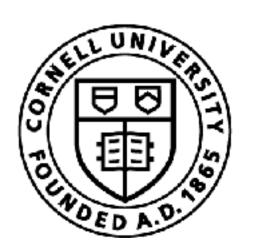
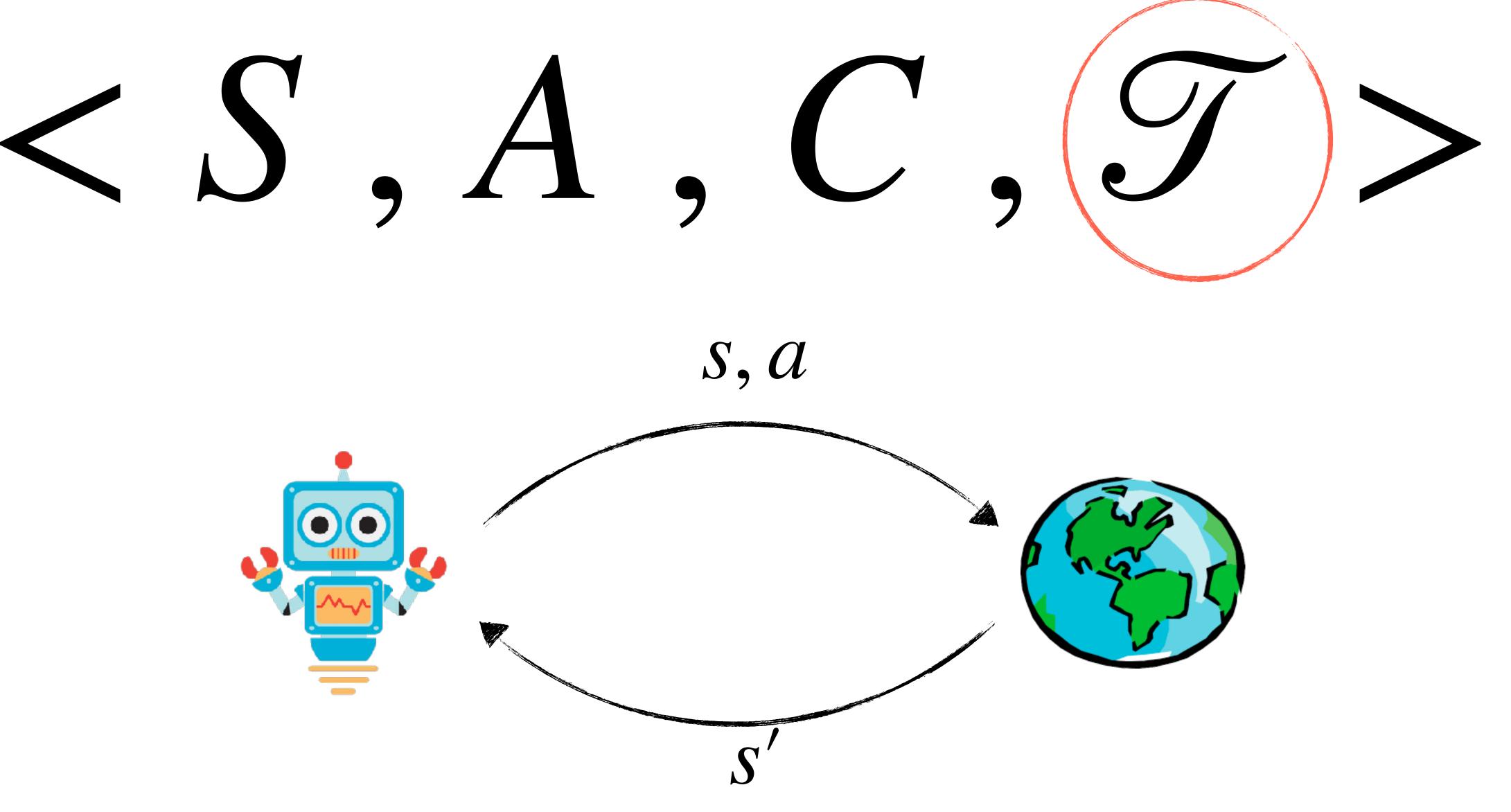
