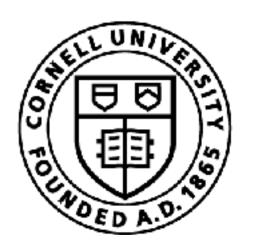
Approximate Dynamic Programming

Sanjiban Choudhury



When the MDP is known:

Two Fundamental Ways to Solve for Optimal Policy

0 -	14	14	13	14	14	14
	14	13	12	14	14	14
~ -	13	12	11	14	14	14
m -	12	11	10	9	8	7
4 -	13	12	11	14	14	14
<u>ہ</u>	14	13	12	14	14	14
ω-	14	14	13	14	14	14
~ -	14	14	14	13	12	11
∞ -	14	14	14	14	13	12
ი -	14	14	14	14	14	13
	ó	i	ź	3	4	5

 $V^*(s) = \min[c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s')]$ \mathcal{A}

Value Iteration

14	2	1	0
14	3	2	1
14	4	3	2
6	5	4	З
14	6	5	4
14	7	6	5
14	8	7	6
10	9	8	7
11	10	9	8
12	11	10	9
6	ż	8	9

Policy Iteration

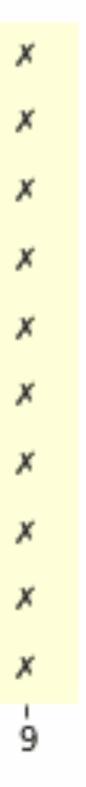
Which one converges faster: value/policy?

0 -	10	10	10	10	10	10	10	10	10	10
	10	10	10	10	10	10	10	10	10	10
~ -	10	10	10	10	10	10	10	10	10	10
m -	10	10	10	10	10	10	10	10	10	10
4 -	10	10	10	10	10	10	10	10	10	10
<u>ہ</u> ،	10	10	10	10	10	10	10	10	10	10
ص	10	10	10	10	10	10	10	10	10	10
r -	10	10	10	10	10	10	10	10	10	10
∞ -	10	10	10	10	10	10	10	10	10	10
ი -	10	10	10	10	10	10	10	10	10	10
	ò	i	ź	ż	4	5	6	ż	8	9

Values

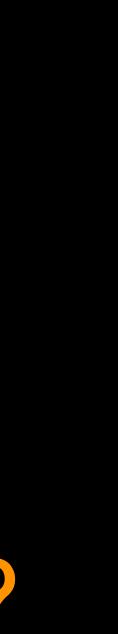
o -	х	х	х	х	х	х	×	х	х
	×	×	×	×	×	×	×	×	×
~ -	×	×	×	×	×	×	×	×	×
m -	×	×	×	×	×	×	×	×	×
4 -	x	х	×	x	x	х	х	×	х
<u>ہ</u> -	×	×	×	×	×	×	×	×	×
<u>-</u> ص	x	х	×	х	x	х	х	×	×
r -	x	×	×	x	x	×	×	×	x
∞ -	x	×	×	×	×	×	×	×	×
ი -	x	х		x	x			×	x
	ò	i	ź	3	4	5	6	7	8

Policy



Policy converges faster than the value

Can we iterate over policies?



Policy Iteration Init with some policy π Repeat forever Evaluate policy $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s')$ Improve policy $\pi^+(s) = \arg\min c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$

Init with some policy π

lter: 0

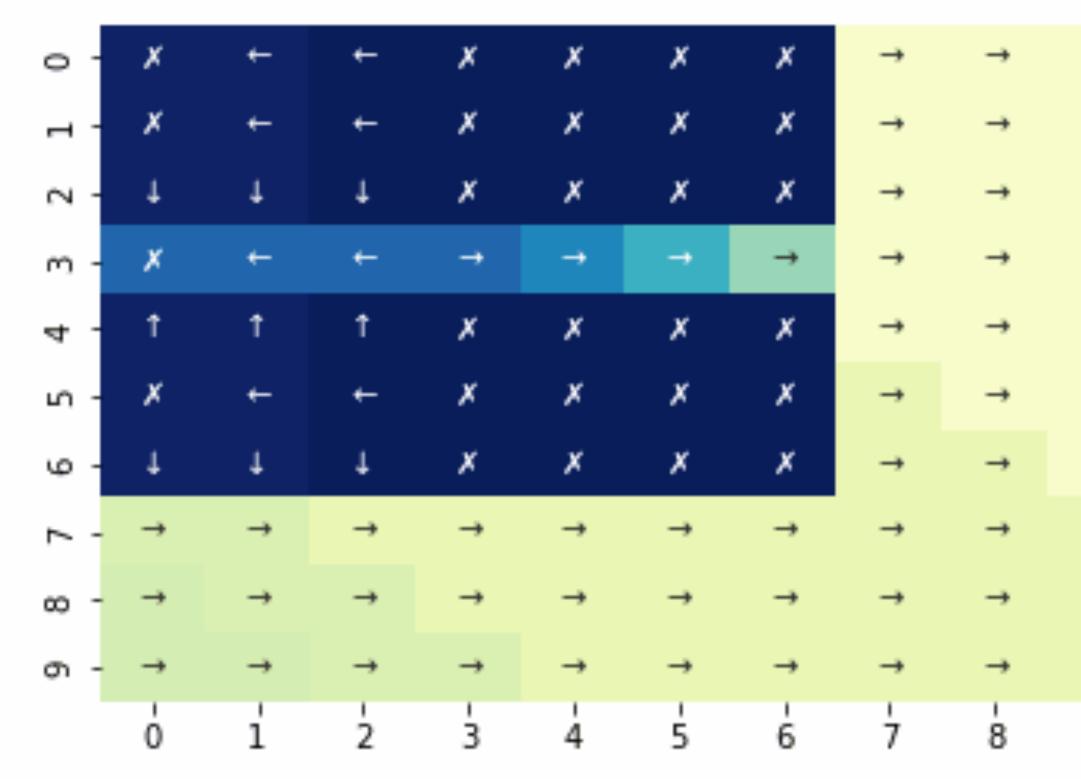
o -	→	→	→	→	→	→	→	→	->
	→	→	→	→	→	→	→	→	→
~ -	→	\rightarrow	→						
m -	→	→	→	→	→	→	→	→	→
4 -	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→	→
<u>ہ</u> -	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	→	→	→
ω -	→	→	→	→	→	→	→	→	→
r -	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
∞ -	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	→	→	→
<u></u> თ	→	→	→	→	→	→	→	→	→
	ò	i	ź	3	4	5	6	ż	8

Iteration 1: Compute the value of the policy

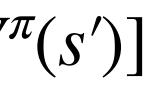
0 -	74	75	76	77	77	77	77	2	1	0
	74	75	76	77	77	77	77	3	2	1
~ -	74	75	76	77	77	77	77	3.9	3	2
m -	55	56	56	57	50	40	26	4.9	3.9	3
		75								
<u>ں</u> -	74	75	76	77	77	77	77	6.8	5.9	4.9
φ-	74	75	76	77	77	77	77	7.7	6.8	5.9
r -	15	14	13	12	11	10	9.6	8.6	7.7	6.8
∞ -	16	15	14	13	12	11	10	9.6	8.6	7.7
თ -	17	16	15			12	11	10	9.6	8.6
	ò	i	ź	ż	4	5	6	ż	8	9

 $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s')]$

Iter: 1



 $\pi^+(s) = \arg\min c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$ \boldsymbol{a}



 $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s')]$

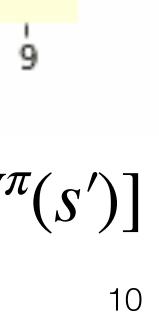
0 -	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
~ -	0	0	0	0	0	0	0	0	0	0
m -	0	0	0	0	0	0	0	0	0	0
4 -	0	0	0	0	0	0	0	0	0	0
<u>ں</u> -	0	0	0	0	0	0	0	0	0	0
. e	0	0	0	0	0	0	0	0	0	0
ь -	0	0	0	0	0	0	0	0	0	0
∞ -	0	0	0	0	0	0	0	0	0	0
ი -	0	0	0	0	0	0	0	0	0	0
	ò	i	ź	3	4	5	6	ż	8	9

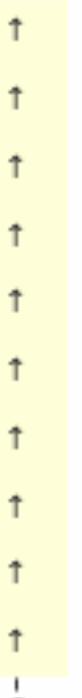
Policy Iteration

lter: 0

o -	→								
	→								
~ -	→	→							
m -	→	→	→	→	→	→	→	→	→
4 -	→	→	→	→	→	→	→	→	→
<u>ہ</u> -	→	→	→	→	→	→	→	→	→
<u>-</u> ف	→	→							
r -	→								
∞ -	→	→	→	→	→	→	→	→	→
<u></u> თ -	→								
	ò	i	ź	ż	4	5	6	ż	8

 $\pi^+(s) = \arg\min c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$ \mathcal{A}



