

# Happy Halloween!

# Principle of Maximum Entropy in Decision Making (From IRL to RL and back)

Sanjiban Choudhury







# Maximum Entropy Inverse Reinforcement Learning



# How do we imitate noisy / suboptimal experts?



(Push down human cost)

## Collect dataset $\mathscr{D} = \{\xi_i^h\}$ of expert trajectories

Update cost / reward function doing gradient descent on :

 $\mathbb{E}_{\xi_{i}^{h} \sim \mathcal{D}} \nabla_{\theta} C_{\theta}(\xi_{i}^{h}) - \mathbb{E}_{\xi_{i} \sim \frac{1}{Z}} \exp(-C_{\theta}(\xi)) \nabla_{\theta} C_{\theta}(\xi_{i})$ 

(Push up learner cost)

# How do we sample from

# $\xi \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi)\right)$

## Is it intuitively like calling a planner?







## Maximum Entropy Inverse Reinforcement Learning





## Maximum Entropy Inverse Reinforcement Learning



# for i = 1, ..., N $\xi_i \sim \frac{1}{Z} \exp\left(-C_{\theta}(\xi)\right)$ $\theta^+ = \theta - \eta [\nabla_{\theta} C_{\theta}(\xi_i^h) - \nabla_{\theta} C_{\theta}(\xi_i)]$

(Push down human cost)

### # Loop over datapoints

### # Call "Soft" Planner

### # Update cost







# for i = 1, ..., N $\frac{\xi_i}{7} \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi)\right)$ $\theta^{+} = \theta - \eta \left[ \nabla_{\theta} C_{\theta}(\xi_{i}^{h}) - \nabla_{\theta} C_{\theta}(\xi_{i}) \right]$

(Push down human cost)

## Maximum Entropy Inverse Reinforcement Learning

### # Loop over datapoints

### # Call "Soft" Planner

### # Update cost







# for i = 1, ..., N $\frac{\xi_i}{7} \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi)\right)$ $\theta^{+} = \theta - \eta \left[ \nabla_{\theta} C_{\theta}(\xi_{i}^{h}) - \nabla_{\theta} C_{\theta}(\xi_{i}) \right]$

(Push down human cost)

## Maximum Entropy Inverse Reinforcement Learning

### # Loop over datapoints

### # Call "Soft" Planner

### # Update cost







# for i = 1, ..., N $\frac{\xi_i}{7} \sim -\frac{1}{7} \exp\left(-C_{\theta}(\xi)\right)$ $\theta^{+} = \theta - \eta \left[ \nabla_{\theta} C_{\theta}(\xi_{i}^{h}) - \nabla_{\theta} C_{\theta}(\xi_{i}) \right]$

(Push down human cost)

## Maximum Entropy Inverse Reinforcement Learning

### # Loop over datapoints

### # Call "Soft" Planner

### # Update cost









# Think-Pair-Share

# than a soft planner, i.e. $\xi_i = \arg \min C_{\theta}(\xi)$

### Pair: Find a partner

### Share (45 sec): Partners exchange ideas

- Think (30 sec): What if we called a hard/optimal planner rather
  - Would you converge?



# Okay... But how do we actually sample from

# $\xi \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi)\right)$





# Let's derive soft value iteration!

# How do we do soft value iteration with deep networks?



# Soft Actor Critic



Haarnoja, Zhou, Hartikainen, Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel, L. Soft Actor-Critic Algorithms and Applicatic

$$\sum_{p_{\mathbf{s}}, \mathbf{a}' \sim \pi} \left[ Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

Update the policy with gradient of information projection:

$$|\mathbf{s}) \left\| \frac{1}{Z} \exp Q^{\pi_{\mathrm{old}}}(\mathbf{s},\,\cdot\,) 
ight)$$

In practice, only take one gradient step on this objective

"Soft" Critic

Recall Nightmare!

Credit S.Levine.





# Back to Inverse Re

Back to Inverse Reinforcement Learning

(But with deep networks)

## Maximum Entropy Inverse Reinforcement Learning



## Roll-out $\pi$ to collect trajectory $\xi = \{s_0, a_0, \dots\}$

# $\theta^{+} = \theta + \eta \left[ \nabla_{\theta} R_{\theta}(\xi_{i}^{h}) - \nabla_{\theta} R_{\theta}(\xi_{i}) \right]$



MaxEntIRL has had many success stories over the years and been rediscovered a lot of times



### Navigate Like a Cabbie: Probabilistic Reasoning from Observed Context-Aware Behavior

Brian D. Ziebart, Andrew L. Maas, Anind K. Dey, and J. Andrew Bagnell School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bziebart@cs.cmu.edu, amaas@andrew.cmu.edu, anind@cs.cmu.edu, dbagnell@ri.cmu.edu



Figure 4. The collected GPS datapoints

### ABSTRACT

We present *PROCAB*, an efficient method for Probabilistically Reasoning from Observed Context-Aware Behavior. It models the context-dependent utilities and underlying reasons that people take different actions. The model generalizes to unseen situations and scales to incorporate rich contextual information. We train our model using the route preferences of 25 taxi drivers demonstrated in over 100,000 miles of collected data, and demonstrate the performance of our model by inferring: (1) decision at next intersection, (2) route to known destination, and (3) destination given partially traveled route.



### Activity Forecasting

Kris M. Kitani, Brian D. Ziebart, J. Andrew Bagnell, and Martial Hebert

Carnegie Mellon University, Pittsburgh, PA 15213 USA {kkitani,bziebart}@cs.cmu.edu, {dbagnell,hebert}@ri.cmu.edu







# Deep Max Ent

### Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier<sup>1</sup>, Dominic Zeng Wang<sup>1</sup> and Ingmar Posner<sup>1</sup>







### autonomous execution 1x real-time

### Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn Sergey Levine Pieter Abbeel University of California, Berkeley, Berkeley, CA 94709 USA

PR2

goal

CBFINN@EECS.BERKELEY.EDU SVLEVINE@EECS.BERKELEY.EDU PABBEEL@EECS.BERKELEY.EDU

# our method IOC samples from q(u<sub>t</sub> x<sub>t</sub>)



# Is IRL running a RL algorithm in the inner loop ?!?

# Won't that take very long??







# Complexity of IRL for a tree MDP?



# Complexity of IRL for a tree MDP?



# We have seen this movie before ...





# needle in an exponential haystack

# RL is like finding a







# *Insight*: We can reset the learner to states from the expert demonstrations to reduce unnecessary exploration.

# Inverse Reinforcement Learning without Reinforcement Learning



### (Gokul Swamy, Sanjiban Choudhury, Drew Bagnell, and Steven Wu)

# Speeding up IRL with Expert Resets



### Key Idea: Use Dynamic Programming

# $O(T^2)$ Complexity!







Expert Resets Speed Up IRL







# The BIG Picture!





### Expert is realizable $\pi^E \in \Pi$

Setting

As  $N \rightarrow \infty$ , drive down  $\epsilon = 0$  (or Bayes error)

Even as  $N \to \infty$ , behavior cloning  $O(\epsilon CT)$ 

Solutio

Nothing special. Collect lots of data and do Behavior Cloning

Requires interactive simulator (MaxEntIRL) to match distribution  $\Rightarrow O(\epsilon T)$ 



where *C* is conc. coeff





### Non-realizable expert + limited expert support

Even as  $N \to \infty$ , behavior cloning  $O(\epsilon T^2)$ 



Requires interactive expert (DAGGER / EIL) to provide labels  $\Rightarrow O(\epsilon T)$ 