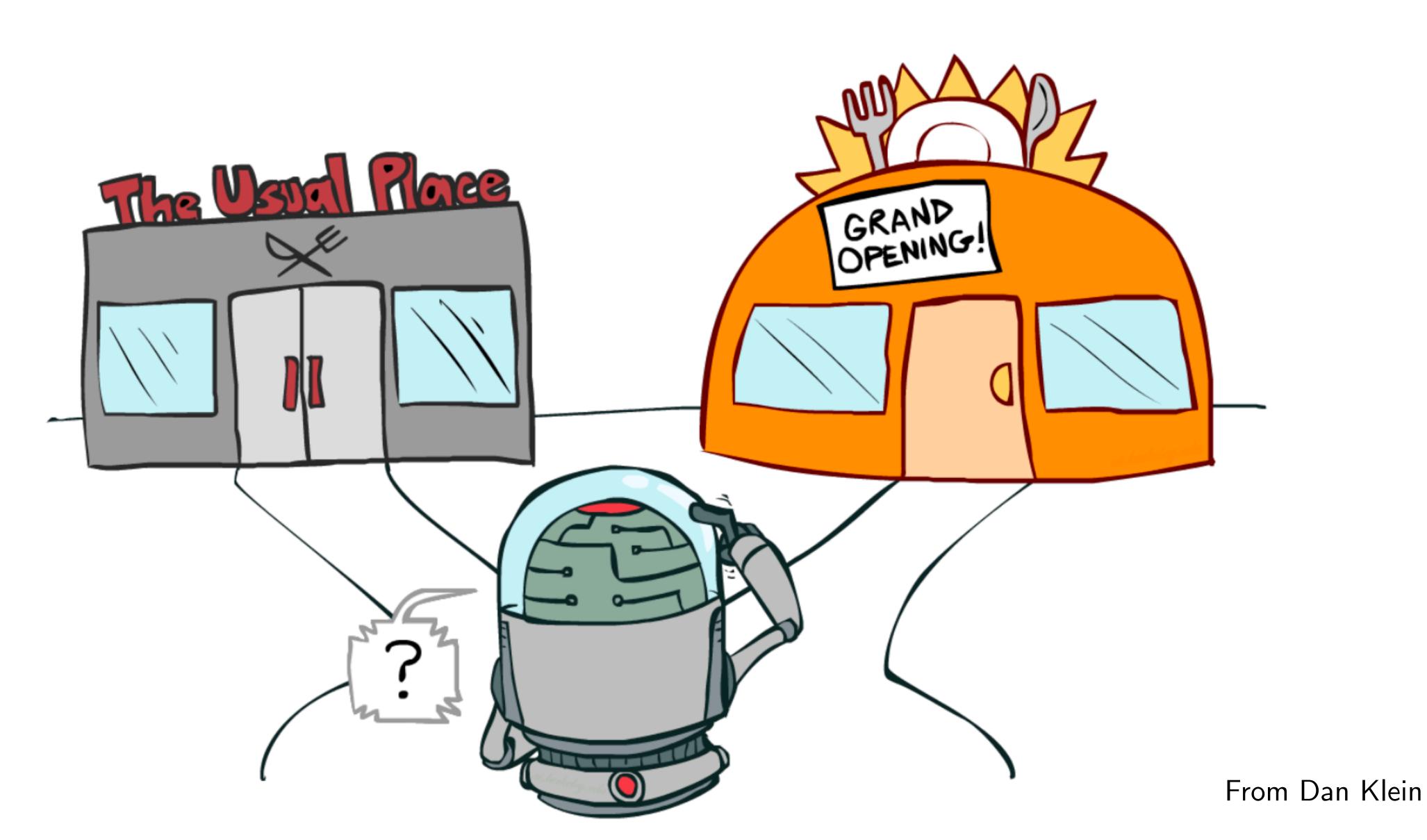
Temporal Difference & Q Learning

