
Happy Halloween!
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Principle of Maximum Entropy in 
Decision Making 


(From IRL to RL and back)

Sanjiban Choudhury
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Maximum Entropy

Inverse Reinforcement Learning
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How do we imitate noisy / suboptimal experts?
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Collect dataset  of 
expert trajectories

𝒟 = {ξh
i }

Update cost / reward function doing gradient descent on :

𝔼ξh
i ∼𝒟 ∇θCθ(ξh

i ) − 𝔼ξi∼ 1
Z exp(−Cθ(ξ)) ∇θCθ(ξi)

(Push down human cost) (Push up learner cost)



How do we sample from 
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ξ ∼
1
Z

exp (−Cθ(ξ))

Is it intuitively like calling a planner?
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Maximum Entropy Inverse Reinforcement Learning
Human 

demonstration
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ))
θ+ = θ − η[∇θCθ(ξh

i ) − ∇θCθ(ξi)]

# Call “Soft” Planner

# Update cost
(Push down human cost) (Push up learner cost)

Maximum Entropy Inverse Reinforcement Learning

Learner 
traj

Human 
demonstration
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Maximum Entropy Inverse Reinforcement Learning

for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ))
θ+ = θ − η[∇θCθ(ξh

i ) − ∇θCθ(ξi)]

# Call “Soft” Planner

# Update cost
(Push down human cost) (Push up learner cost)
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Maximum Entropy Inverse Reinforcement Learning

for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ))
θ+ = θ − η[∇θCθ(ξh

i ) − ∇θCθ(ξi)]

# Call “Soft” Planner

# Update cost
(Push down human cost) (Push up learner cost)
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Maximum Entropy Inverse Reinforcement Learning

for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ))
θ+ = θ − η[∇θCθ(ξh

i ) − ∇θCθ(ξi)]

# Call “Soft” Planner

# Update cost
(Push down human cost) (Push up learner cost)



Activity!



Think-Pair-Share 
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Think (30 sec): What if we called a hard/optimal planner rather 
than a soft planner, i.e. 

Pair: Find a partner 

Share (45 sec): Partners exchange ideas 

ξi = arg min Cθ(ξ)
Would you converge?



Okay… 

But how do we actually 

sample from 
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ξ ∼
1
Z

exp (−Cθ(ξ))



Let’s derive soft value iteration!
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How do we do soft value iteration with 
deep networks?
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Soft Actor Critic

16Credit S.Levine.

Recall 

Nightmare!

“Soft”

Critic



Back to Inverse Reinforcement Learning

17

(But with deep networks)



Maximum Entropy Inverse Reinforcement Learning
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Soft Actor CriticRθ(s, a) π(a |s)

Roll-out  to collect trajectory π ξ = {s0, a0, . . . . }

θ+ = θ + η[∇θRθ(ξh
i ) − ∇θRθ(ξi)]
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MaxEntIRL has had many success stories over the years

and been rediscovered a lot of times 
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Deep Max Ent
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https://www.youtube.com/watch?v=hXxaepw0zAw


Is IRL running a RL 
algorithm in the inner 

loop ?!?


Won’t that take very 
long??

24



0

0 0

0 0 0 0

? ? ? ? ? ? ? ?
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Complexity of IRL for a tree MDP?



O(2T)

0

0 0

0 0 0 0

1 0 0 0 0 0 0 0

Complexity of IRL for a tree MDP?
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T



We have seen this movie 
before …
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RL is like finding a

needle in an exponential haystack



RL is exp(T)!



RL is exp(T)!
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🔑 Insight: We can reset the learner to states 
from the expert demonstrations to reduce 

unnecessary exploration.



Inverse Reinforcement Learning
without Reinforcement Learning

(Gokul Swamy, Sanjiban Choudhury, Drew Bagnell, and Steven Wu)
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0

0 0

0 0 0 0

1 0 0 0 0 0 0 0

Speeding up IRL with Expert Resets

0

0

?

π1

f1

π3

f3
π2

f2

Key Idea: Use Dynamic 
Programming

 
Complexity!

O(T2)
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Expert Resets Speed Up IRL



The BIG Picture!
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Hard

Non-realizable expert + 

limited expert support


Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER / EIL) to 

provide labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable




As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.  

Collect lots of data and 

do Behavior CloningSo
lu
tio
n

Medium

Non-realizable expert

but full expert support


Even as , 
behavior cloning 

N → ∞
O(ϵCT)

Requires interactive simulator 
(MaxEntIRL) to match 

distribution ⇒ O(ϵT)

where C is conc. coef


