
Actor-Critic Methods

Sanjiban Choudhury

1

2

Recap in
60 seconds!

Recap: Two Ingredients of RL

3
Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3

Curses of Function Approximation

4

Value Iteration:
Bootstrapping

Policy Iteration:
Distribution Shift

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

max

approximate dynamic programming 89

���������

����	
�������
������

����������	������
������

�	��������	������
�������

Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

The Power of a Policy!

5

All we need at the end of the day is a good policy.

Black box: Try different policies and pick the best one

Gray box: Be smarter, push probability mass on actions
that lead to high values

6

The Three Nightmares of Policy Optimization

Nightmare 1: High Variance

7

Solution: Subtract off a baseline!

Nightmare 2: Distribution Shift

8

max
Δθ

J(θ + Δθ)

s.t. KL(π(θ + Δθ) | |π(θ)) ≤ ϵ

Solution: Take small steps!

9

Nightmare 3:

Local Optima

+1

+100

-10

The Ring of Fire

The Ring of Fire

+1

+1

-10

-10

00

+1

The Ring of Fire

+1

0

+1

+1

Get’s sucked into a local optima!!

Idea: What if we had a “good reset distribution?”

Start distribution

Idea: What if we had a “good reset distribution?”

Reset distribution

Idea: What if we had a “good reset distribution?”

Run REINFORCE
from different start states

+100
+100
+100

+100

Idea: What if we had a “good reset distribution?”

Run REINFORCE
from different start states

+90

+90
+90

+90

Idea: What if we had a “good reset distribution?”

Run REINFORCE
from different start states

+90

+90
+90

+90

+1

+1

Solution: Use a good “reset” distribution

18

Try your best to “cover” states the expert will visit

Choose a reset distribution instead of start state distributionμ(s)

Justify using the PDL!

Vanilla Policy Gradient (REINFORCE)

19

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si
0, ai

0, ri
0, …, si

T−1, ai
T−1, ri

T−1}
N
i=1

Compute reward-to-go for each timestep for each trajectory

Q̂πθ(si
t , ai

t) =
T−1

∑
t′ =t

r(si
t′
, ai

t′
)

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) Q̂πθ(si
t , ai

t)]
θ ← θ + α∇θJ(θ)Update parameters

Let’s apply the fixes to the nightmares!

20

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si
0, ai

0, ri
0, …, si

T−1, ai
T−1, ri

T−1}
N
i=1

Compute reward-to-go for each timestep for each trajectory Q̂πθ(si
t , ai

t) =
T−1

∑
t′ =t

r(si
t′
, ai

t′
)

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) Q̂πθ(si
t , ai

t)]
θ ← θ + α∇θJ(θ)Update parameters

Fix #1: Subtract baseline

21

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si
0, ai

0, ri
0, …, si

T−1, ai
T−1, ri

T−1}
N
i=1

Compute reward-to-go for each timestep for each trajectory Q̂πθ(si
t , ai

t) =
T−1

∑
t′ =t

r(si
t′
, ai

t′
)

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si
t , ai

t)]
θ ← θ + α∇θJ(θ)Update parameters

Fit value function ̂Vπθ(si
t) ≈

T−1

∑
t′ =t

r(si
t′
, ai

t′
) How??

Compute advantage ̂Aπθ(si
t , ai

t) = Q̂πθ(si
t , ai

t) − ̂Vπθ(si
t)

Fitting values!

22

Needs full time-horizon
trajectories

Works with partial segments!
 (s,a,r,s’)

Actor-Critic Framework

23

Actor Critic

Policy improvement
of π

Estimates value
functions Aπ

Actor-Critic Framework

24

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]
θ ← θ + α∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

25

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]
θ ← θ + α∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

Fix #2: Take small steps

s.t. KL(π(θ + Δθ) | |π(θ)) ≤ ϵ

How??

26

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]

θ ← θ + αG(θ)−1 ∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

Natural Gradient Descent (rediscovered as TRPO)

s.t. KL(π(θ + Δθ) | |π(θ)) ≤ ϵ

≈ ΔθTG(θ)Δθ ≤ ϵ
 is Fischer Information MatrixG(θ)

 G(θ) = 𝔼πθ [∇θlog πθ ∇θlog πT
θ]

27

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]

θ ← θ + αG(θ)−1 ∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

Natural Gradient Descent (rediscovered as TRPO!)

s.t. KL(π(θ + Δθ) | |π(θ)) ≤ ϵ

≈ ΔθTG(θ)Δθ ≤ ϵ
 is Fischer Information MatrixG(θ)

 G(θ) = 𝔼πθ [∇θlog πθ ∇θlog πT
θ]Don’t directly compute the inverse,

use conjugate gradient to solve G(θ)x = ∇θJ(θ)

Proximal Policy Optimization (PPO)

28

Computing Fischer Information matrix is expensive and slow!

Idea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

Proximal Policy Optimization (PPO)

29

Computing Fischer Information matrix is expensive and slow!

Idea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

Instead of defining gradient, we will define a surrogate loss function
(Lets say we are at iteration k)

ℒ(θ) = 𝔼s,a∼πθk [πθ

πθk

Aπθk(s, a)]

Proximal Policy Optimization (PPO)

30

Computing Fischer Information matrix is expensive and slow!

ℒ(θ) = 𝔼s,a∼πθk
min

πθ

πθk

Aπθk(s, a), clip (πθ

πθk

,1 − ϵ,1 + ϵ) Aπθk(s, a)

Idea: Instead of taking small steps, change the loss
function so there is no benefit in taking large steps!

Clip the loss if the policy deviates too much from πθ πθk

31

Start with an arbitrary initial policy πθ(a |s)

while not converged do

Roll-out to collect trajectories πθ(a |s) D = {si, ai, ri, si
+}N

i=1

Compute gradient

∇θJ(θ) =
1
N [

T−1

∑
t=0

∇θlog πθ(ai
t |si

t) ̂Aπθ(si, ai)]
θ ← θ + α∇θJ(θ)Update parameters

Fit value function using TD, i.e. minimize ̂Vπθ(si) (ri + γ ̂Vπθ(si
+) − ̂Vπθ(si))2

Compute advantage ̂Aπθ(si, ai) = r(si, ai) + γ ̂Vπθ(si
+) − ̂Vπθ(si)

Fix #3: Use a reset distribution

s.t. KL(π(θ + Δθ) | |π(θ)) ≤ ϵ

Instead of rolling out
from the start state,
rollout from states

expert visits

How do we make Actor-Critic more robust
to randomness of the environment?

We never see the actual environment in RL

33Credit: Ben Eyesenbach

We want our policy to be robust against all possible
environments that can explain the data

34Credit: Ben Eyesenbach

Solution: Use Maximum Entropy RL!

35

Intuition: There are many policies that can achieve the same
cumulative rewards. MaxEntRL keeps alive all of those policies.

Learns many different ways to solve the same task.

36

Solution: Use Maximum Entropy RL!

“Soft” Actor Critic

37

Actor Critic

Haarnoja 2018

“Soft” Value Evaluation“Soft” Policy Improvement

38

“Soft” Actor Critic
Haarnoja 2018

https://www.youtube.com/watch?v=FmMPHL3TcrE

