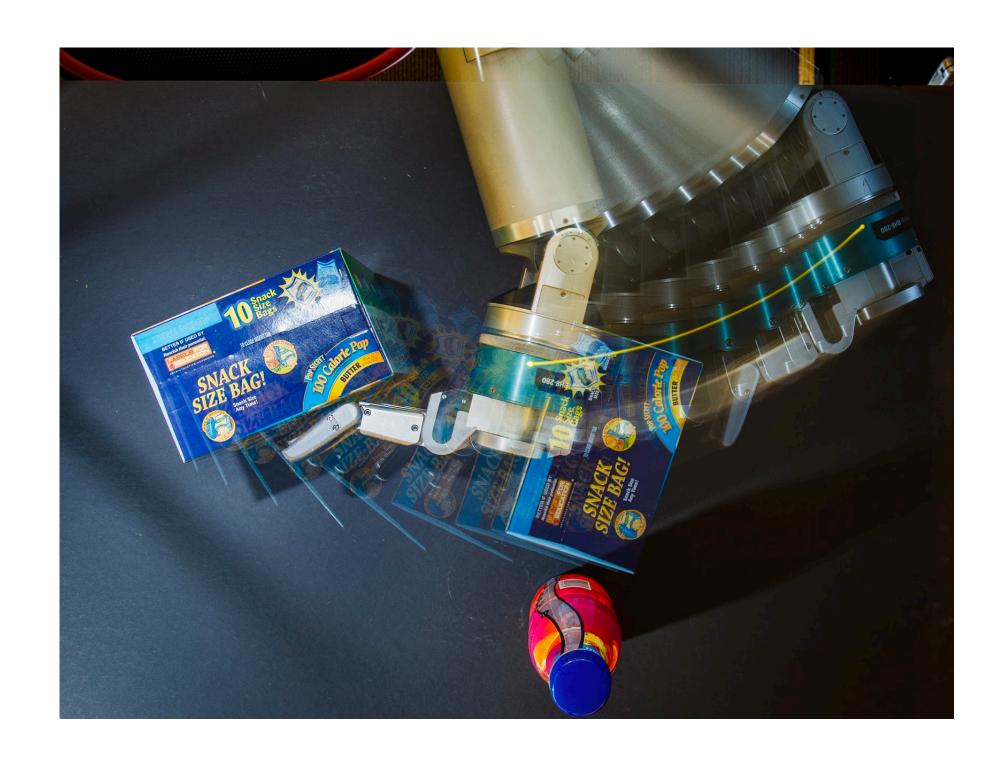
Epistemic uncertainty

(Acquire knowledge!)