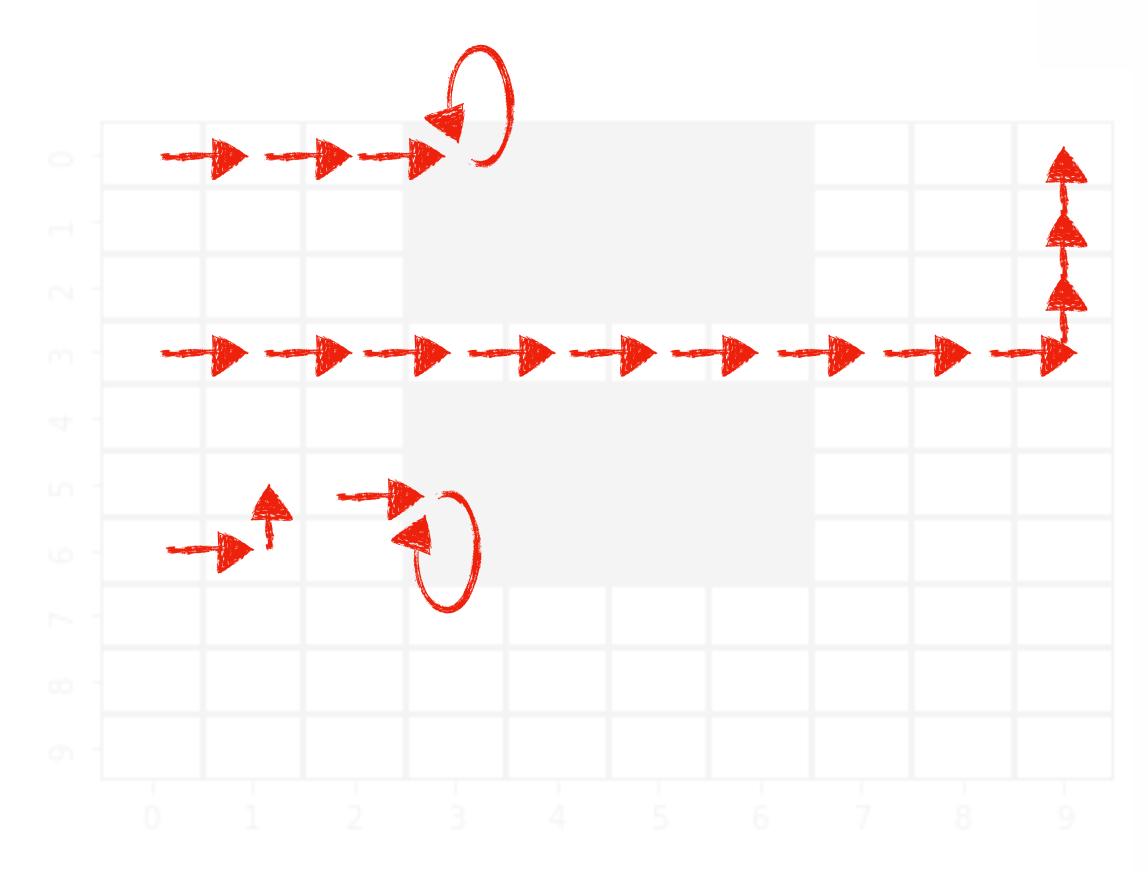


Restricted access to the transition function

When the MDP is known-unknown:

 $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$

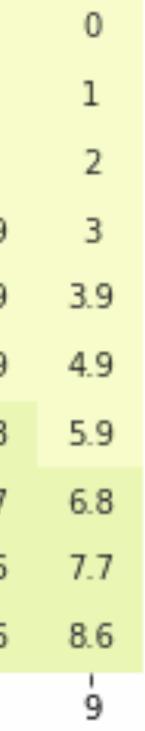
Estimate the value of policy from sample rollouts

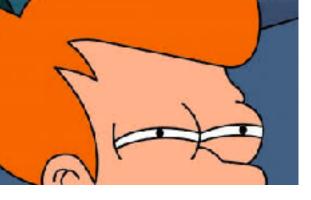


Roll outs

	0 -	74	75	76	77	77	77	77	2	1
		74	75	76	77	77	77	77	3	2
	~ -	74	75	76	77	77	77	77	3.9	3
	m -	55	56	56	57	50	40	26	4.9	3.9
	4 -	74	75	76	77	77	77	77	5.9	4.9
	<u>س</u> -	74	75	76	77	77	77	77	6.8	5.9
	ω-	74	75	76	77	77	77	77	7.7	6.8
	r -	15	14	13	12	11	10	9.6	8.6	7.7
	∞ -	16	15	14	13	12	11	10	9.6	8.6
	ი -	17	16	15	14	13	12	11	10	9.6
		ò	i	ź	3	4	5	Ġ	ż	8

Value $V^{\pi}(s)$





Monte-Carlo

$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Zero Bias

High Variance

Always convergence

(Just have to wait till heat death of the universe)

Temporal Difference

$V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

Low Variance

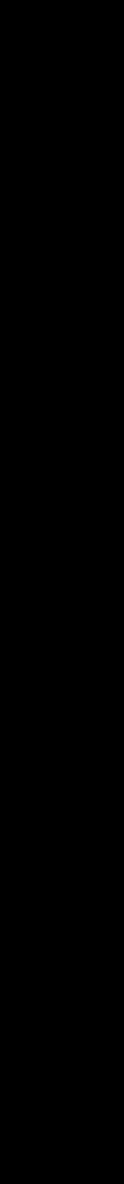
May *not* converge if using function approximation

Tabular setting is cute.

But how do we estimate V(s) in the continuous setting

Researchers

Neural Network



A tiny MDP

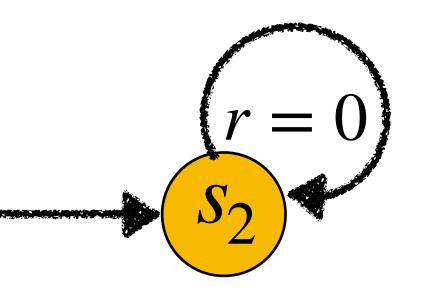
Reward for being at any state is 0.0

r = 0

 S_1

(Initialize with random values, say $V(s_1) = 1$ and 2)

Discount factor $\gamma = 0.9$



What happens when you run value iteration?

A tiny MDP

Reward for being at any state is 0.0

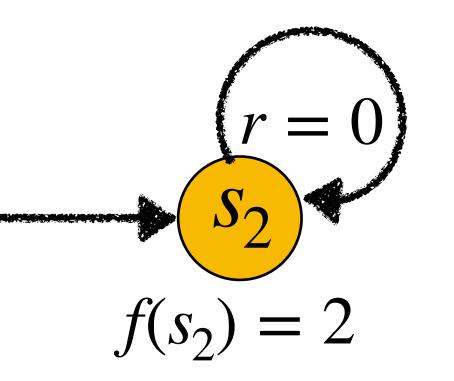
V(s) = wf(s)

r = 0

 $f(s_1) = 1$

What happens if you run value iteration? (Initialize with w=1)

Discount factor $\gamma = 0.9$



Let's say we want to use a linear value function approximator

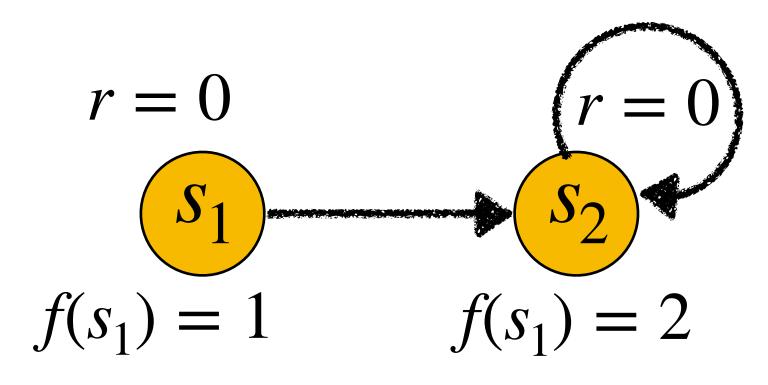
$$w^* \begin{cases} 1 & \text{if } s = s_1 \\ 2 & \text{if } s = s_2 \end{cases}$$

Think-Pair-Share

Think (30 sec): Initialize value iteration with w=1. What happens? What's the explanation?

Pair: Find a partner

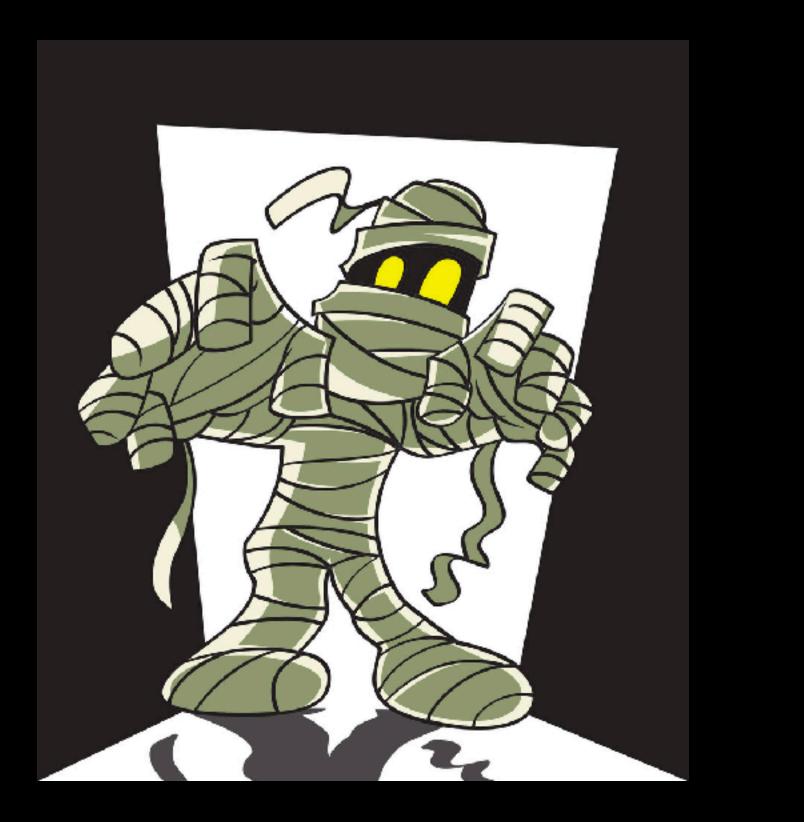
Share (45 sec): Partners exchange ideas



V(s) = wf(s)

Init with w = 1

CURSE OF APPROXIMATION!



