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When the MDP is known:

Two Fundamental Ways to  
Solve for Optimal Policy
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Value Iteration

V*(s) = min
a

[c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)V*(s′ )]



Policy Iteration



Which one converges faster: value/policy?
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Values Policy
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Policy converges faster  
than the value

Can we iterate over policies?



Policy Iteration
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Repeat forever

Evaluate policy

Improve policy

Init with some policy  π

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]

π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]



8

Init with some policy  π



Iteration 1: Compute the value of the policy
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Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )] π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]



Policy Iteration
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Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )] π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]
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When the MDP is known unknown:

Restricted access to the transition function

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]



12
Value  Vπ(s)Roll outs

Estimate the value of policy from sample rollouts
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Monte-Carlo Temporal Difference

V(s) ← V(s) + α(Gt − V(s)) V(s) ← V(s) + α(c + γV(s′ ) − V(s))

Zero Bias Can have bias

High Variance Low Variance

Always convergence 
(Just have to wait till heat death of the universe)

May not converge if  
using function approximation



Tabular setting is cute. 

But how do we estimate V(s) 
in the continuous setting
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Unknown

function

Neural Network



Activity!



A tiny MDP
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s1 s2

Reward for being at 
any state is 0.0

Discount factor γ = 0.9

What happens when you run value iteration?

(Initialize with random values, say  and 2) V(s1) = 1

r = 0 r = 0



A tiny MDP
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s1 s2

Reward for being at 
any state is 0.0

Discount factor γ = 0.9

Let’s say we want to use a linear value function approximator

V(s) = wf(s) = w * {1 if s = s1

2 if s = s2

f(s1) = 1 f(s2) = 2

What happens if you run value iteration? (Initialize with w=1)

r = 0 r = 0



Think-Pair-Share 
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Think (30 sec): Initialize value iteration with w=1. What happens? 
What’s the explanation?

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 

s1 s2
f(s1) = 1 f(s1) = 2

r = 0 r = 0

V(s) = wf(s)

Init with w = 1



CuRSE of APPROXIMATION!

Approximation 
introduces an error that 
gets amplified by both 
value / policy iteration

Key separation between SL and RL



From dynamic 
programming to  

Fitted 
dynamic 

programming



Approximate (Fitted) Value Iteration
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Q-iteration

while not converged do
for s ∈ S, a ∈ A

Qnew(s, a) = c(s, a) + γ𝔼s′ 
min

a′ 

Q(s′ , a′ )

Q ← Qnew

return Q

Q(s, a) ← 0

Fitted Q-iteration

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γ

′ 

min
a

Qθ(s′ i, a′ )
D ← D ∪ {input, output}

Given {si, ai, ci, s′ i}N
i=1



A simple example: Gridworld
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True value functionOptimal path

Boyan,Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 1994. 



What happens when we run value iteration with a 
quadratic?
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84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

Continuous Gridworld
J*(x,y)1
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Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.
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Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.
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Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.
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Another Example: Mountain Car!
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
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Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.
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Figure 8.1.5: Training with
neural network.



What happens when we run value iteration with a  
2 Layer MLP?
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The problem of Bootstrapping!
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max()

Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states 
where approximate values is less than 
the true value of that state – that is 
to say, states that look more 
attractive than they should.

Typically states where you have very 
few samples



What about policy 
iteration?
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Policy Iteration
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Qπ(s, a) = c(s, a)) + γ𝔼s′ ∼𝒯(s,a)Qπ(s′ , π(s′ ))] π+(s) = arg min
a

Qπ(s, a)

Policy ImprovementPolicy Evaluation



Approximate (Fitted) Policy Iteration
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π+(s) = arg min
a

Qπ(s, a)

This remains  
the same!

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′ i, π(s′ i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′ i}N
i=1



Surely approximate value 
evaluation is more stable than 
approximate value iteration?  

(There is no min()!)

36



Well … not quite
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s1 s2
f(s1) = 1 f(s1) = 2

 blows 
up!

w



Well … not quite
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s1 s2
f(s1) = 1 f(s1) = 2

 blows 
up!

w

But we can fix this by 
on-policy weighting

Weight each datapoint 
by how often the 
policy visits it. 
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π+(s) = arg min
a

Qπ(s, a)

But this has 
the min() step! 

Policy ImprovementFitted policy evaluation

Init Qθ(s, a) ← 0
while not converged do

for i ∈ 1,…, n

Qθ ← Train(D)
return Qθ

D ← ∅

input ← {si, ai}
target ← ci + γQθ(s′ i, π(s′ i))
D ← D ∪ {input, output}

Given {si, ai, ci, s′ i}N
i=1

This is fine..

But what about policy improvement?



The problem of distribution shift
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Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-
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Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.
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to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
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that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.
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gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
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lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)
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-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.
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Figure 8.1.5: Training with
neural network.
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Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

Execute policy 
and trust actual returns 

Minimize the  
distribution shift
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Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.
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action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
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approximate policy iteration procedure.
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algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
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that occurs when we update the policy.
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