Sanjiban Choudhury

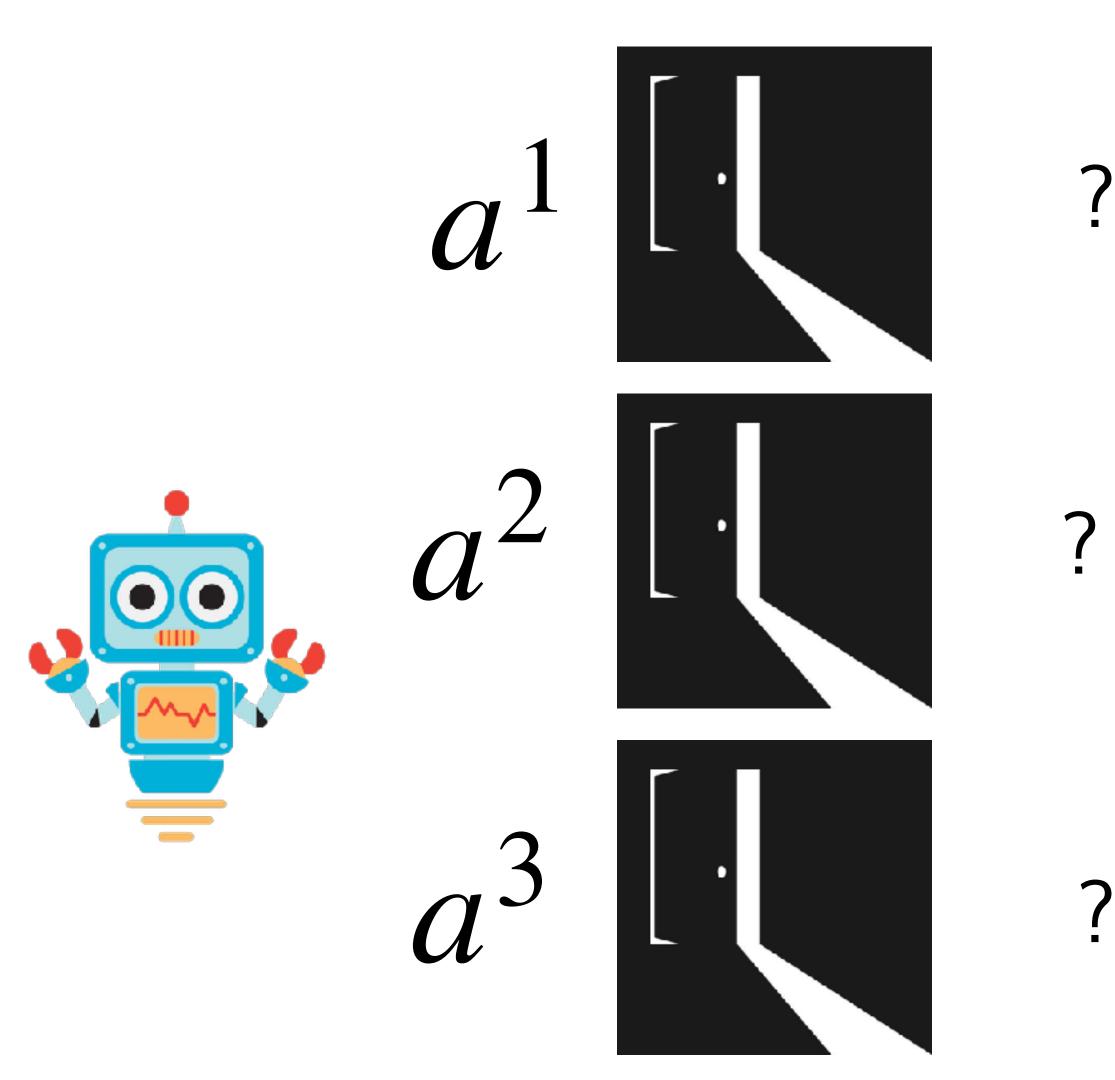


What if the transitions are unknown?