Approximation introduces an error that gets amplified by both value / policy iteration

Key separation between SL and RL

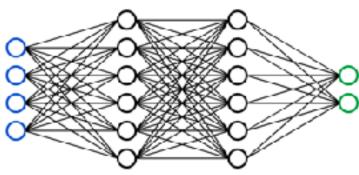
From dynamic programming to Fitted dynamic programming

Approximate (Fitted) Value Iteration

Q-iteration

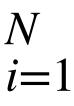
 $Q(s,a) \leftarrow 0$ while not converged do for $s \in S$, $a \in A$ $Q^{new}(s,a) = c(s,a) + \gamma \mathbb{E}_{s'} \min_{a'} Q(s',a')$ $\leftarrow Q^{new}$ return Q

Fitted Q-iteration

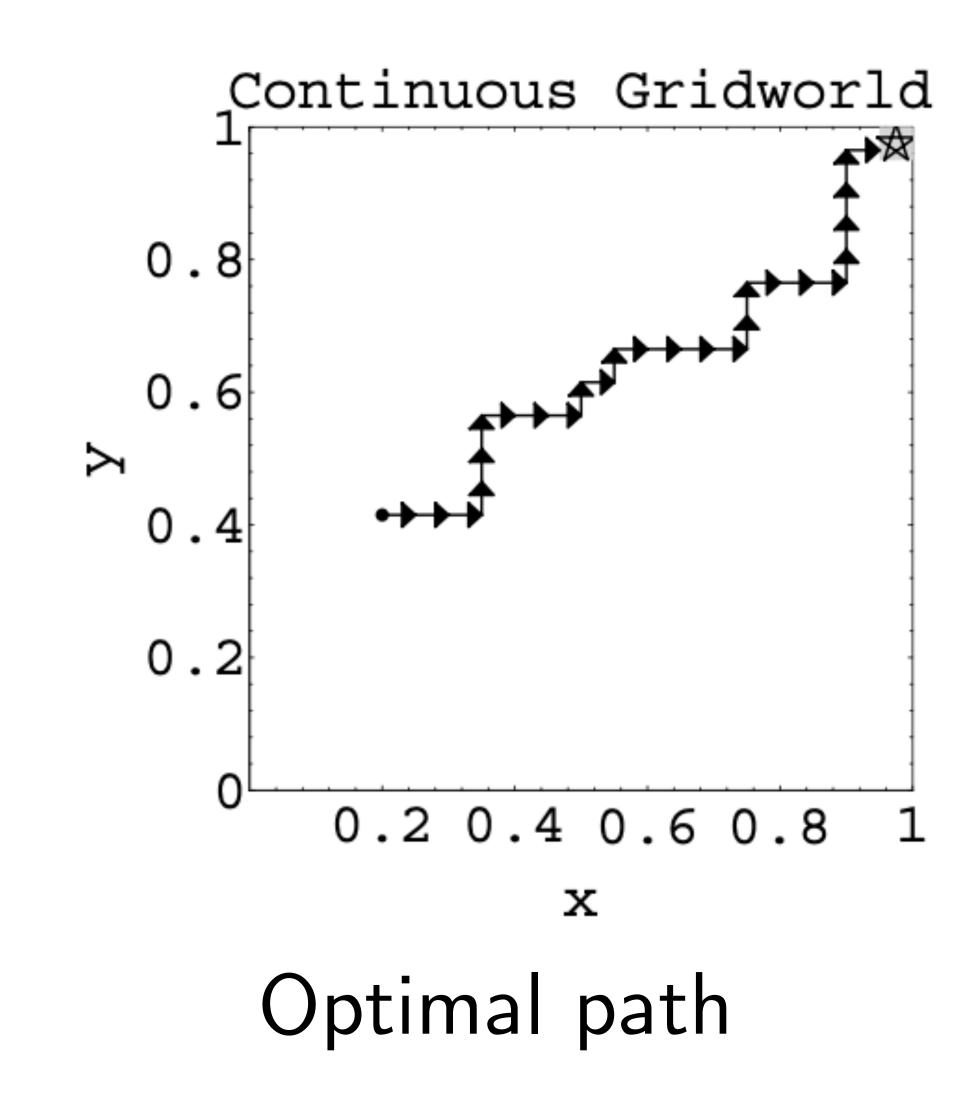


Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$

Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do $D \leftarrow \emptyset$ for $i \in 1, ..., n$ input $\leftarrow \{s_i, a_i\}$, target $\leftarrow c_i + \gamma \min Q_{\theta}(s'_i, a')$ $D \leftarrow D \cup \{\text{input}, \text{output}\}$ $Q_{\theta} \leftarrow \mathsf{Train}(D)$ return Q_A

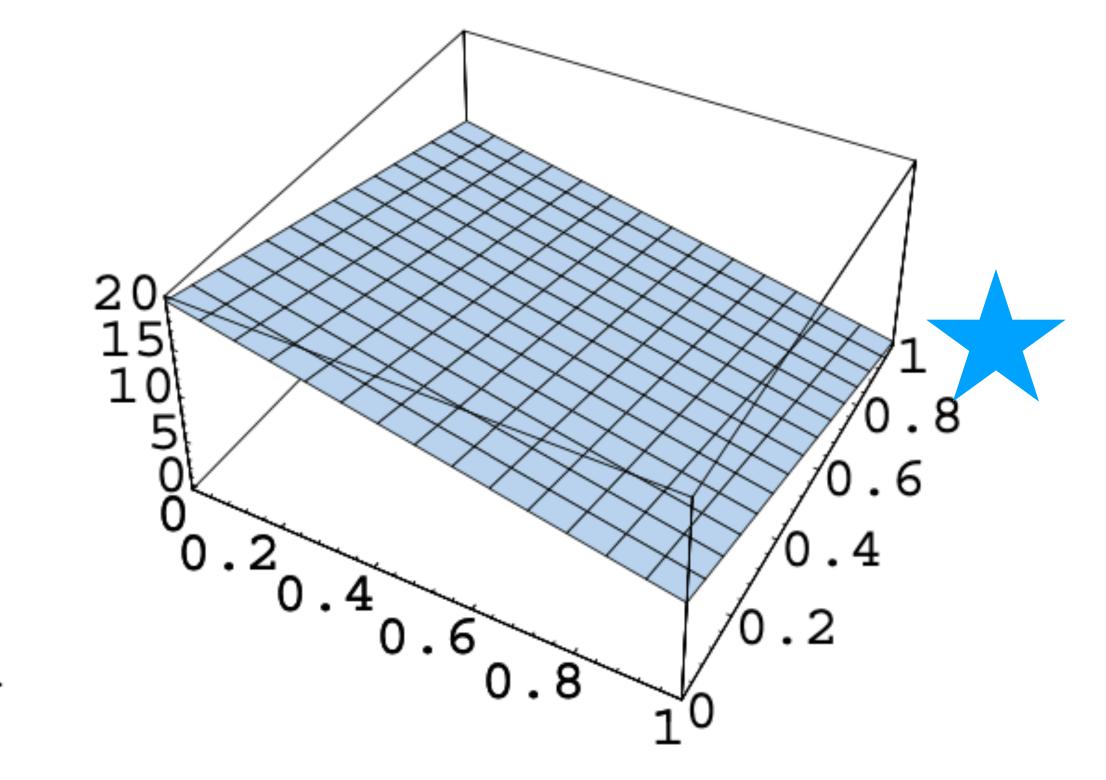


A simple example: Gridworld



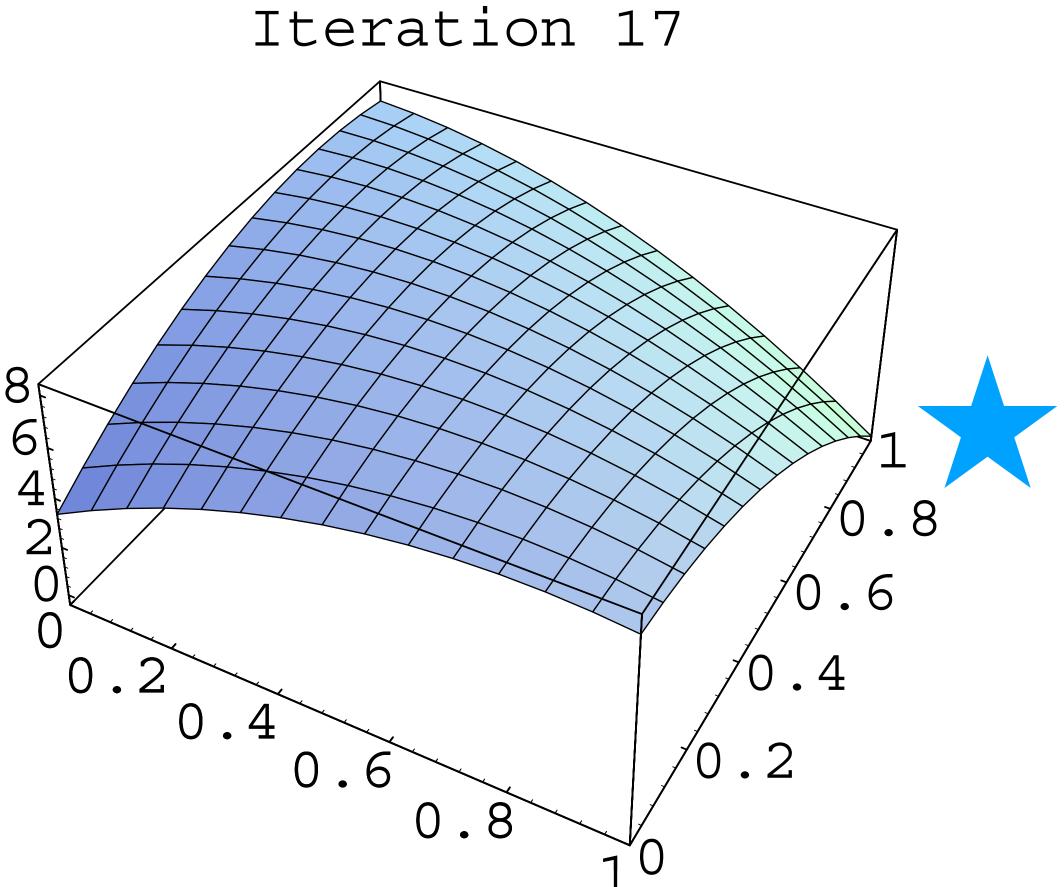
Boyan, Justin A and Moore, Andrew W, Generalization in Reinforcement Learning: Safely Approximating the Value Function. NeurIPS 199423

J*(x,y)