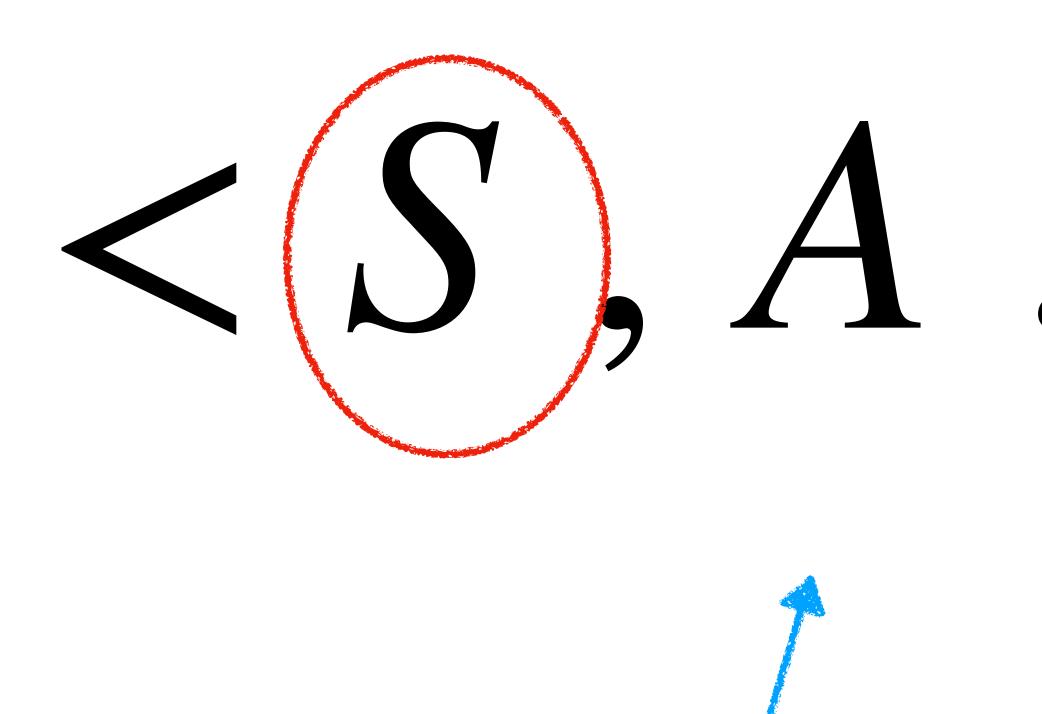
Uncertain about state

Epistemic Uncertainty

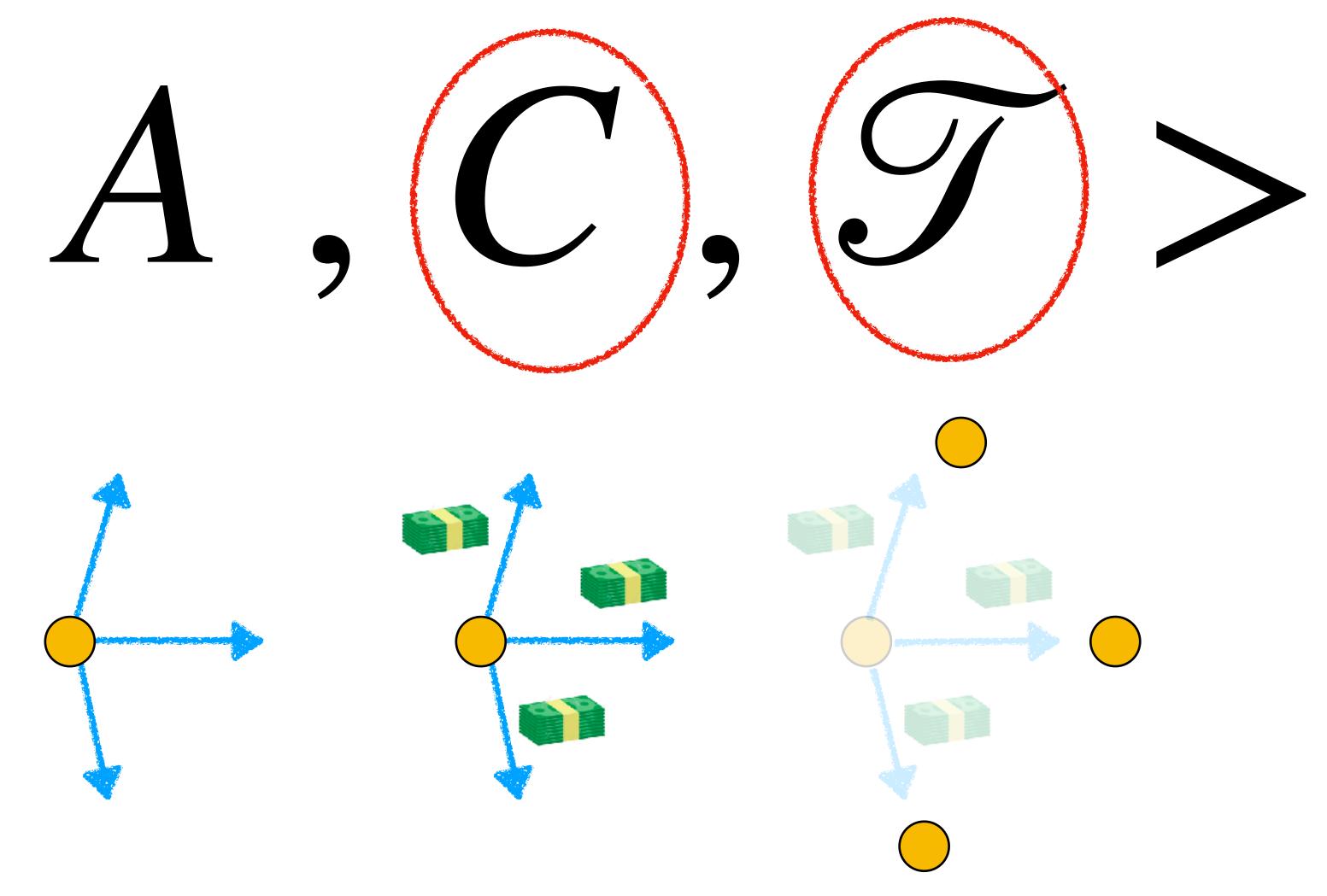


Uncertain about transitions

Can be uncertain about any of these things!



 \bigcirc



What do we want to do about uncertainty?

Pure Exploration

Optimally explore / exploit

Collapse uncertainty as quickly as possible

Take information gathering steps, but be robust along the way

20 questions

Life!

Pure Exploitation

> Be robust against uncertainty

UAV flying in wind

When poll is active respond at **PollEv.com/sc2582**

- Human-robot shared autonomy
- UAV autonomously mapping a building
- Grasping an occluded object on the top-shelf
 - Fast off-road driving over terrain

Rank the following robotics applications based on pure exploration (highest) to pure exploitation (lowest)

Self-driving through an intersection

But what is the optimal exploration-exploitation algorithm?

Bayes Optimality:

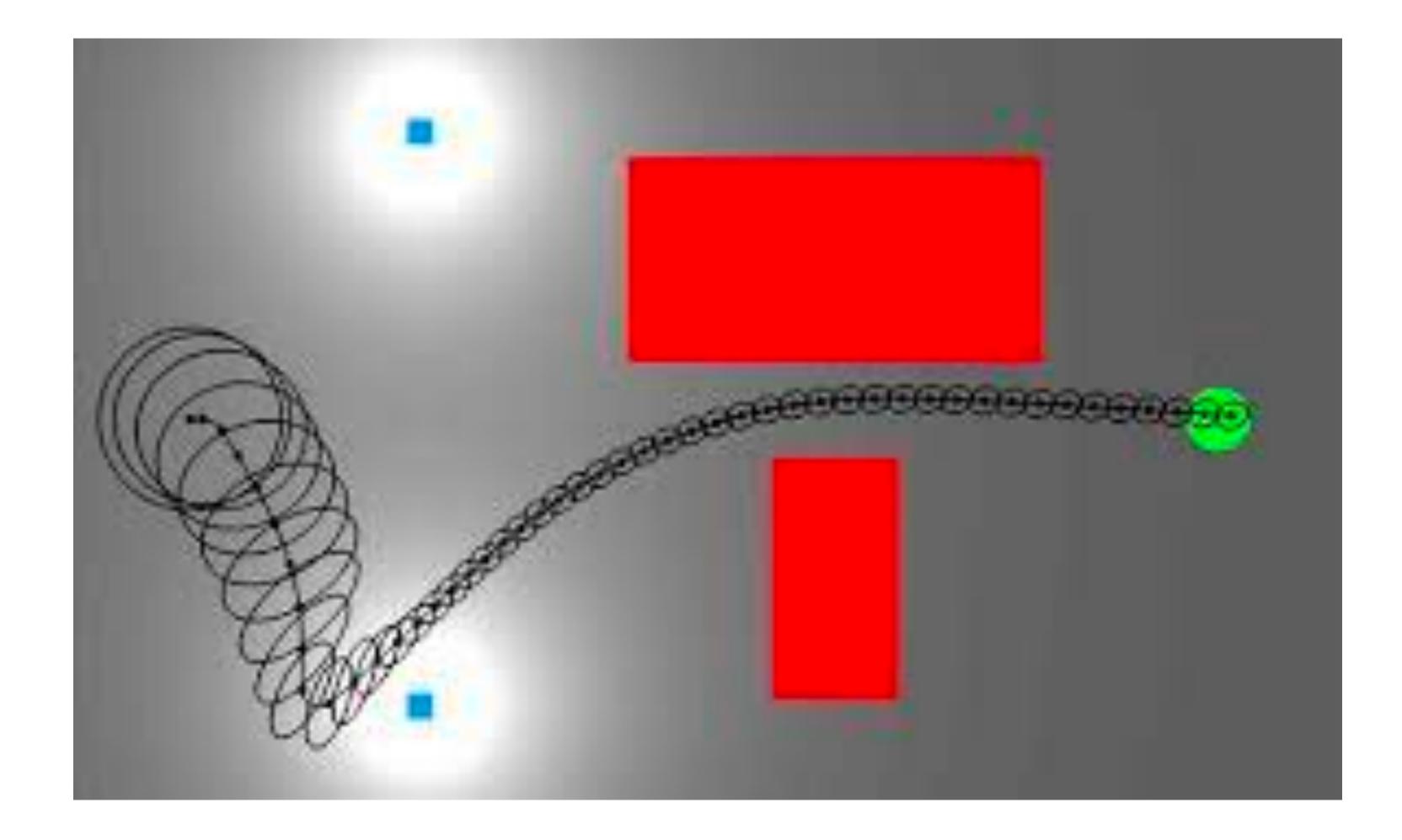
The Holy Grail

11

POMDPs: The Siren's Call

12

Let's work through an example: Uncertain about the robot pose



Belief Space Planning is NP-Hard at best, undecidable at worst

Need to relax our problem!

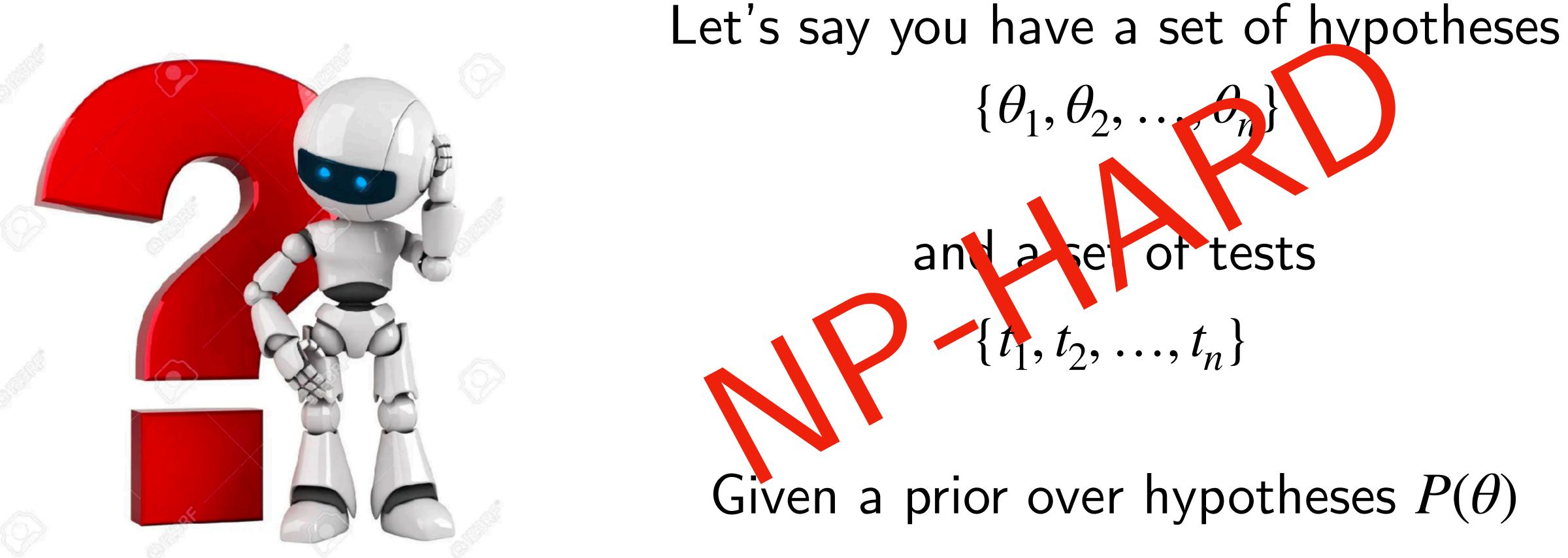
What if we wanted to explore as optimally as possible using prior information?

