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Switch from costs to rewards
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All optimal control / planning literature 
written as costs

All RL literature written as rewards



We assumed black-box policies …
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Have we redacted too much?



Black-box vs White-box vs Gray-box

5



Black-box vs White-box vs Gray-box
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How can we take 
gradients if we don’t 
know the dynamics?
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The Likelihood  
Ratio Trick!



REINFORCE
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Causality: Can actions affect the past?
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The Policy Gradient Theorem
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Life is good!  

This solves 
everything …
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The Three Nightmares of Policy Optimization
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Nightmare 1: 

Variance



When Q values for all rollouts in a batch are high?
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Recall that one of the reasons for the high variance is that the 
algorithm does not know how well the trajectories perform compared 
to other trajectories. Therefore, by introducing a baseline for the total 
reward (or reward to go), we can update the policy based on how well 

the policy performs compared to a baseline 



Solution: Subtract a baseline!
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We can prove that this does not change the gradient

But turns Q values into advantage (which is lower variance)

Justify the move to advantage using PDL!



17

Nightmare 2: 

Distribution Shift



What happens if your step-size is large?
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The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift
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How does distribution shift manifest?

23

J(π′ ) − J(π) =
T−1

∑
t=0

𝔼s∼dt
π′ 

Aπ(s, π′ (s))

The true performance difference

(New) (Old)

What our estimator currently approximates
T−1

∑
t=0

𝔼s∼dt
π
Aπ(s, π′ (s))
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Slowly change 
policies

Keep   close to dt
π dt

π′ 



Idea: Update distributions slowly
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Does this simply mean do gradient descent with a small step size?



Does gradient descent keep distribution 
change small?
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Gradient Descent is simply Steepest Descent with L2 norm

Does this ensure   and  are close?? dπθ+Δθ
dπθ



What if we change norms?
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Gradient Descent is simply Steepest Descent with L2 norm

What would update look like for another norm?

Δθ = ∇θJ(θ)

Δθ =
1
2λ

G−1(θ)∇θJ(θ)



What’s a good norm for 
distributions?
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What is a good norm for distributions?
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max
Δθ

J(θ + Δθ)

s.t. KL(P(θ + Δθ) | |P(θ)) ≤ ϵ



What is a good norm for distributions?
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max
Δθ

J(θ + Δθ)

s.t. KL(P(θ + Δθ) | |P(θ)) ≤ ϵ
s.t. ΔθTG(θ)Δθ ≤ ϵ

Fischer Information Matrix



“Natural” Gradient Descent
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Modern variants are TRPO, PPO, etc
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Nightmare 3: 

Local Optima
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Get’s sucked into a local optima!!



Idea: What if we had a “good reset distribution?”

Start distribution 



Idea: What if we had a “good reset distribution?”

Reset distribution



Idea: What if we had a “good reset distribution?”

Run REINFORCE 
from different start states 
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Idea: What if we had a “good reset distribution?”

Run REINFORCE 
from different start states 

+90

+90
+90

+90



Idea: What if we had a “good reset distribution?”

Run REINFORCE 
from different start states 
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Solution: Use a good “reset” distribution
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Try your best to “cover” states the expert will visit

Choose a reset distribution  instead of start state distributionμ(s)

Justify using the PDL!
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tl;dr

1. High Variance: Subtract baseline 
2. Distribution Shift: Natural Gradient 

Descent 
3. Local Optima: Use Reset Distribution