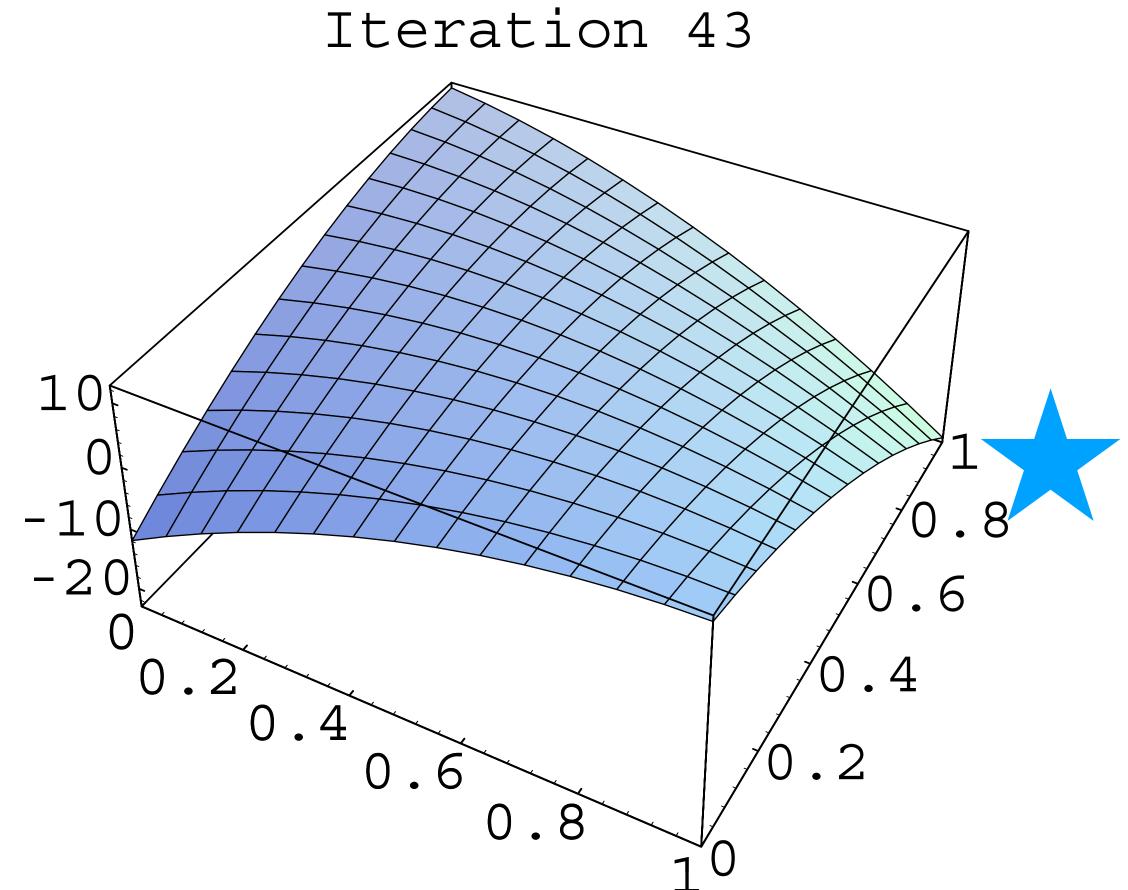


True value function

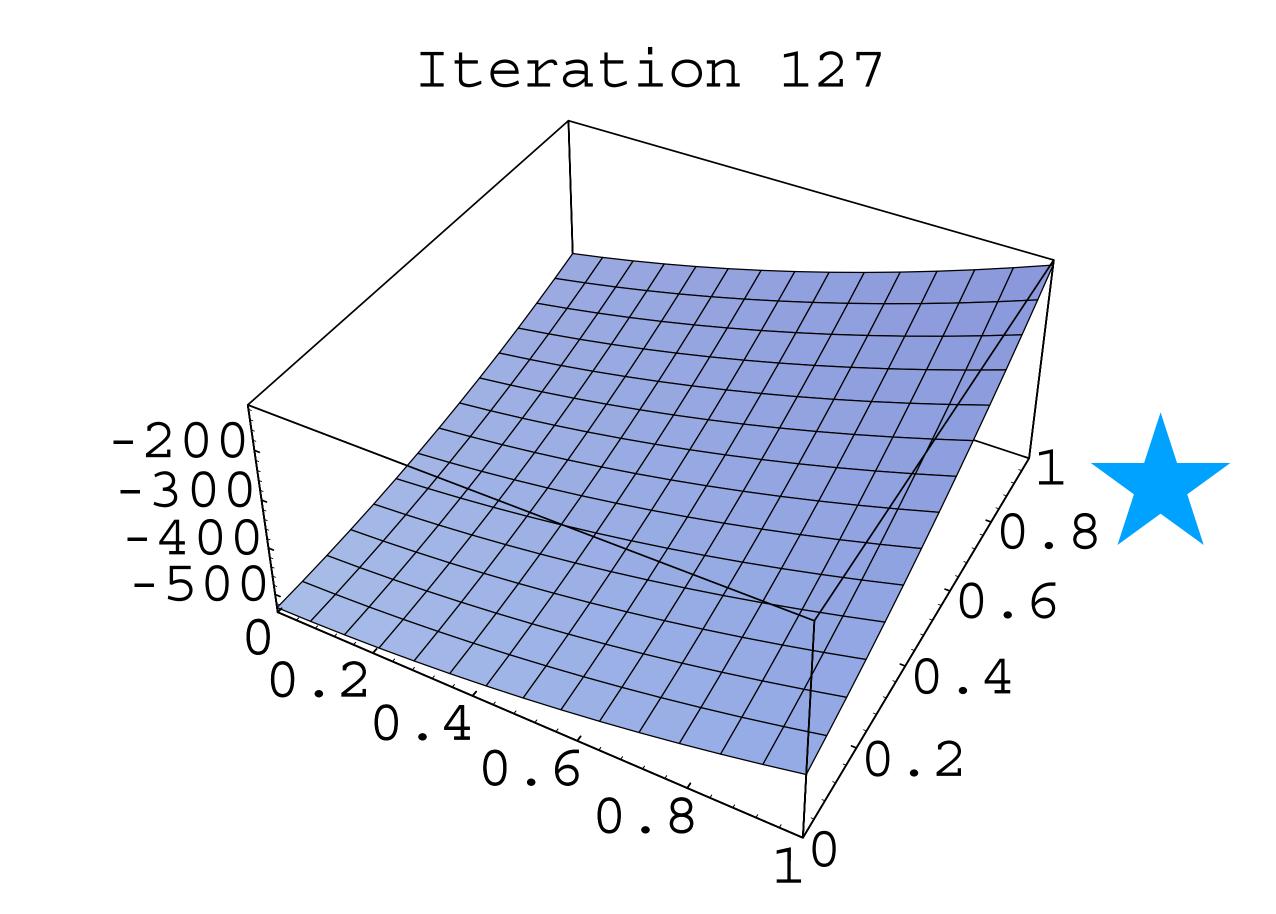
What happens when we run value iteration with a quadratic?



What happens when we run value iteration with a quadratic?

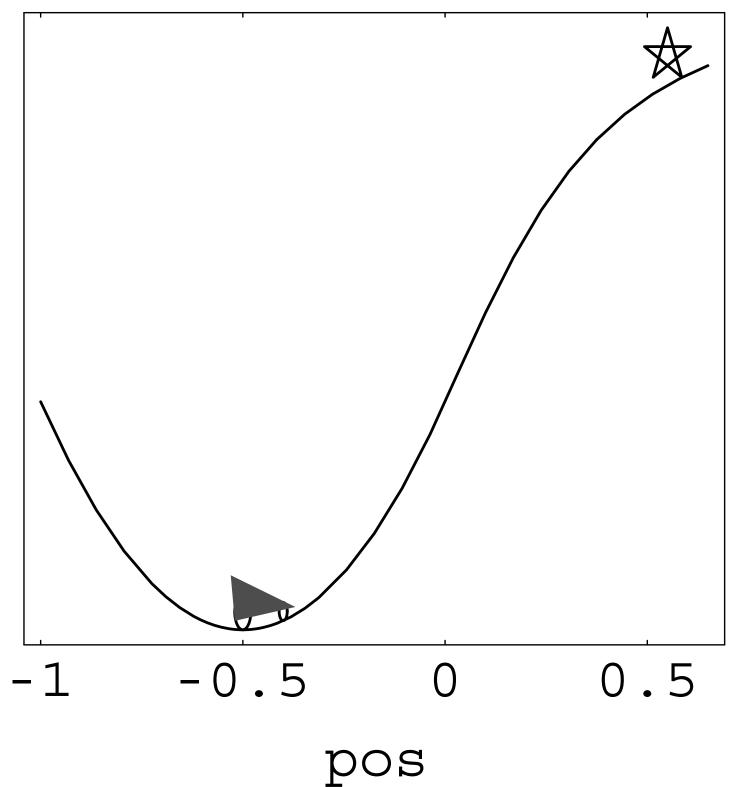


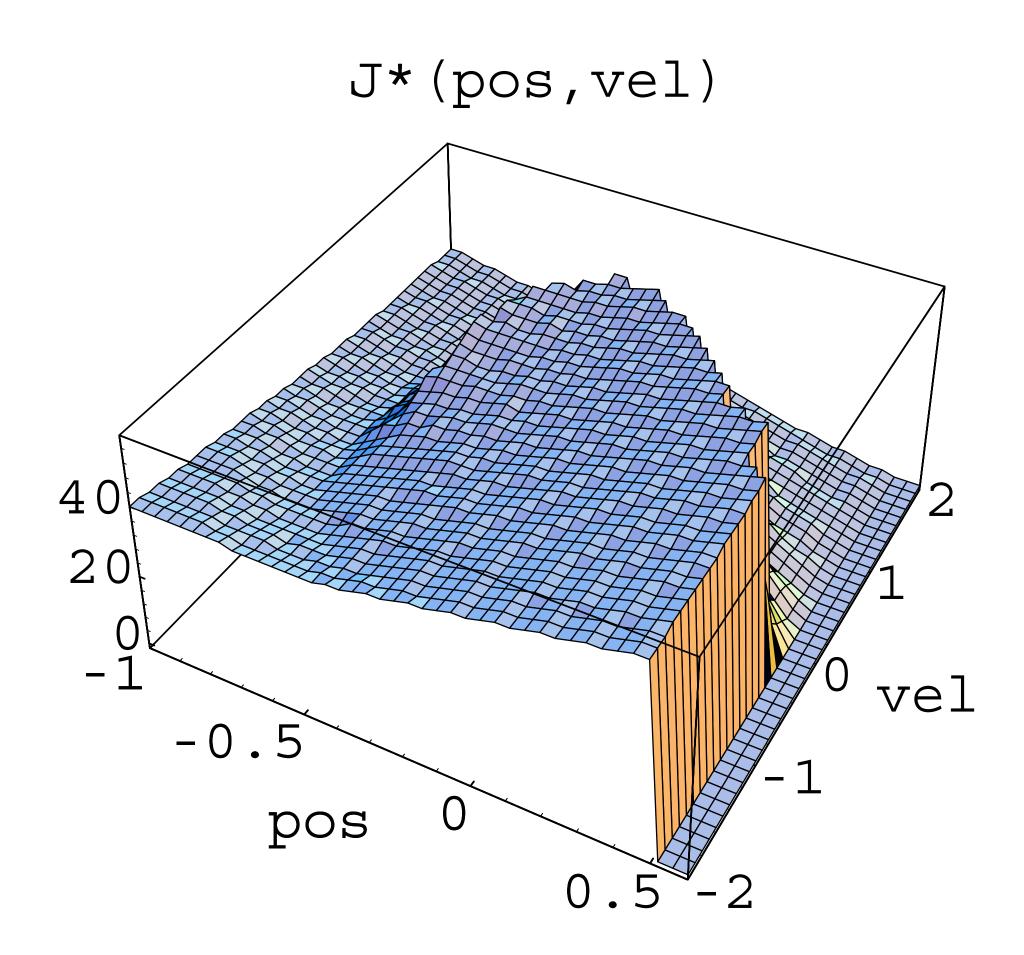
What happens when we run value iteration with a *quadratic?*