Exploration vs Exploitation

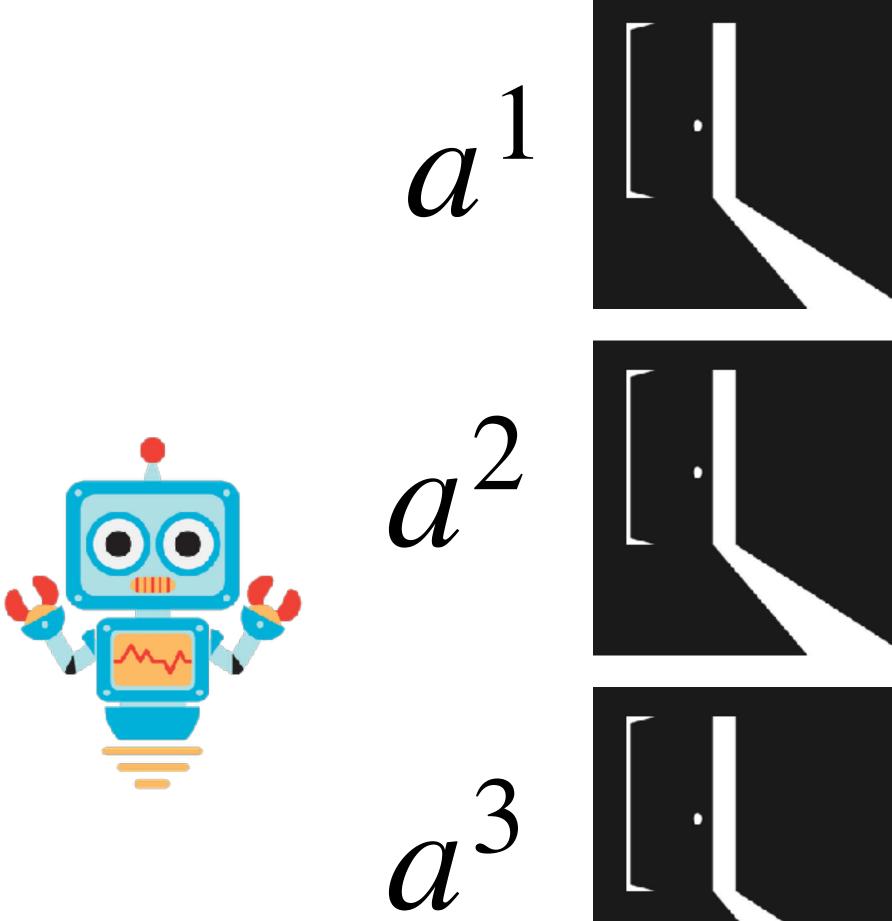


- •
- •
- •
- •
- •
- •
- •

-100

Doors

Round 2 Round 1 Round 3



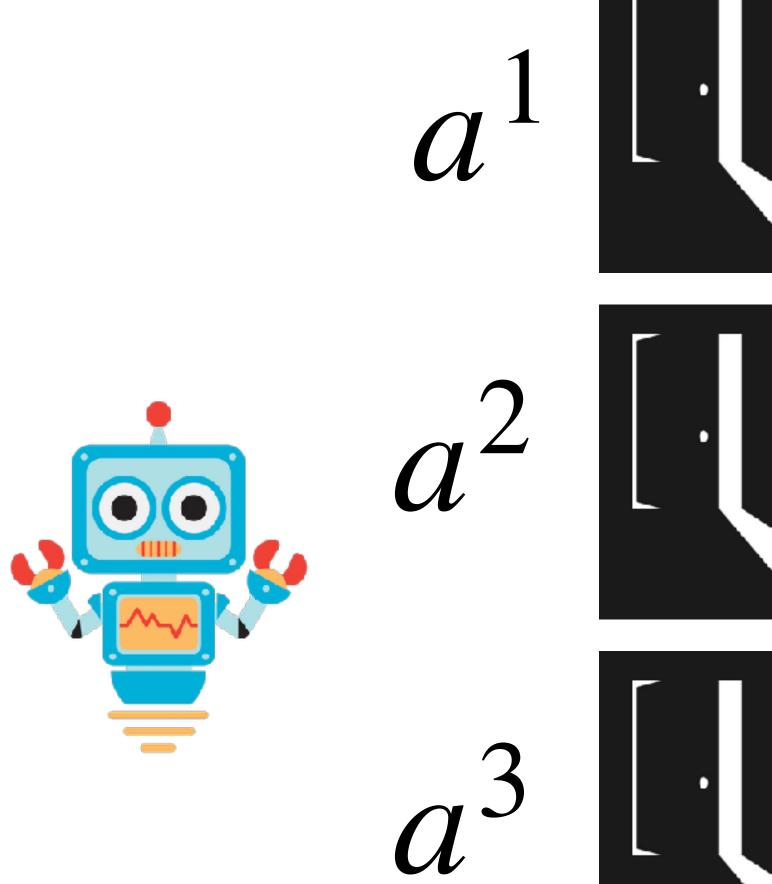
- \bullet

-100

-1

Doors

Round 2 Round 1 Round 3

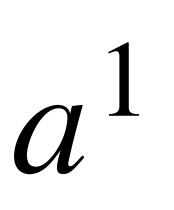


