# Actor-Critic Methods

Sanjiban Choudhury





# Recap in 60 seconds!









#### Exploration Exploitation

# Recap: Two Ingredients of RL











# The Power of a Policy!

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[ \sum_{t=0}^{T-1} \right]$$

All we need at the end of the day is a good policy.

Black box: Try different policies and pick the best one

Gray box: Be smarter, push probability mass on actions that lead to high values

 $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t)$ 



# The Three Nightmares of Policy Optimization





# Nightmare 1: High Variance

# $\nabla_{\theta} J = E_{s \sim d^{\pi_{\theta}}(s), a \sim \pi_{\theta}(a|s)} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s,a) \right]$

#### Solution: Subtract off a baseline!

# $\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} [\nabla_{\theta} \log \log \theta]$ $\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E$

$$\log(\pi_{ heta}(a|s) (Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s)))$$
  
 $= \sum_{\pi_{ heta}(a|s)} \left[ 
abla_{ heta} \log(\pi_{ heta}(a|s) A^{\pi_{ heta}}(s,a)) + \sum_{\pi_{ heta}(a|s)} \sum_{\mu=1}^{\infty} \sum_{\mu$ 







### Solution: Take small steps!

 $\max J(\theta + \Delta \theta)$  $\Delta \theta$ 

# Nightmare 2: Distribution Shift

### s.t. $KL(\pi(\theta + \Delta\theta) | | \pi(\theta)) \leq \epsilon$



# Nightmare 3:

# Local Optima



# The Ring of Fire

#### +100

#### -10



# The Ring of Fire



# The Ring of Fire

 $\cap$ 

### Get's sucked into a local optima!!







#### Start distribution







#### Reset distribution





### Run REINFORCE from different start states













### Run REINFORCE from different start states

+90

+90

+90



# Solution: Use a good "reset" distribution

Choose a reset distribution  $\mu(s)$  instead of start state distribution

Try your best to "cover" states the expert will visit

Justify using the PDL!





# Vanilla Policy Gradient (REINFORCE)

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ while not converged do Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajector

Compute reward-to-go for each timestep for each trajectory

$$\hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i) = \hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i) = \hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i)$$

Compute gradient

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \, \hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i) \right]$$

Update parameters  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

ories 
$$D = \{s_0^i, a_0^i, r_0^i, \dots, s_{T-1}^i, a_{T-1}^i, r_{T-1}^i\}_{i=1}^N$$

$$\sum_{t=1}^{-1} r(s_{t'}^{i}, a_{t'}^{i})$$





# Let's apply the fixes to the nightmares!

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ 

while not converged do

Compute reward-to-go for each timestep for e

Compute gradient  

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \ \hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i) \right]$$
Update parameters  

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$s_{0}^{i}, a_{0}^{i}, r_{0}^{i}, \dots, s_{T-1}^{i}, a_{T-1}^{i}, r_{T-1}^{i}\}_{i=1}^{N}$$
  
each trajectory  $\hat{Q}^{\pi_{\theta}}(s_{t}^{i}, a_{t}^{i}) = \sum_{t'=t}^{T-1} r(s_{t'}^{i}, a_{t'}^{i})$ 



# Fix #1: Subtract baseline

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ while not converged do Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajectories  $D = \{s\}$ Compute reward-to-go for each timestep for e Fit value function  $\hat{V}^{\pi_{\theta}}(s_t^i) \approx \sum_{t=1}^{T-1} r(s_t^{t-1})$ t'=tCompute advantage  $\hat{A}^{\pi_{\theta}}(s_t^i, a_t^i) = \hat{Q}^{\pi_{\theta}}(s_t^i, a_t^i) - \hat{V}^{\pi_{\theta}}(s_t^i)$ Compute gradient  $\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \right]$  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ Update parameters

$$s_{0}^{i}, a_{0}^{i}, r_{0}^{i}, \dots, s_{T-1}^{i}, a_{T-1}^{i}, r_{T-1}^{i} \}_{i=1}^{N}$$
each trajectory  $\hat{Q}^{\pi_{\theta}}(s_{t}^{i}, a_{t}^{i}) = \sum_{t'=t}^{T-1} r(s_{t'}^{i}, a_{t'}^{i})$ 

$$s_{t'}^{i}, a_{t'}^{i}$$
 How??