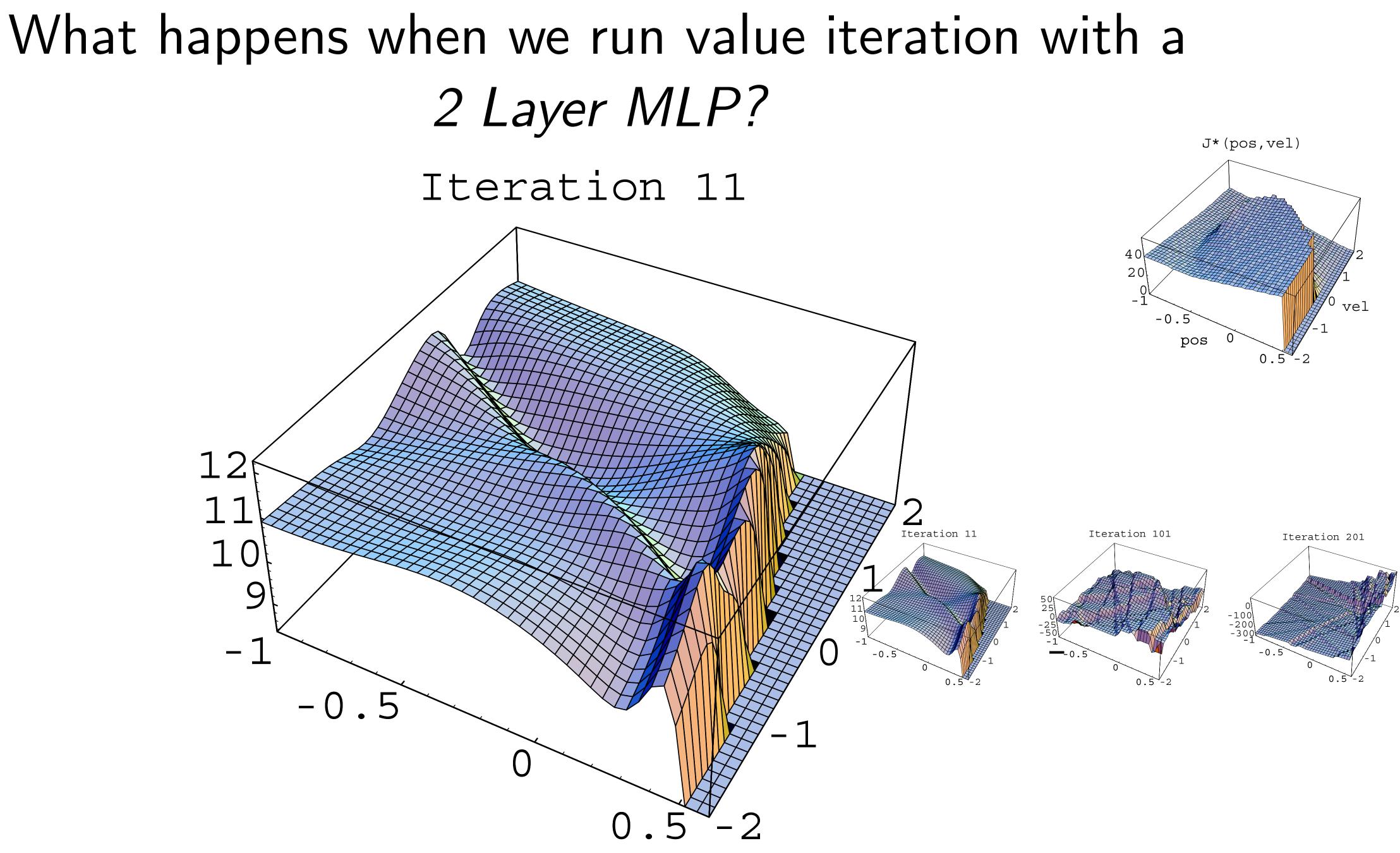


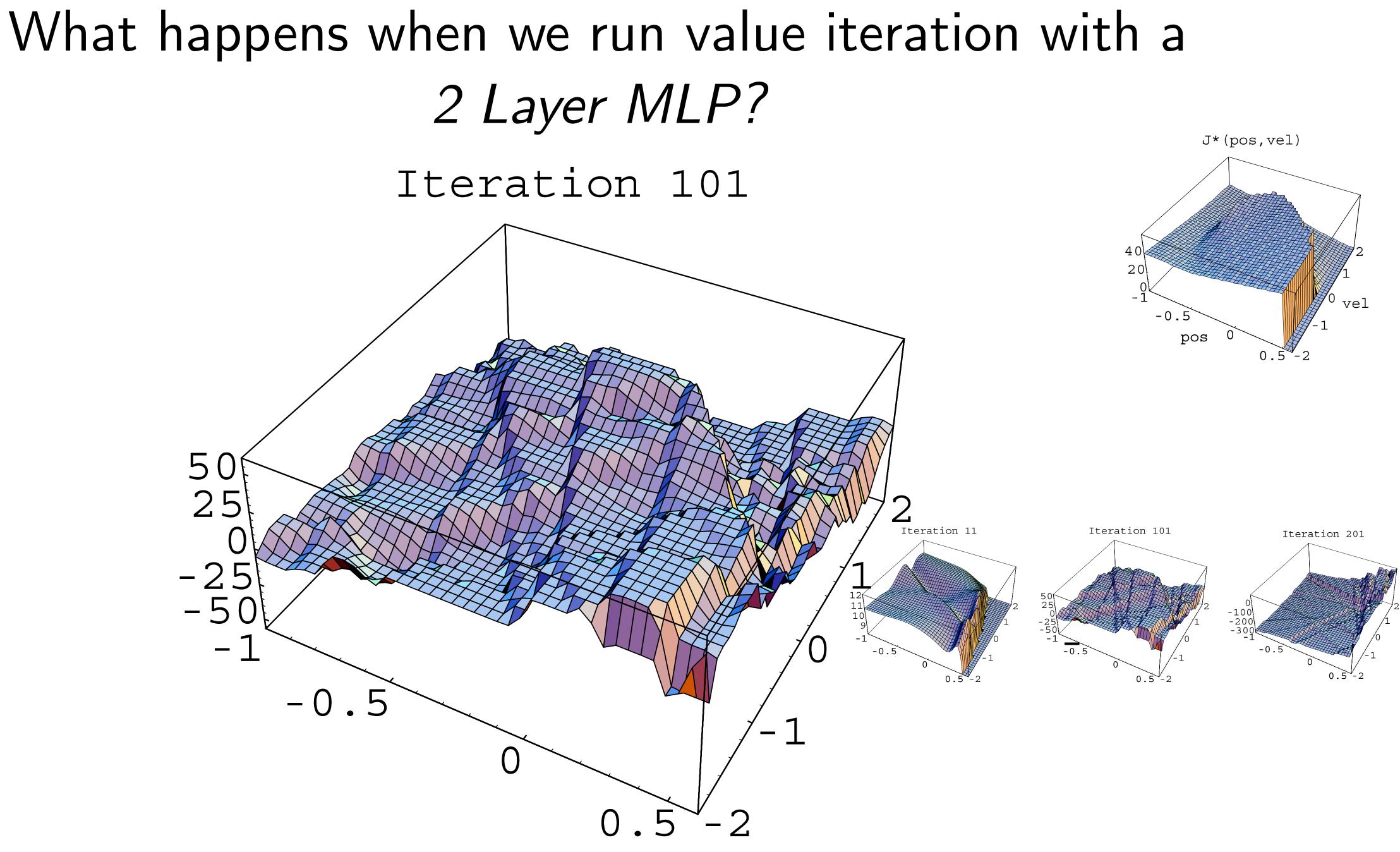
Another Example: Mountain Car!