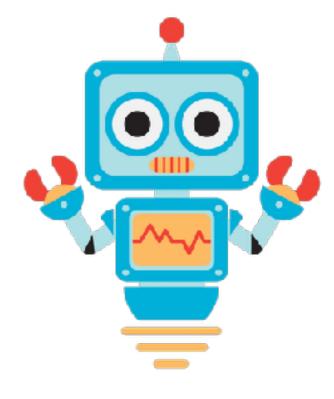
- \bullet

-1

Doors

Round 3 Round 1 Round 2

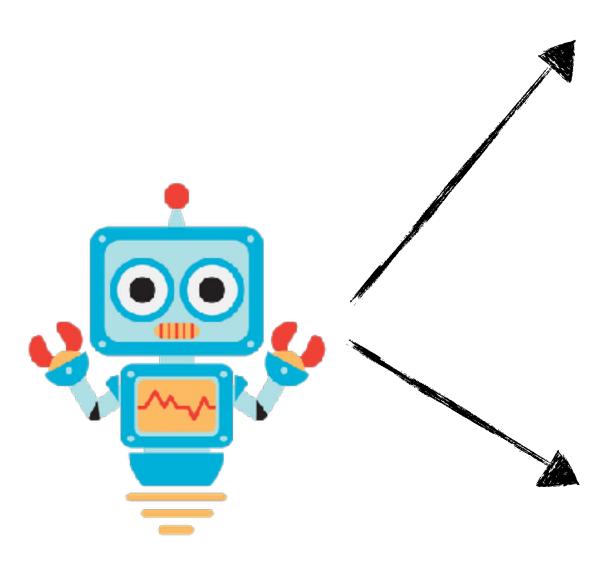




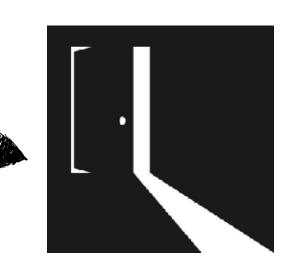
 a^2

How do we explore/ exploit when picking doors?

What if we played the game over multiple time steps?