$$(\hat{A}^i_t) \hat{A}^{\pi_{\theta}}(s^i_t, a^i_t)$$



# Fitting values!

#### Monte-Carlo

 $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$ 

# Needs full time-horizon trajectories

#### **Temporal Difference**

 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$ 

### Works with partial segments! (s,a,r,s')



# Actor-Critic Framework

#### Actor



# Policy improvement of $\pi$

#### Critic





# Actor-Critic Framework

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ while not converged do Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajectories  $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$ Compute advantage  $\hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{\perp}) - \hat{V}^{\pi_{\theta}}(s^{i})$ Compute gradient  $\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \, \hat{A}^{\pi_{\theta}}(s^i, a^i) \right]$ Update parameters  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

- Fit value function  $\hat{V}^{\pi_{\theta}}(s^{i})$  using TD, i.e. minimize  $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$



Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ while not converged do

Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajectories  $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$ 

Fit value function  $\hat{V}^{\pi_{\theta}}(s^{i})$  using TD, i.e. minimize  $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$ 

Compute advantage  $\hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i})$ 

Compute gradient  

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s) \right]$$

Update parameters  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

# ike small steps

 $\{s^{i}, a^{i}, r^{i}, s^{i}_{+}\}_{i=1}^{N}$   $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$   $\stackrel{i}{+}) - \hat{V}^{\pi_{\theta}}(s^{i})$ 





## Natural Gradient Descent (rediscovered as TRPO)

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ 

while not converged do

Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajectories  $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$ 

Fit value function  $\hat{V}^{\pi_{\theta}}(s^{i})$  using TD, i.e. minimize  $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$ 

Compute advantage  $\hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{\perp}) - \hat{V}^{\pi_{\theta}}(s^{i})$ 

Compute gradient  

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i) \right]$$

Update parameters  $\theta \leftarrow \theta + \alpha G(\theta)^{-1} \nabla_{\theta} J(\theta)$ 

- $|s_t^i) \hat{A}^{\pi_{\theta}}(s^i, a^i) \left[ \begin{array}{c} -\text{s.t. } KL(\pi(\theta + \Delta \theta) \mid \mid \pi(\theta)) \leq c \\ \approx \Delta \theta^T G(\theta) \Delta \theta \leq c \end{array} \right]$

 $G(\theta)$  is Fischer Information Matrix  $G(\theta) = \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta} \nabla_{\theta} \log \pi_{\theta}^{T} \right]$ 





### Natural Gradient Descent (rediscovered as TRPO!)

Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ 

while not converged do

Roll-out 
$$\pi_{\theta}(a \mid s)$$
 to collect trajectories  $D = \{s^{i}, a^{i}, r^{i}, s^{i}_{+}\}_{i=1}^{N}$   
Fit value function  $\hat{V}^{\pi_{\theta}}(s^{i})$  using TD, i.e. minimize  $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$   
Compute advantage  $\hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i})$   
Compute gradient  
 $\nabla_{\theta}J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a^{i}_{t} \mid s^{i}_{t}) \hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) \right] \qquad \text{S.t. } KL(\pi(\theta + \Delta \theta) \mid |\pi(\theta)|) \leq c$ 

Update parameters  $\theta \leftarrow \theta + \alpha G(\theta)^{-1} \nabla_{\theta} J(\theta)$ 

Don't directly compute the inverse, use conjugate gradient to solve  $G(\theta)x = \nabla_{\theta}J(\theta)$   $\approx \Delta \theta^{I} G(\theta) \Delta \theta \leq \epsilon$ 

 $G(\theta)$  is Fischer Information Matrix

 $G(\theta) = \mathbb{E}_{\pi_{\theta}} \left[ \nabla_{\theta} \log \pi_{\theta} \nabla_{\theta} \log \pi_{\theta}^{T} \right]$ 





# Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

Idea: Instead of taking small steps, change the loss function so there is no benefit in taking large steps!



# Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

Idea: Instead of taking small steps, change the loss function so there is no benefit in taking large steps!

Instead of defining gradient, we will define a surrogate loss function (Lets say we are at iteration k)

 $\mathscr{L}(\theta) = \mathbb{E}_{s,a \sim \pi_{\theta_k}} \left[ \frac{\pi_{\theta}}{\pi_{\theta_k}} A^{\pi_{\theta_k}}(s,a) \right]$ 





# Proximal Policy Optimization (PPO)

Computing Fischer Information matrix is expensive and slow!

Idea: Instead of taking small steps, change the loss function so there is no benefit in taking large steps!

Clip the loss if the policy  $\pi_{\theta}$  deviates too much from  $\pi_{\theta_k}$ 

 $\mathscr{L}(\theta) = \mathbb{E}_{s,a \sim \pi_{\theta_k}} \left| \min\left(\frac{\pi_{\theta}}{\pi_{\theta_k}}A^{\pi_{\theta_k}}(s, \eta_k)\right) \right|$ 

a), clip 
$$\left(\frac{\pi_{\theta}}{\pi_{\theta_k}}, 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)$$





Start with an arbitrary initial policy  $\pi_{\theta}(a \mid s)$ 

while not converged do

Roll-out  $\pi_{\theta}(a \mid s)$  to collect trajectories  $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$ 

Fit value function  $\hat{V}^{\pi_{\theta}}(s^{i})$  using TD, i.e. minimize  $(r^{i} + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{+}) - \hat{V}^{\pi_{\theta}}(s^{i}))^{2}$ 

Compute advantage  $\hat{A}^{\pi_{\theta}}(s^{i}, a^{i}) = r(s^{i}, a^{i}) + \gamma \hat{V}^{\pi_{\theta}}(s^{i}_{\perp}) - \hat{V}^{\pi_{\theta}}(s^{i})$ 

Compute gradient  $\nabla_{\theta} J(\theta) = \frac{1}{N} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \right]$ 

Update parameters  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

# Fix #3: Use a reset distribution

Instead of rolling out from the start state, rollout from states expert visits

$$\left[ \hat{A}_{t}^{i} \right] \hat{A}^{\pi_{\theta}}(s^{i}, a^{i})$$
 s.t.  $KL(\pi(\theta + \Delta\theta) | | \pi(\theta)) \leq \epsilon$ 





How do we make Actor-Critic more robust to randomness of the environment?

# We never see the actual environment in RL



Credit: Ben Eyesenbach





### We want our policy to be robust against all possible environments that can explain the data



# $\max$

Credit: Ben Eyesenbach





# Solution: Use Maximum Entropy RL!

#### $J_{\text{MaxEnt}}(\pi; p, r) \triangleq \mathbb{E}_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t), \mathbf{s}_{t+1} \sim \tau(\mathbf{a}_t | \mathbf{s}_t), \mathbf{s}_{t+1} \sim \tau(\mathbf{s}_t | \mathbf{s}_t), \mathbf{s}$

Intuition: There are many policies that can achieve the same cumulative rewards. MaxEntRL keeps alive all of those policies. Learns many different ways to solve the same task.

$$\sum_{p(\mathbf{s_{t+1}}|\mathbf{s_t},\mathbf{a_t})} \left[\sum_{t=1}^T r(\mathbf{s_t},\mathbf{a_t}) + lpha \mathcal{H}_{\pi}[\mathbf{a_t} \mid \mathbf{s_t}]\right]$$





# Solution: Use Maximum Entropy RL!

#### Trained and evaluated without the obstacle:

Trained without the obstacle, but evaluated with the obstacle:





#### Standard RL

#### MaxEnt RL





#### Actor

$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left( \pi'(\cdot | \mathbf{s}_t) \left\| \frac{\exp\left(Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot)\right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right)$$

#### "Soft" Policy Improvement

#### Haarnoja 2018

# "Soft" Actor Critic

#### Critic

$$\mathcal{T}^{\pi}Q(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[ V(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \right]$$

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[ Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t) \right]$$

#### "Soft" Value Evaluation









# "Soft" Actor Critic



#### Haarnoja 2018