16

Information Gain

20 Questions

- Let's say you have a set of hypotheses $\{\theta_1, \theta_2, \dots, \theta_n\}$
 - and a set of tests $\{t_1, t_2, \dots, t_n\}$
 - Given a prior over hypotheses $P(\theta)$
- Find the minimal number of tests to identify hypothesis



20 Questions

Find the minimal number of tests to identify hypothesis

A simple algorithm



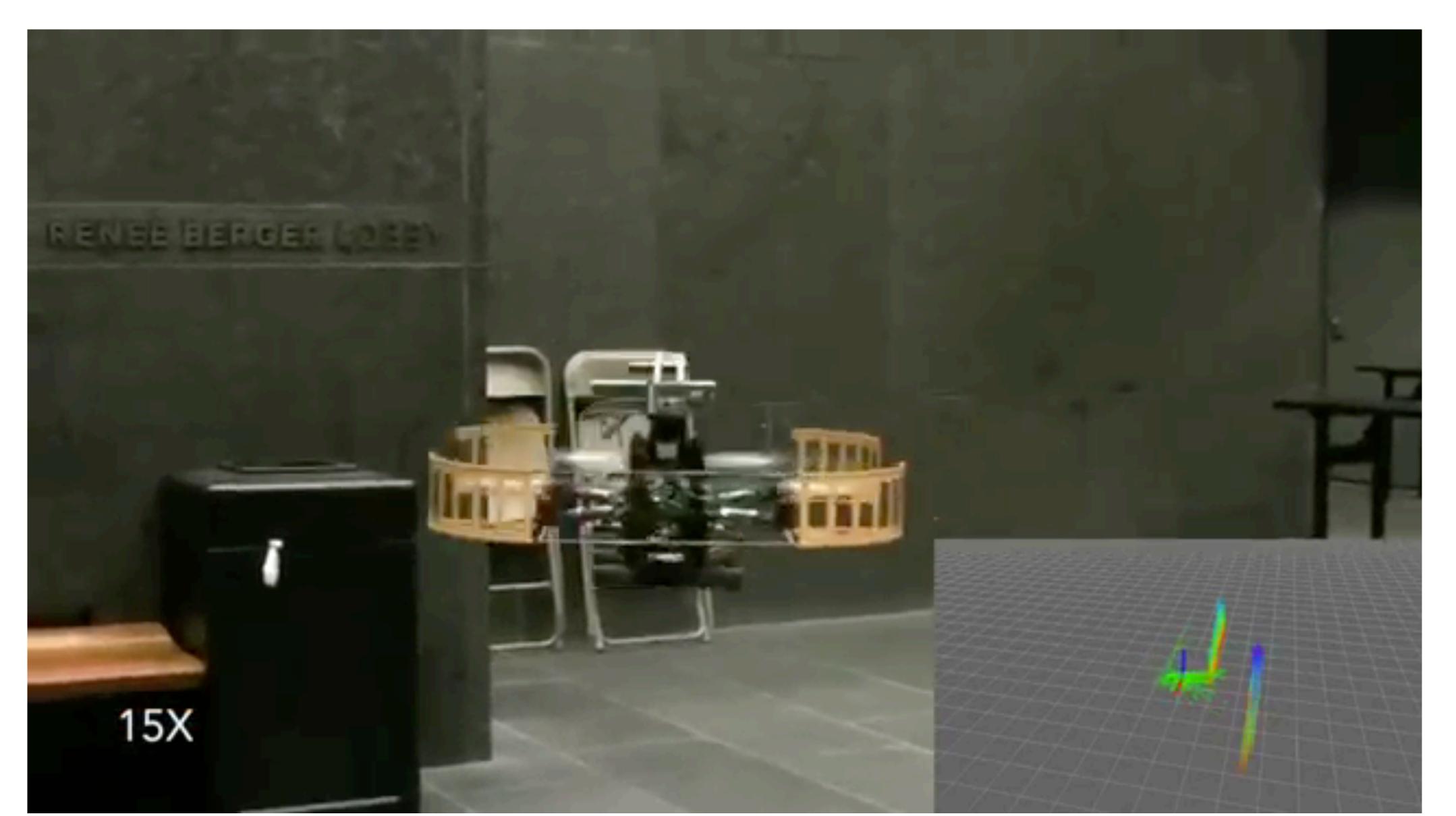
Entropy is adaptive sub modular => Greedy is near-optimal