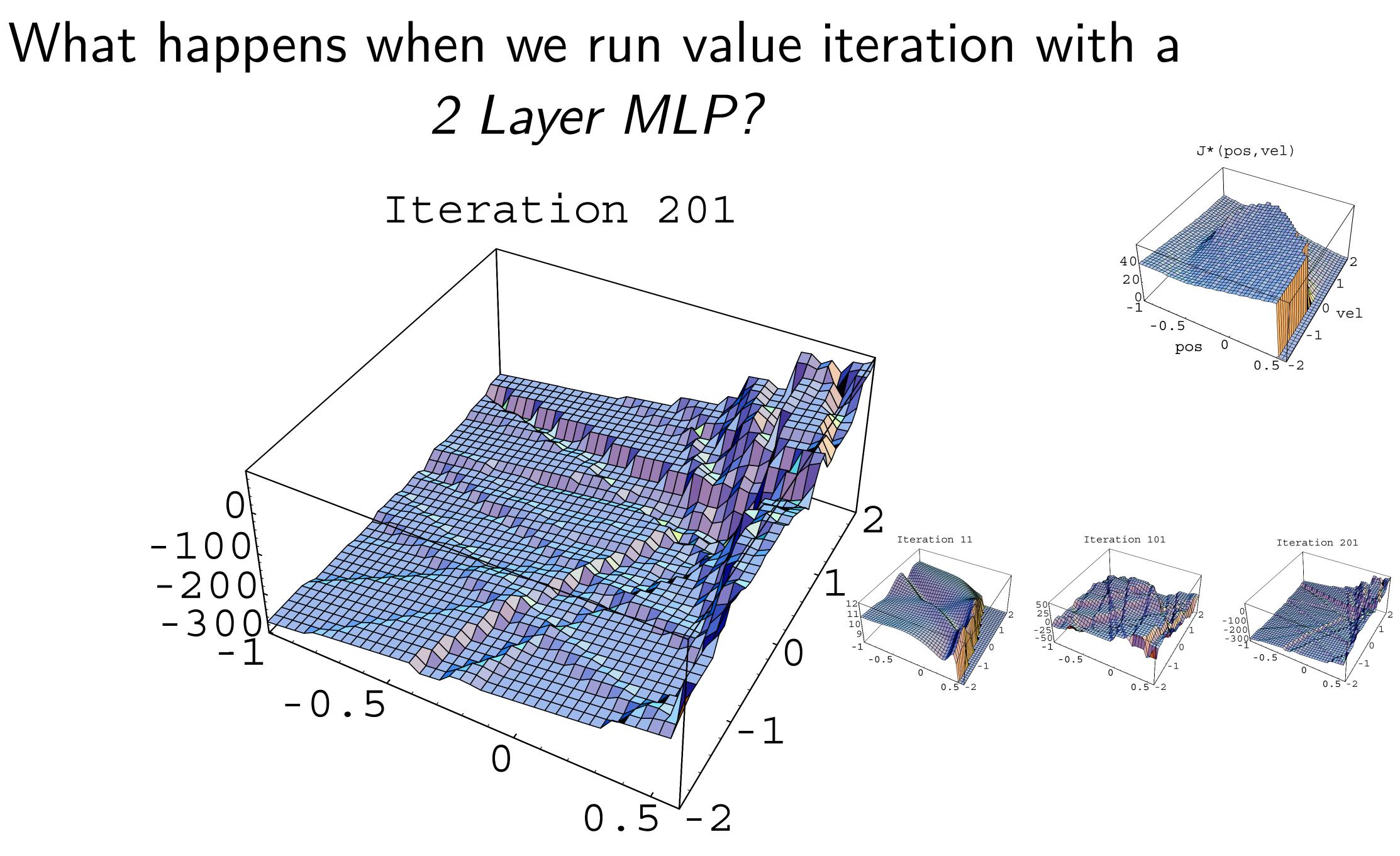
Car-on-the-Hill

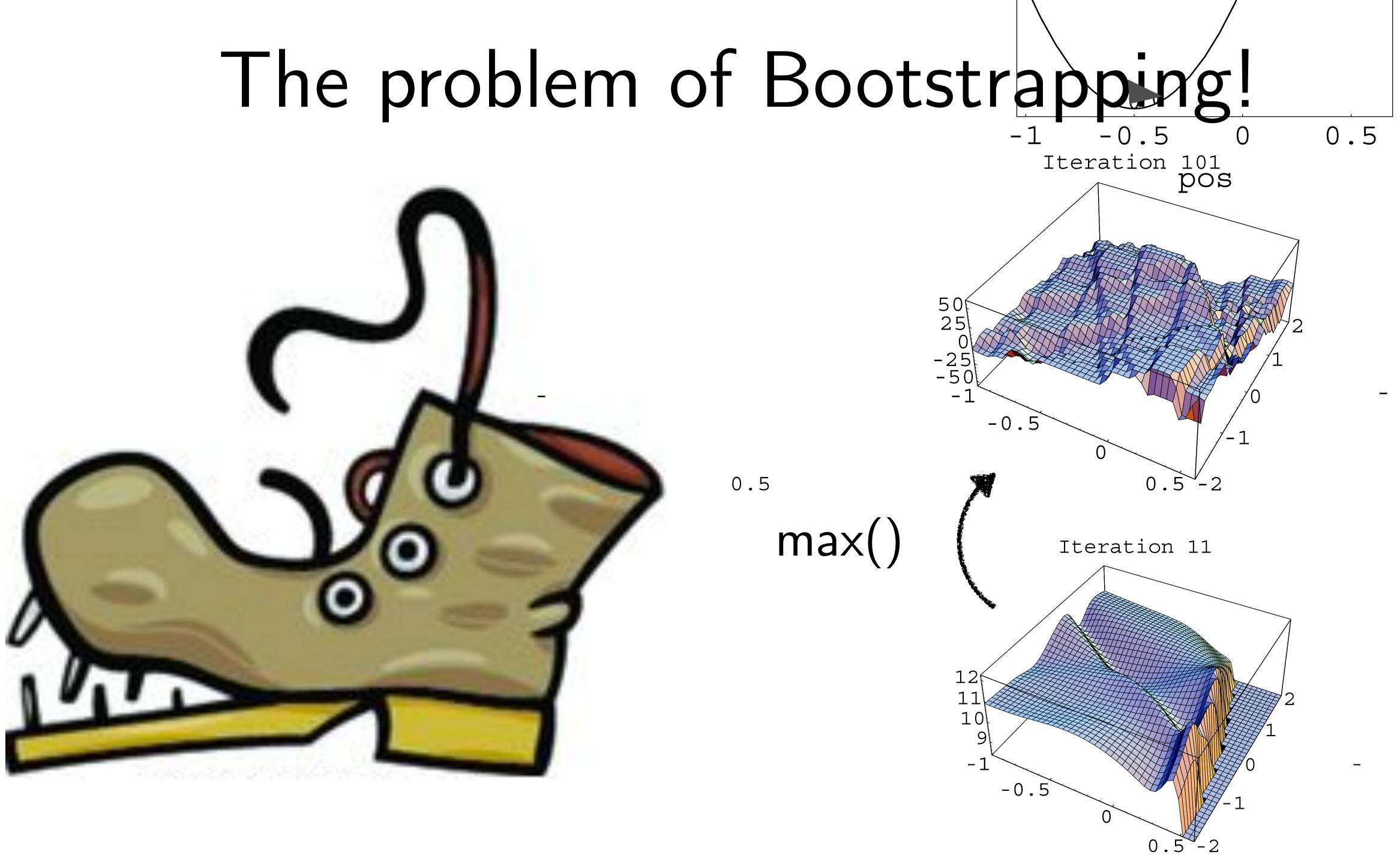










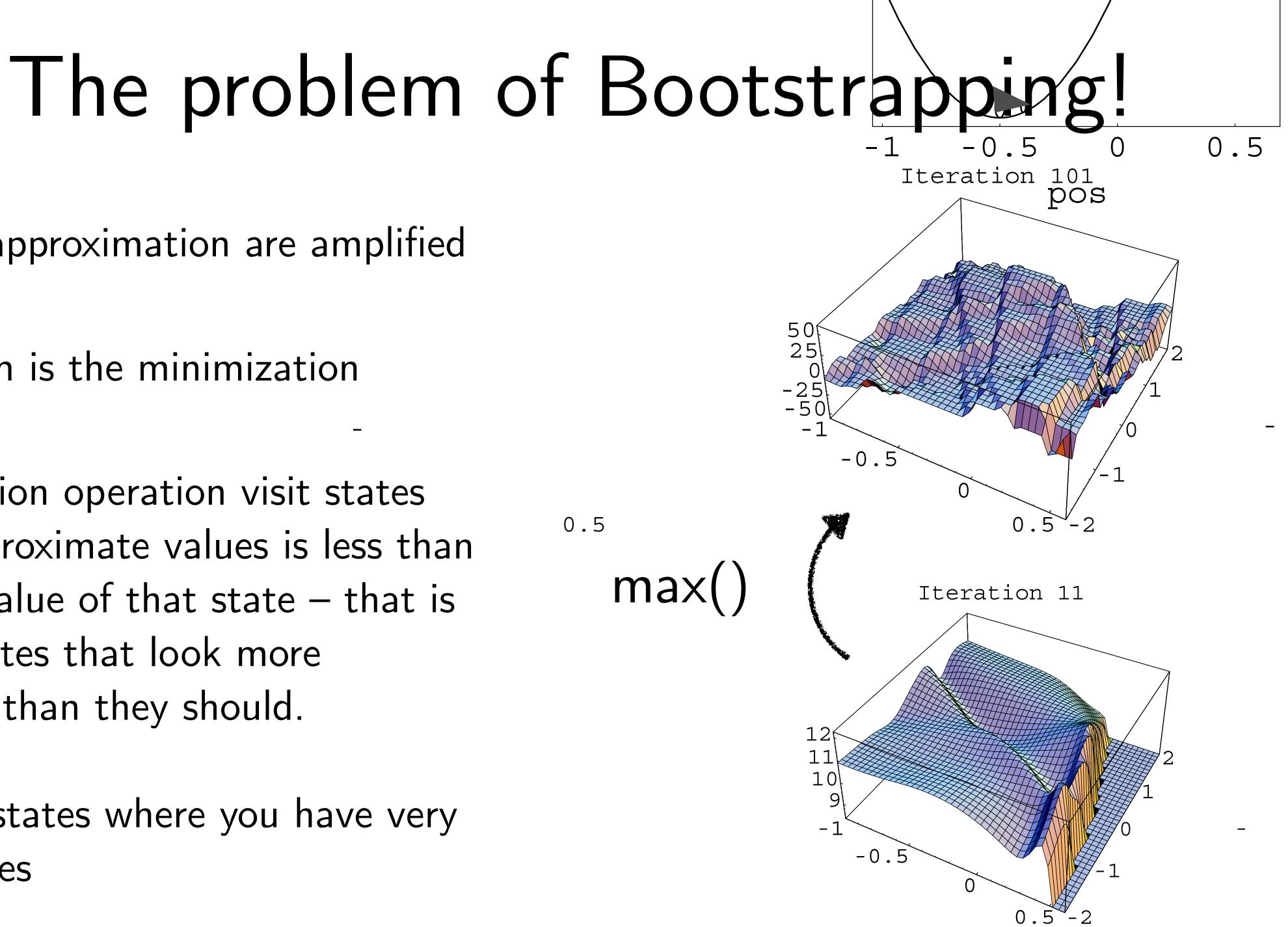


Errors in approximation are amplified

Key reason is the minimization

Minimization operation visit states where approximate values is less than the true value of that state – that is to say, states that look more attractive than they should.