Greedily pick the test that maximizes information gain

$\max H(\theta) - \mathbb{E}_{o}H(\theta \mid t, o)$ Posterior entropy Entropy

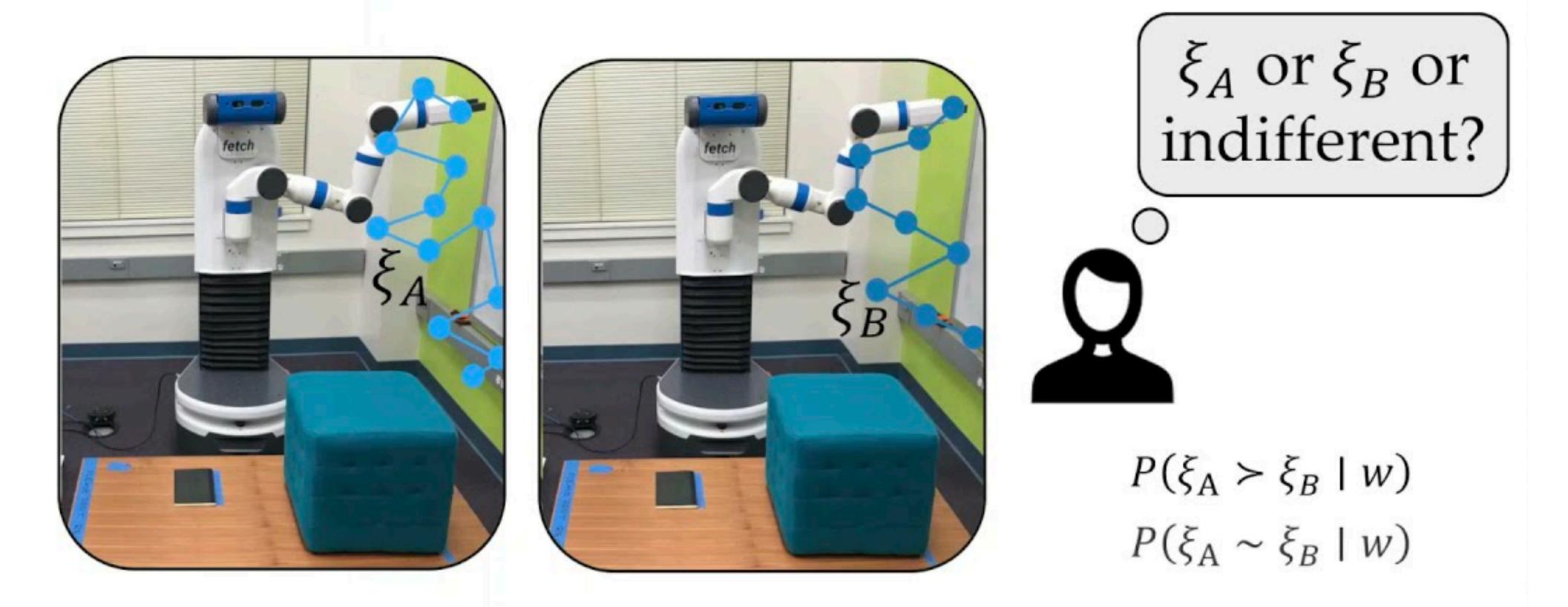
Applications

Autonomous mapping



Active Preference Learning

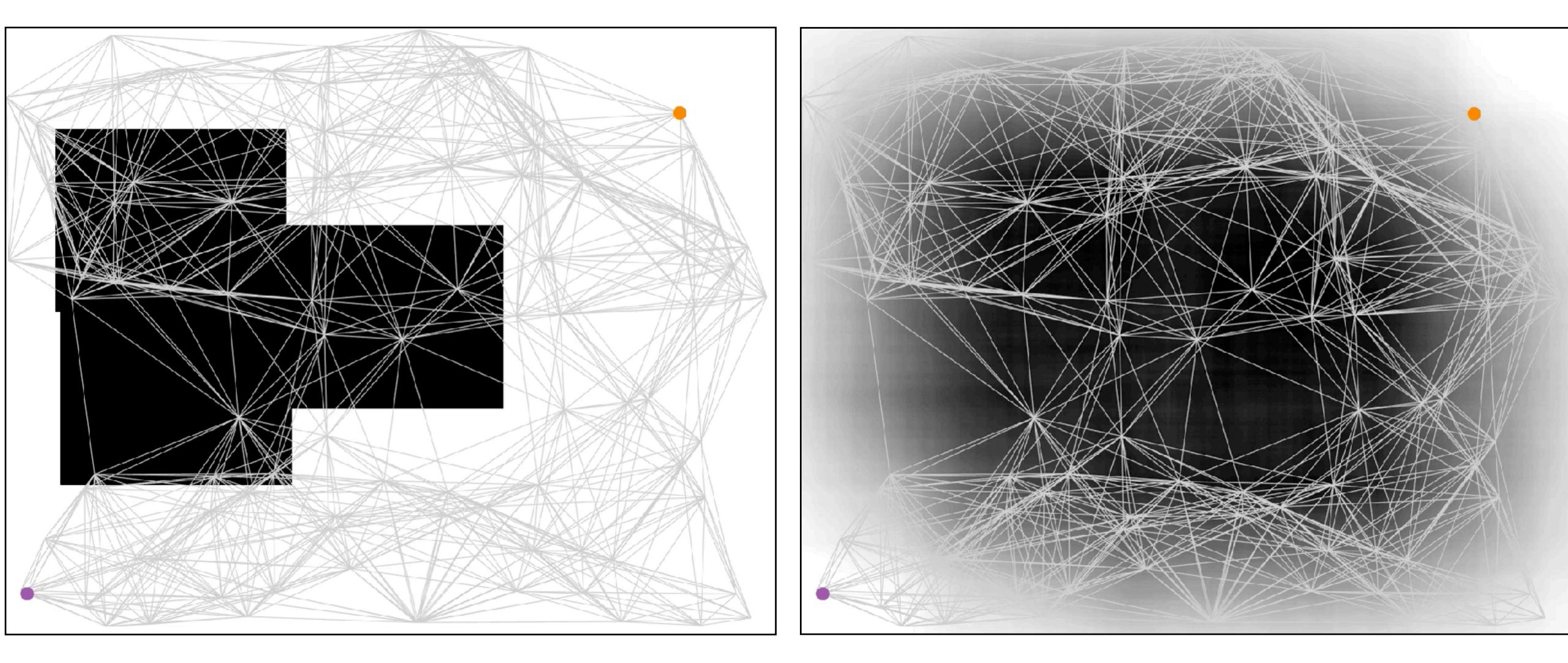
Queries: Weak Comparisons



Asking Easy Questions: A User-Friendly Approach to Active Reward Learning E. Bıyık, M. Palan, N. C. Landolfi, D. P. Losey, D. Sadigh. CoRL'19.

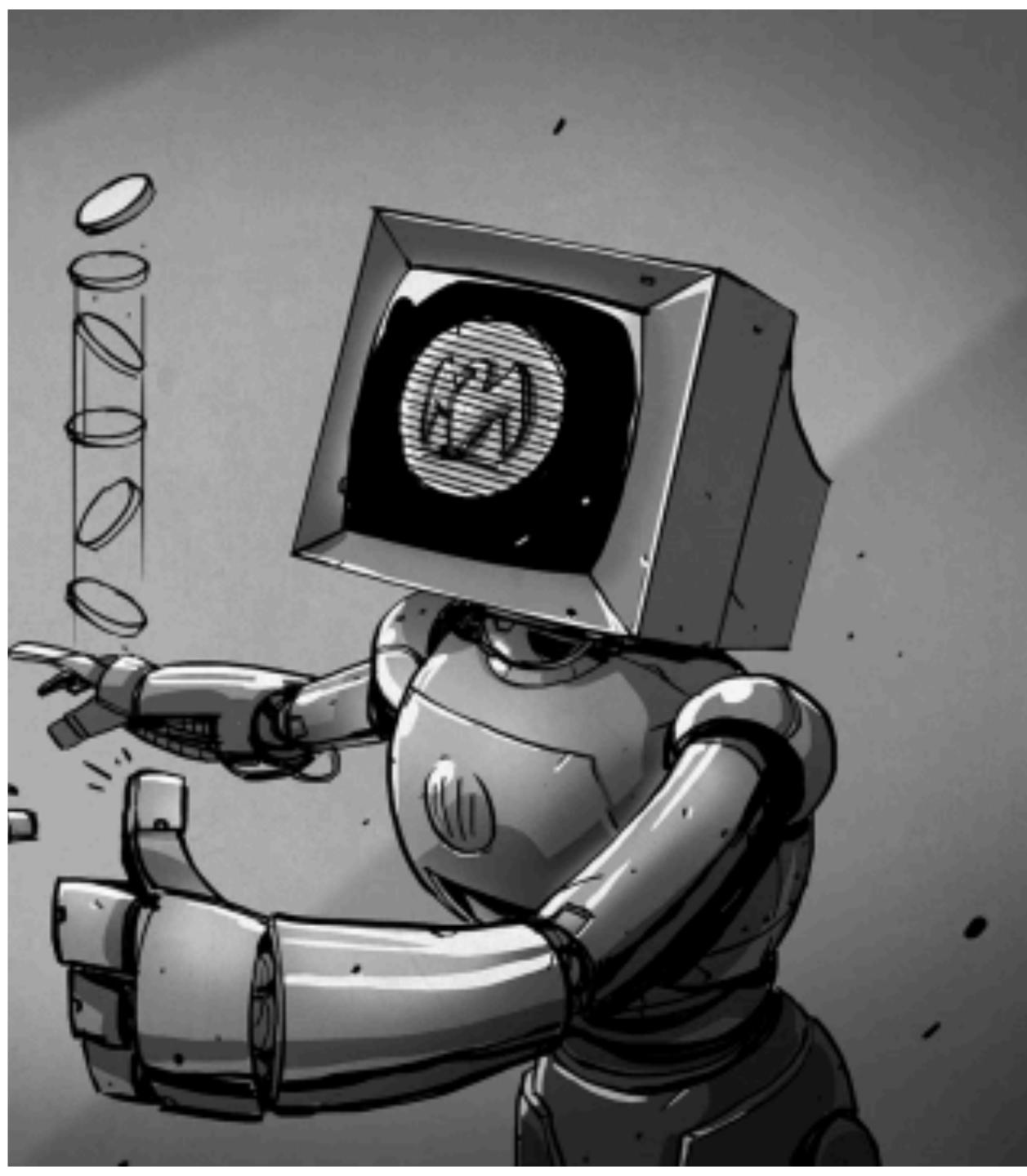
nparisons

Optimal edge evaluation for shortest path [CJS+ NeurIPS'17] [CSS IJCAI'18]



Can we find a better exploration / exploitation algorithm?

25



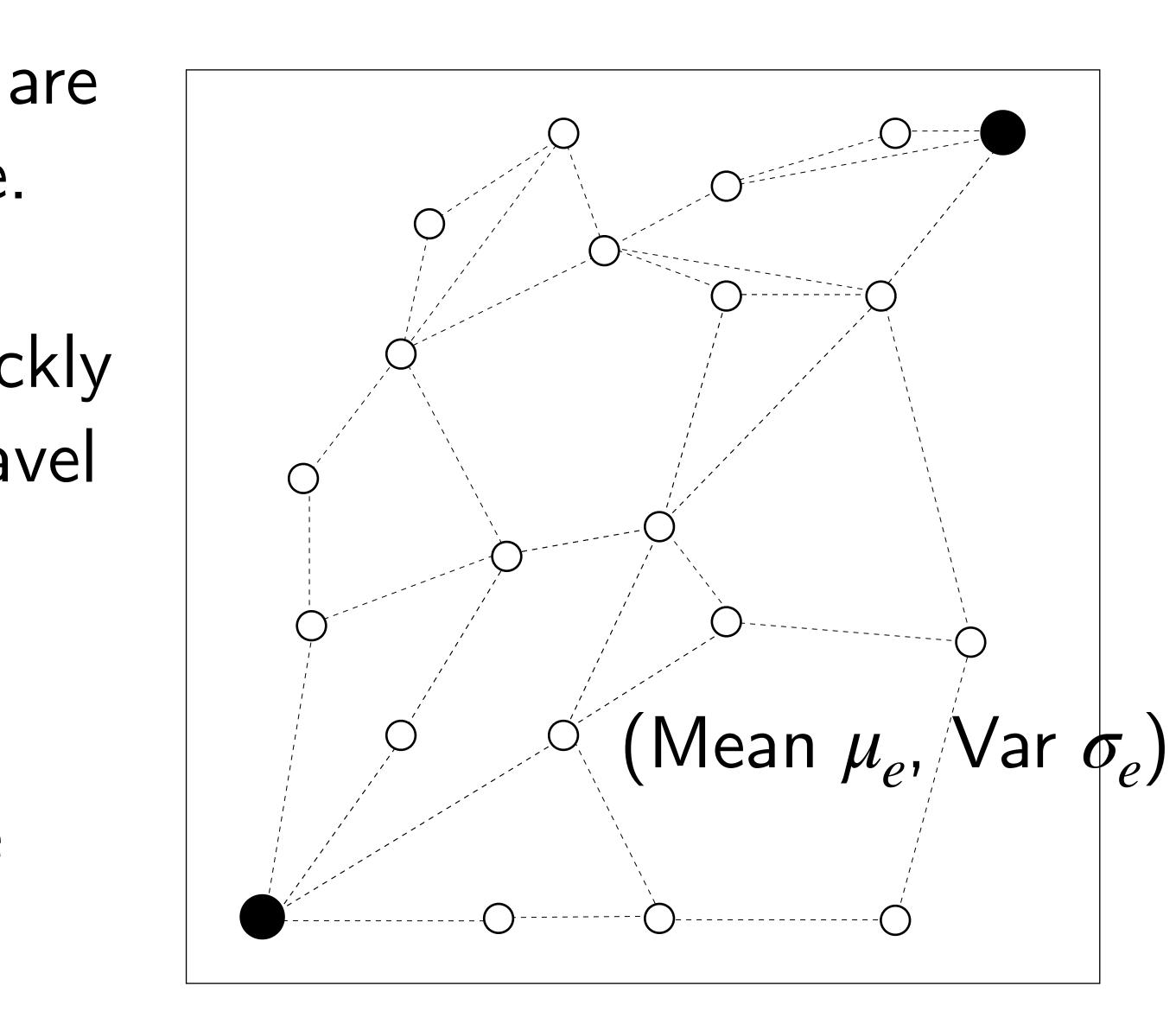
Posterior Sampling

The Online Shortest Path Problem

You just moved to Cornell and are traveling from office to home.

You would like to get home quickly but you are uncertain about travel times along each edge

> Suppose we had a prior on travel time for each edge (Mean μ_e , Var σ_e)



27

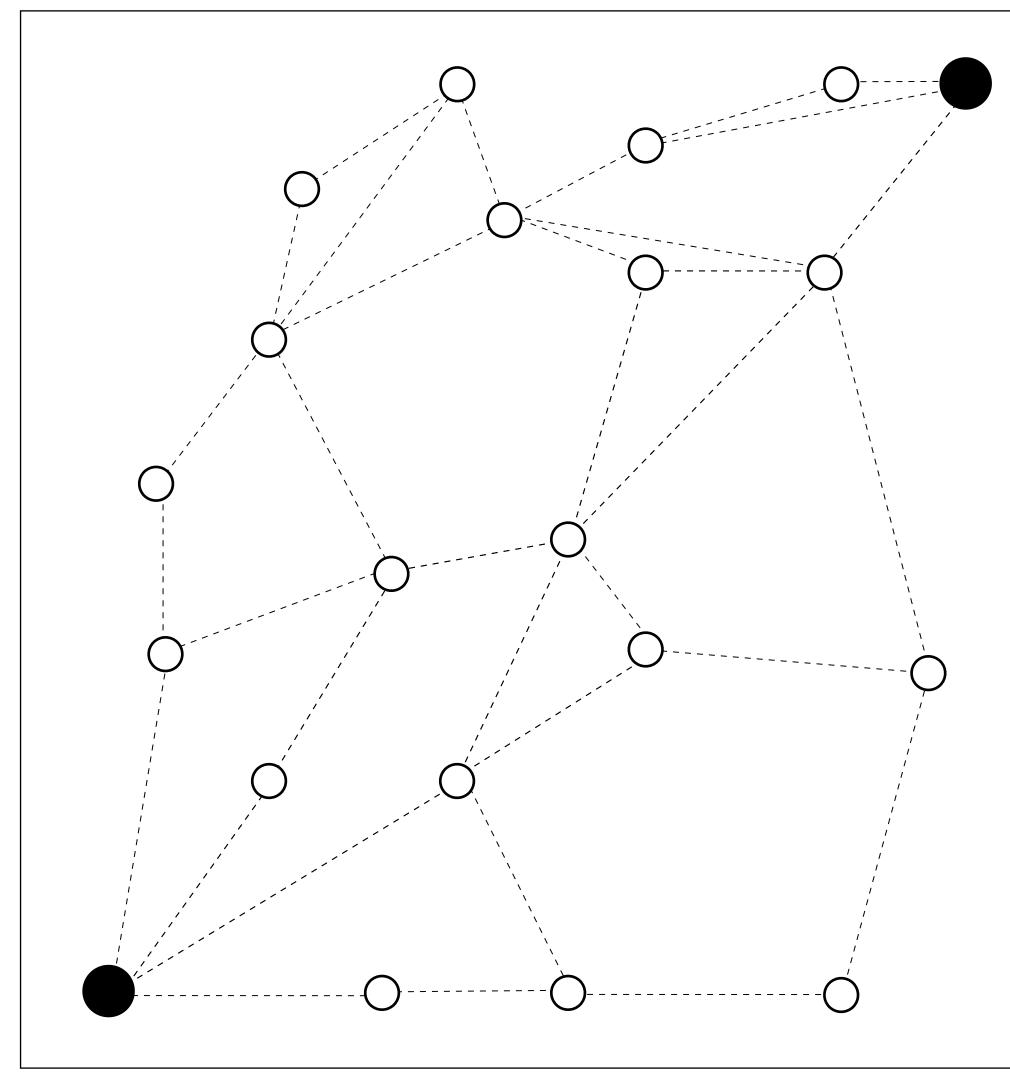
What if ...