Typically states where you have very few samples



What about policy iteration?

Policy Evaluation

0 -	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
~ -	0	0	0	0	0	0	0	0	0	0
m -	0	0	0	0	0	0	0	0	0	0
4 -	0	0	0	0	0	0	0	0	0	0
<u>س</u> -	0	0	0	0	0	0	0	0	0	0
- e	0	0	0	0	0	0	0	0	0	0
r -	0	0	0	0	0	0	0	0	0	0
ω -	0	0	0	0	0	0	0	0	0	0
თ	0	0	0	0	0	0	0	0	0	0
	ó	i	ź	3	4	5	6	ż	8	9

 $Q^{\pi}(s,a) = c(s,a)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} Q^{\pi}(s',\pi(s'))]$

Policy Iteration Policy Improvement

lter: 0

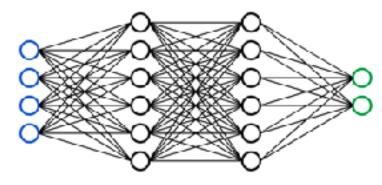
o -	→	→	→	→	→	→	→		→
	→	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow		→
~ -	→	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
m -	→	→	→	→	→	\rightarrow	\rightarrow	\rightarrow	→
4 -	→	→	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
<u>ہ</u> -	→	→	→	→	→	→	→		→
ω -	→	→	→	→	→	→	→	→	→
r -	→	→	\rightarrow	→	\rightarrow	\rightarrow	→	→	→
∞ -	→	→	→	→	→	→	→	→	→
<u></u> თ -	→	→	→	→	→	→	→	→	→
	ó	i	ź	3	4	5	6	ż	8

 $\pi^+(s) = \arg\min Q^{\pi}(s, a)$ \mathcal{A}

Approximate (Fitted) Policy Iteration

Fitted policy evaluation

Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$



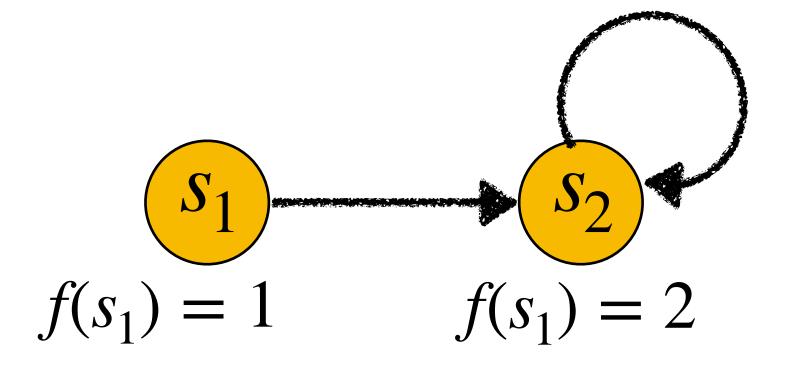
Init $Q_{\theta}(s, a) \leftarrow 0$ while not converged do $D \leftarrow \emptyset$ for $i \in 1, ..., n$ input $\leftarrow \{s_i, a_i\}$ target $\leftarrow c_i + \gamma Q_{\theta}(s'_i, \pi(s'_i))$ $D \leftarrow D \cup \{\text{input, output}\}$ $Q_{\theta} \leftarrow \mathsf{Train}(D)$ return Q_{θ}

Policy Improvement

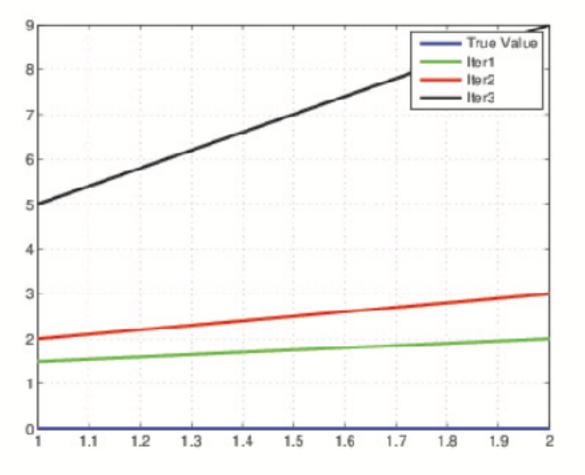
This remains the same!

 $\pi^+(s) = \arg\min_a Q^{\pi}(s,a)$

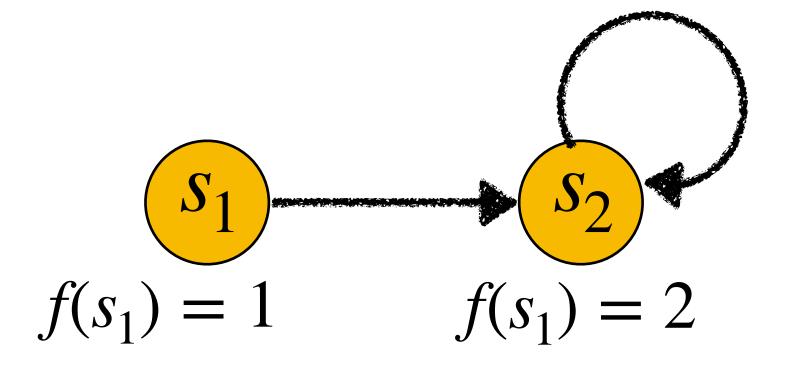
Surely approximate value evaluation is more stable than approximate value iteration? (There is no min()!)



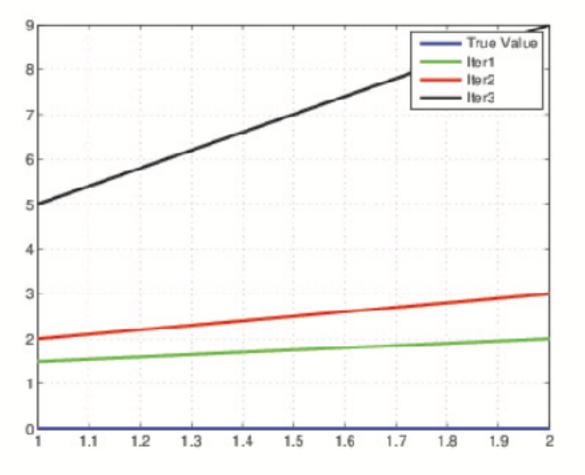
w blows up!



Well ... not quite



w blows up!



Well ... not quite

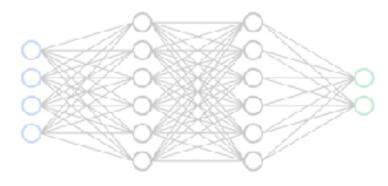
But we can fix this by on-policy weighting

Weight each datapoint by how often the policy visits it.

But what about policy improvement? Policy Improvement

Fitted policy evaluation

Given $\{s_i, a_i, c_i, s'_i\}_{i=1}^N$



lnit $Q_{\theta}(s, a) \leftarrow 0$ while not converged do This is fine.. for $i \in 1, ..., n$ input $\leftarrow \{s_i, a_i\}$ target $\leftarrow c_i + \gamma Q_{\theta}(s'_i, \pi(s'_i))$ $D \leftarrow D \cup \{\text{input, output}\}$ $Q_{\theta} \leftarrow \operatorname{Train}(D)$ return Q_{θ}

But this has the min() step!