... we just sampled travel times from our prior and solved the shortest path?

Sample edge times from posterior

Compute shortest path

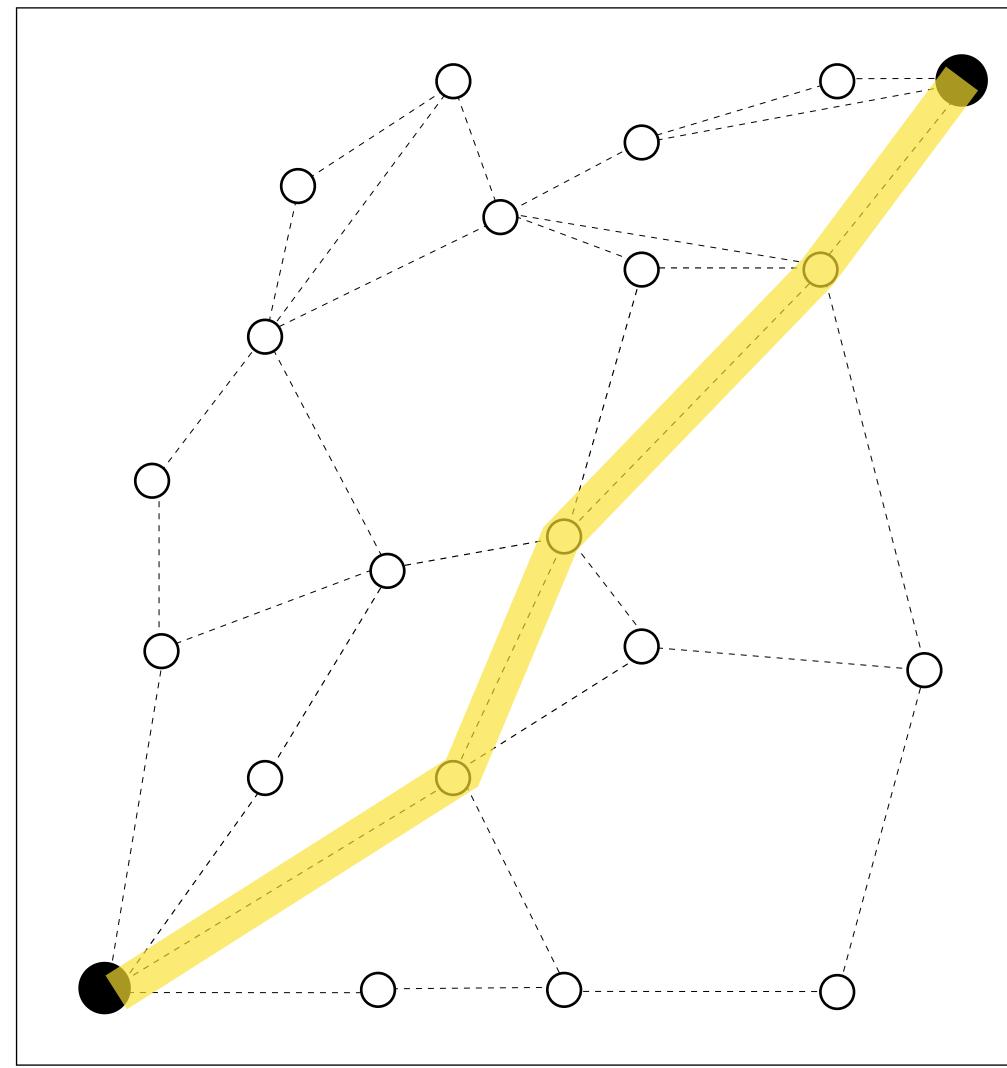
Travel along path, and update posterior



Sample edge times from posterior

Compute shortest path

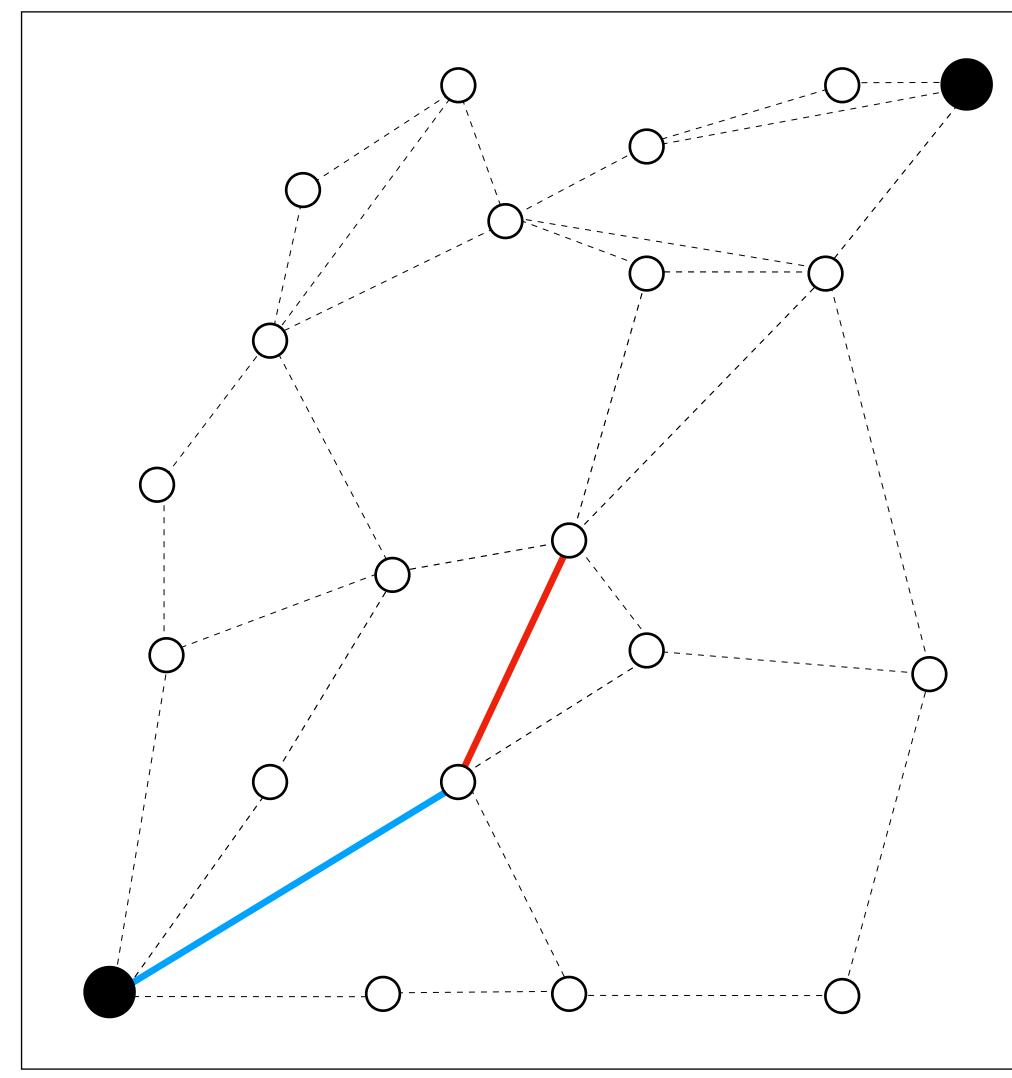
Travel along path, and update posterior



Sample edge times from posterior