 $\pi^+(s) = \arg\min Q^{\pi}(s, a)$ \mathcal{A}

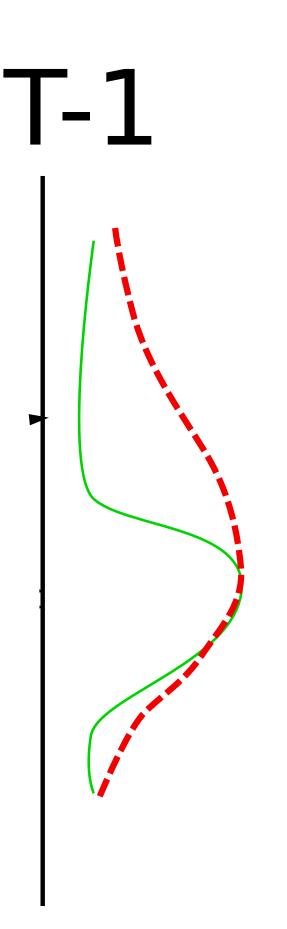
The problem of distribution shift

Upper half of state is BAD

Lower half of state is GOOD

----- Approximated Q

True Q



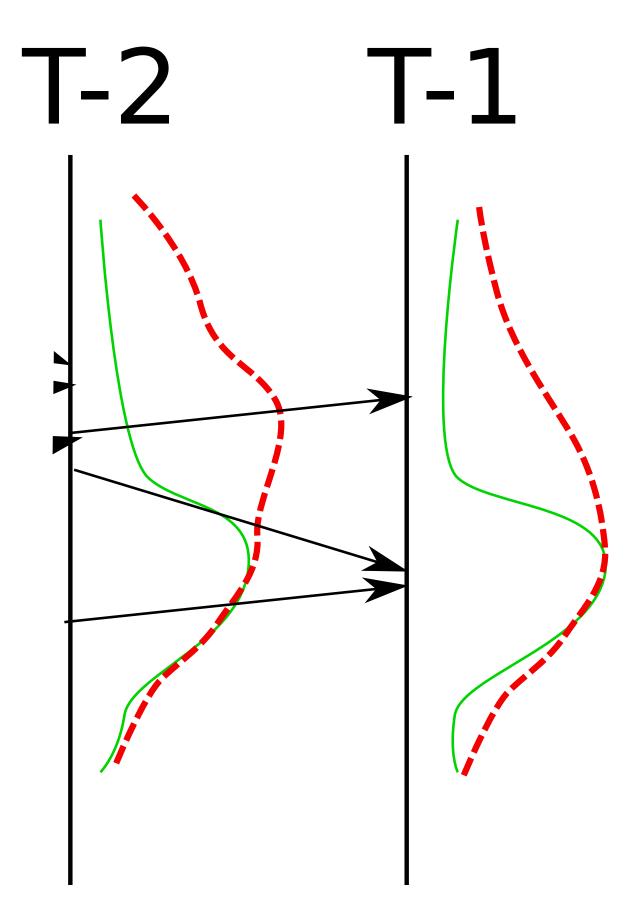
The problem of distribution shift

Upper half of state is BAD

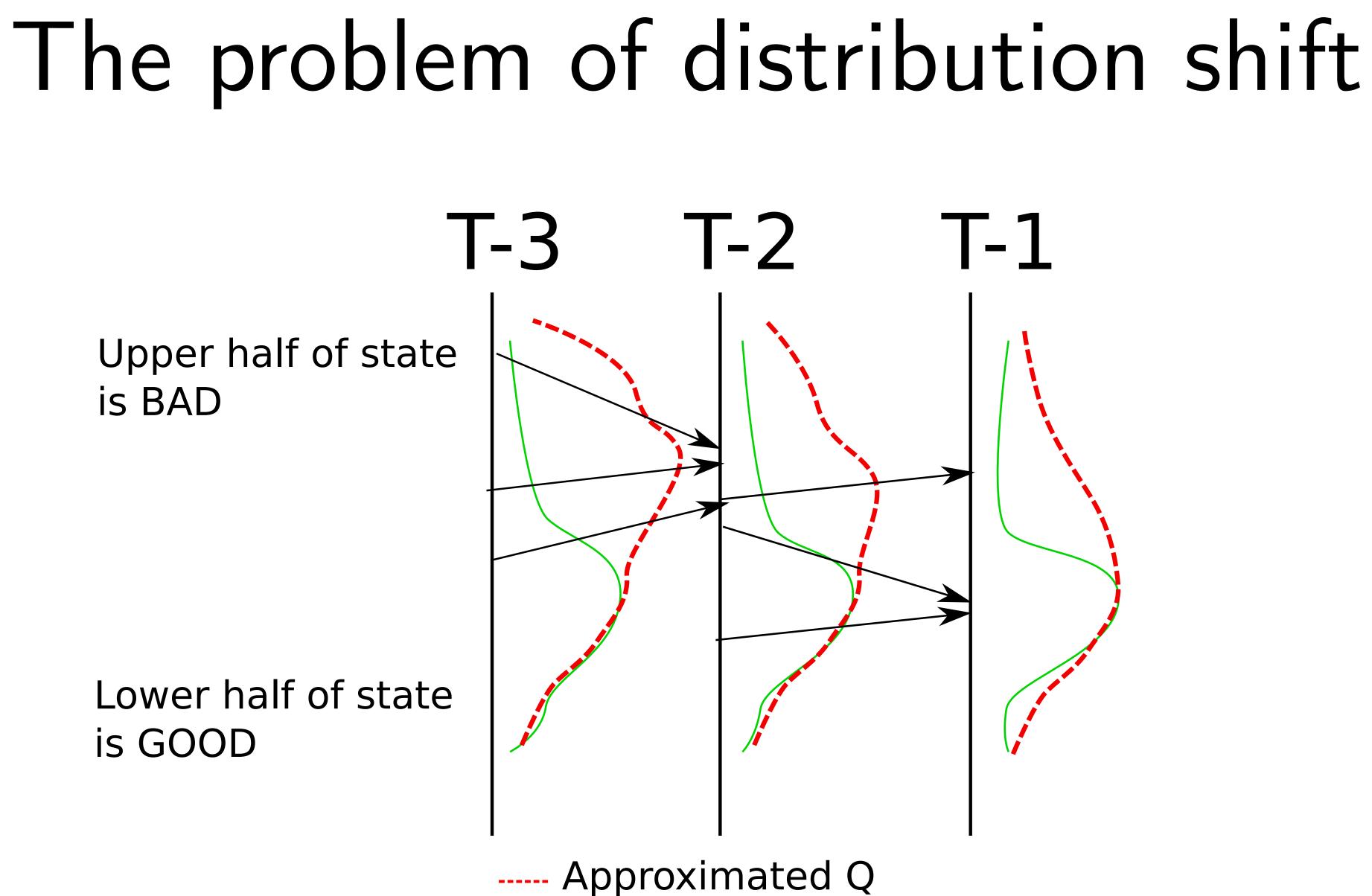
Lower half of state is GOOD

----- Approximated Q

True Q



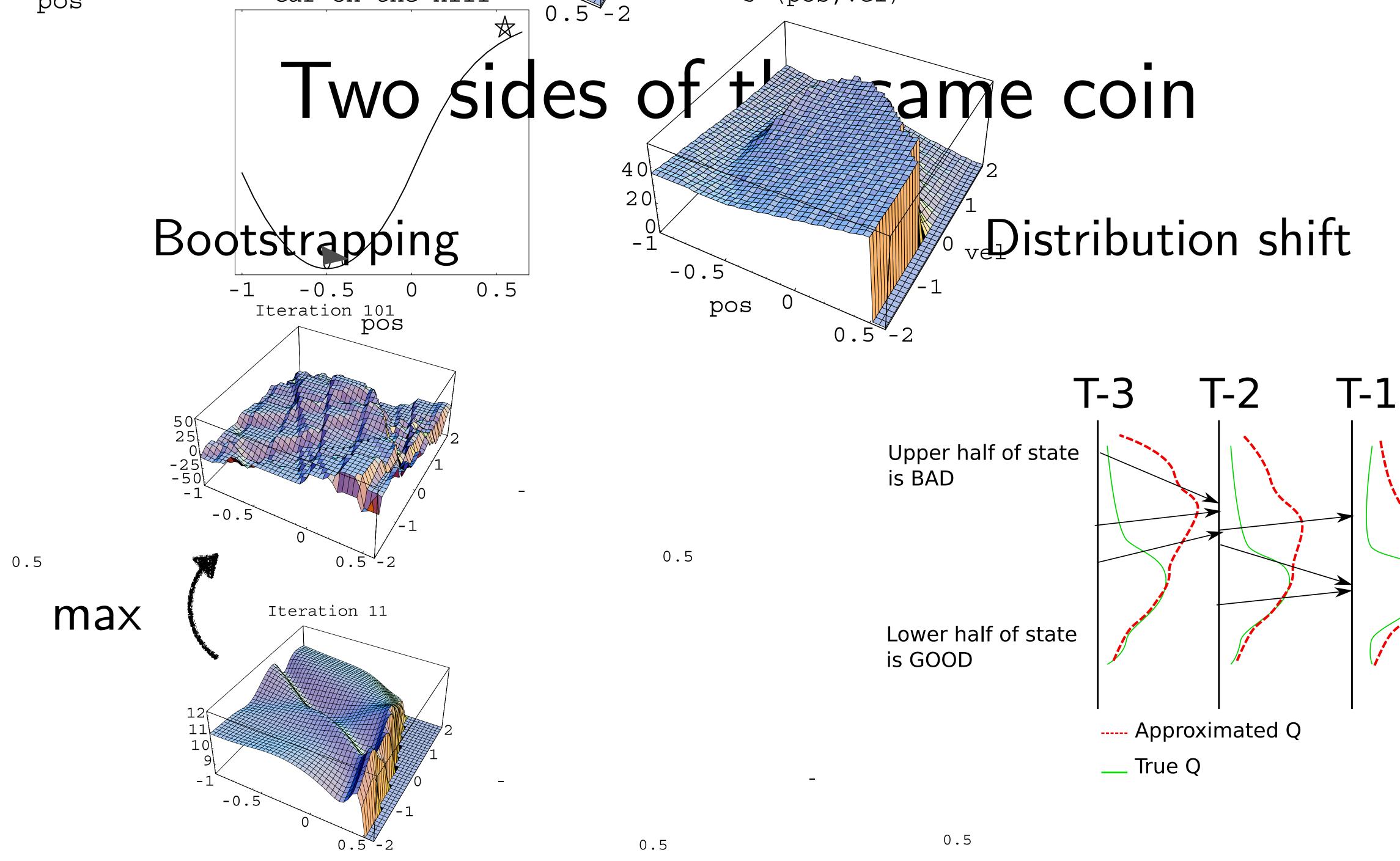
41



True Q

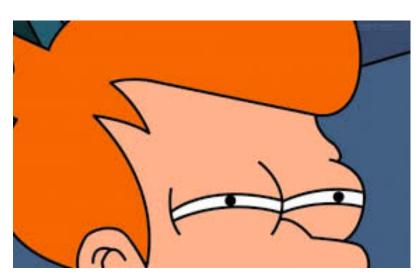
Boostrapping

Distribution Shift



Ideas for fixing this?

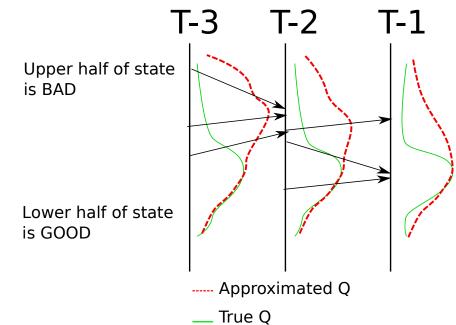
Bootstrapping



When doing min(), don't trust value estimate

Execute policy and trust actual returns

Remedies



Distribution shift

Minimize the distribution shift

Be conservative, change policy slowly

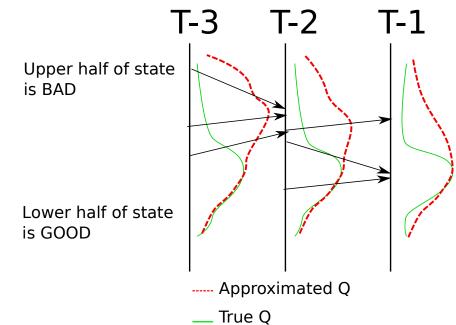
Bootstrapping



When doing min(), don't trust value estimate

Execute policy and trust actual returns

Remedies



Distribution shift

Minimize the distribution shift

Be conservative, change policy slowly

47

tl,dr