Compute shortest path

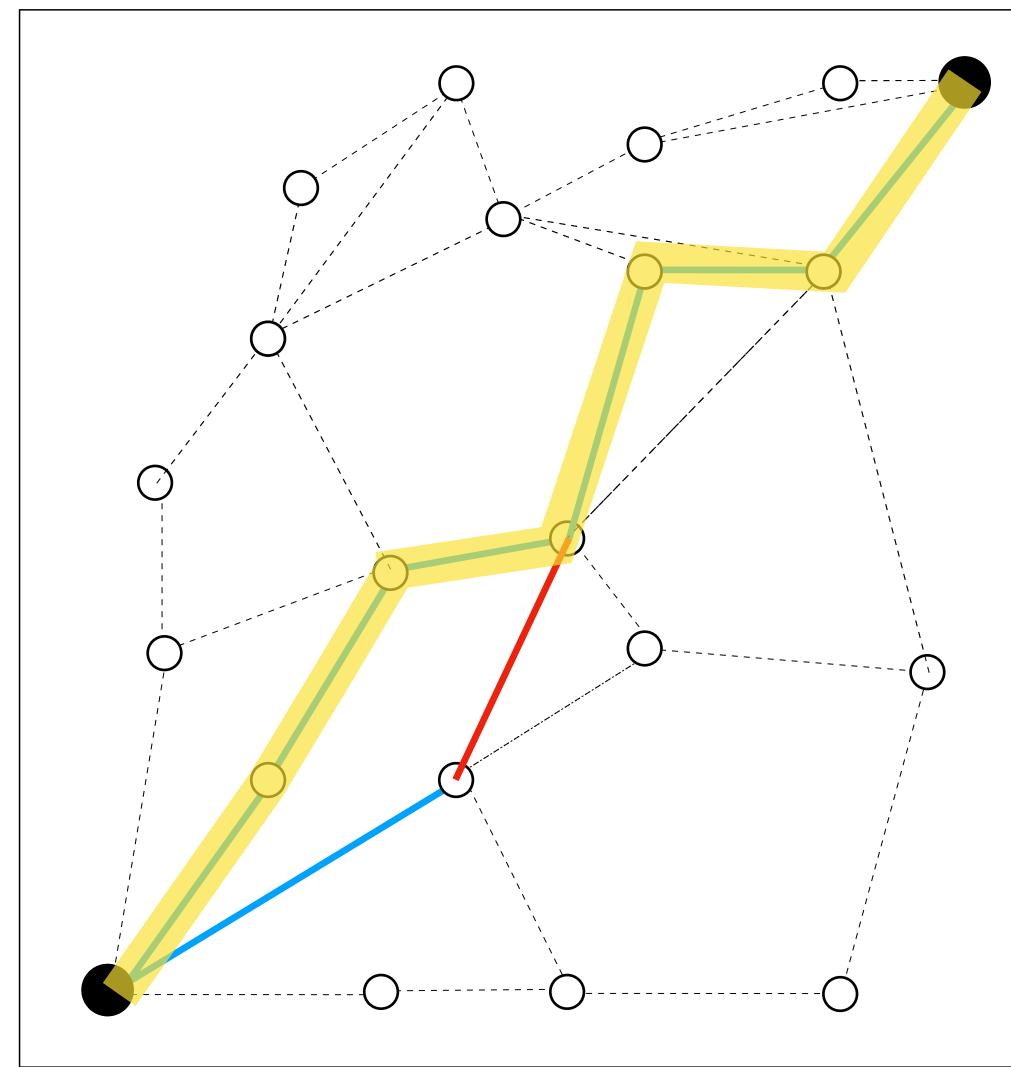
Travel along path, and update posterior



Sample edge times from posterior

Compute shortest path

Travel along path, and update posterior



Can we lift this idea to general MDP

Repeat forever:

Sample model from posterior

Compute optimal policy

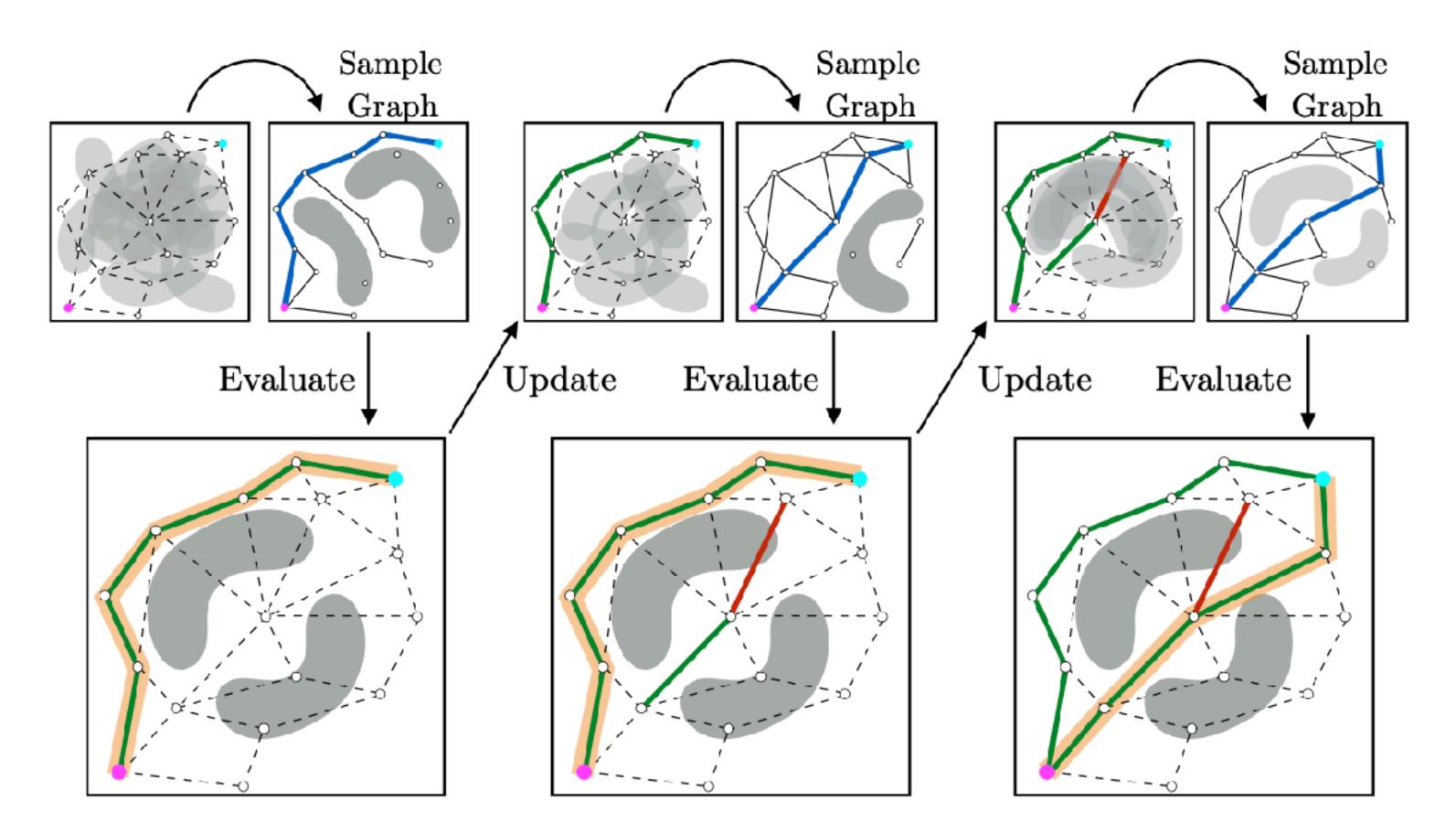
Execute policy, observe s,a,s', Update model

A Tutorial on Thompson Sampling

Daniel J. Russo¹, Benjamin Van Roy², Abbas Kazerouni², Ian Osband³ and Zheng Wen⁴

¹Columbia University ²Stanford University ³Google DeepMind ⁴Adobe Research

Posterior Sampling for Motion Planning

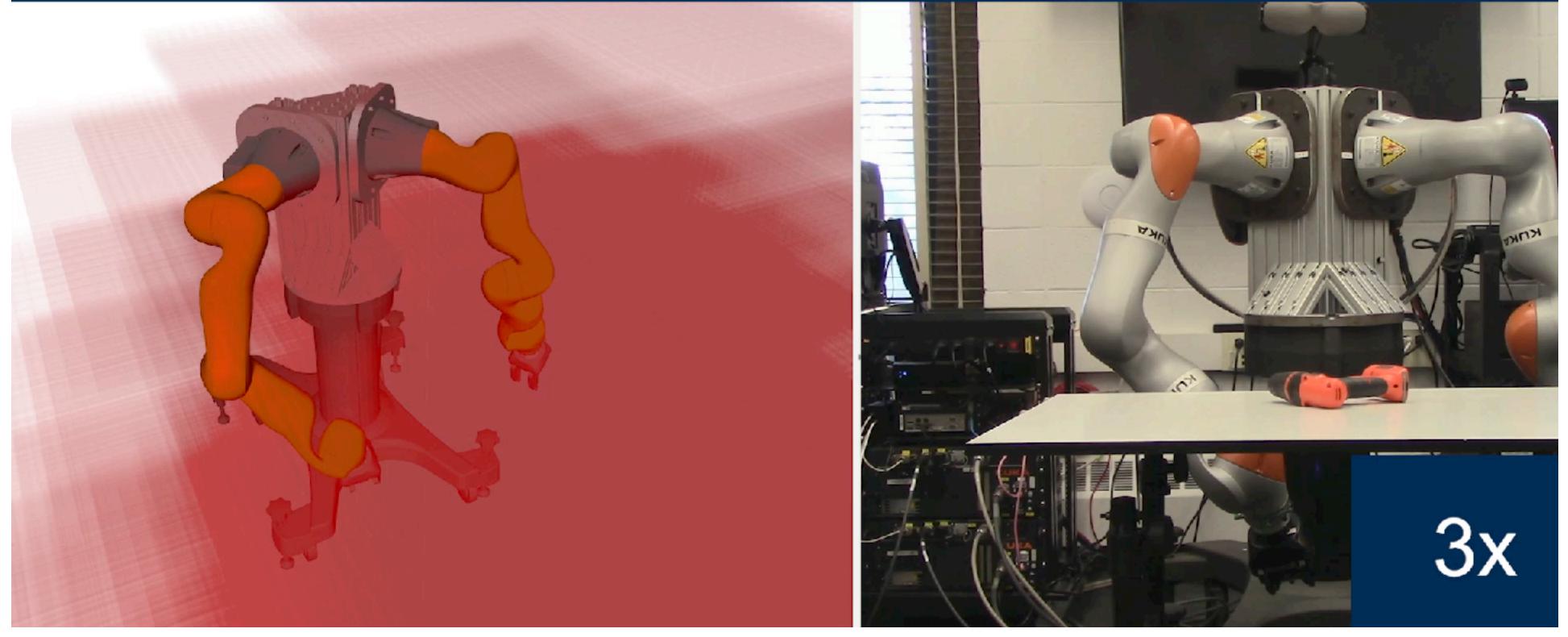


Brian Hou, Sanjiban Choudhury, Gilwoo Lee, Aditya Mandalika, and Siddhartha S. Srinivasa

Posterior Sampling for Anytime Motion Planning on Graphs with Expensive-to-Evaluate Edges

Real Robot Problems!

The Blindfolded Robot: Bayesian Planning with Contact Feedback [ISRR'19]

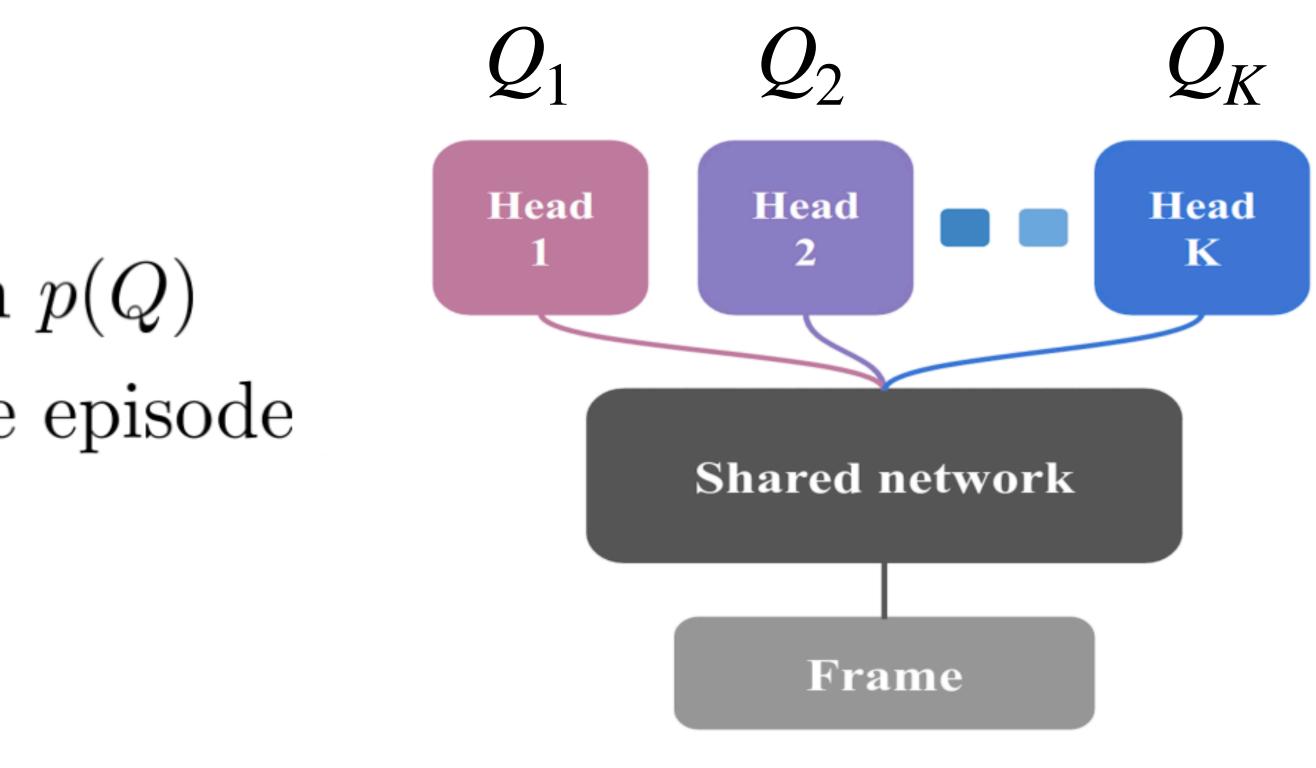


Posterior Sampling for Reinforcement Learning

1. sample Q-function Q from p(Q)2. act according to Q for one episode 3. update p(Q)

Deep Exploration via Bootstrapped DQN

Ian Osband^{1,2}, Charles Blundell², Alexander Pritzel², Benjamin Van Roy¹ ¹Stanford University, ²Google DeepMind {iosband, cblundell, apritzel}@google.com, bvr@stanford.edu



Bootstrapped Q Network

Posterior Sampling for Reinforcement Learning

- 1. sample Q-function Q from p(Q)2. act according to Q for one episode
- 3. update p(Q)

Why does work better than taking random actions?