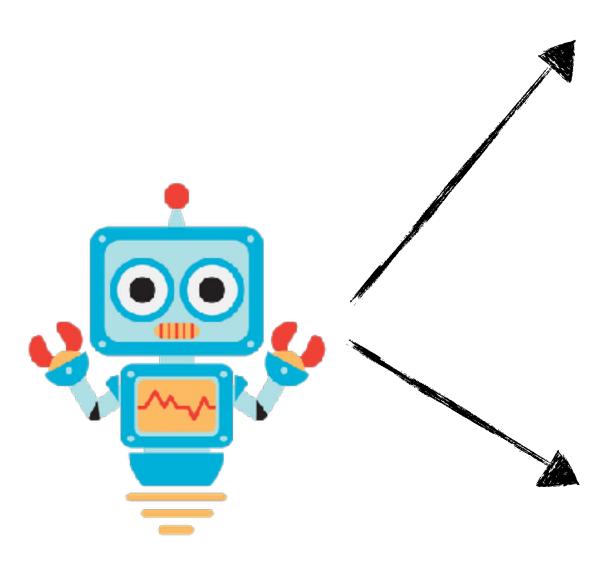


- - •
- t = 1

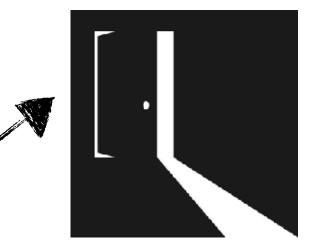


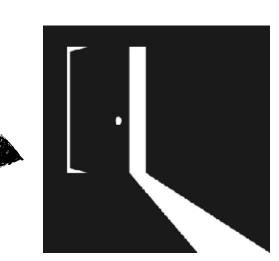
t = 2

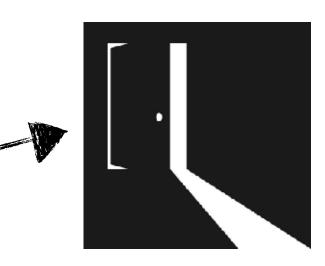
1000

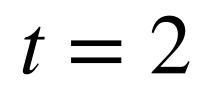


- - •
- t = 1



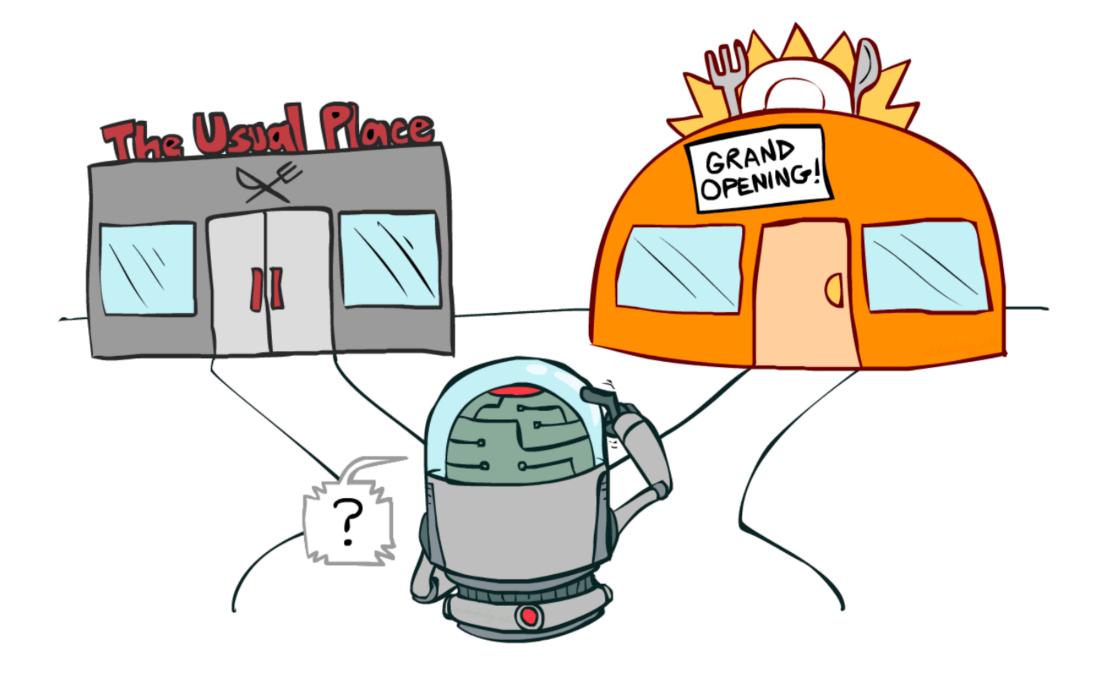




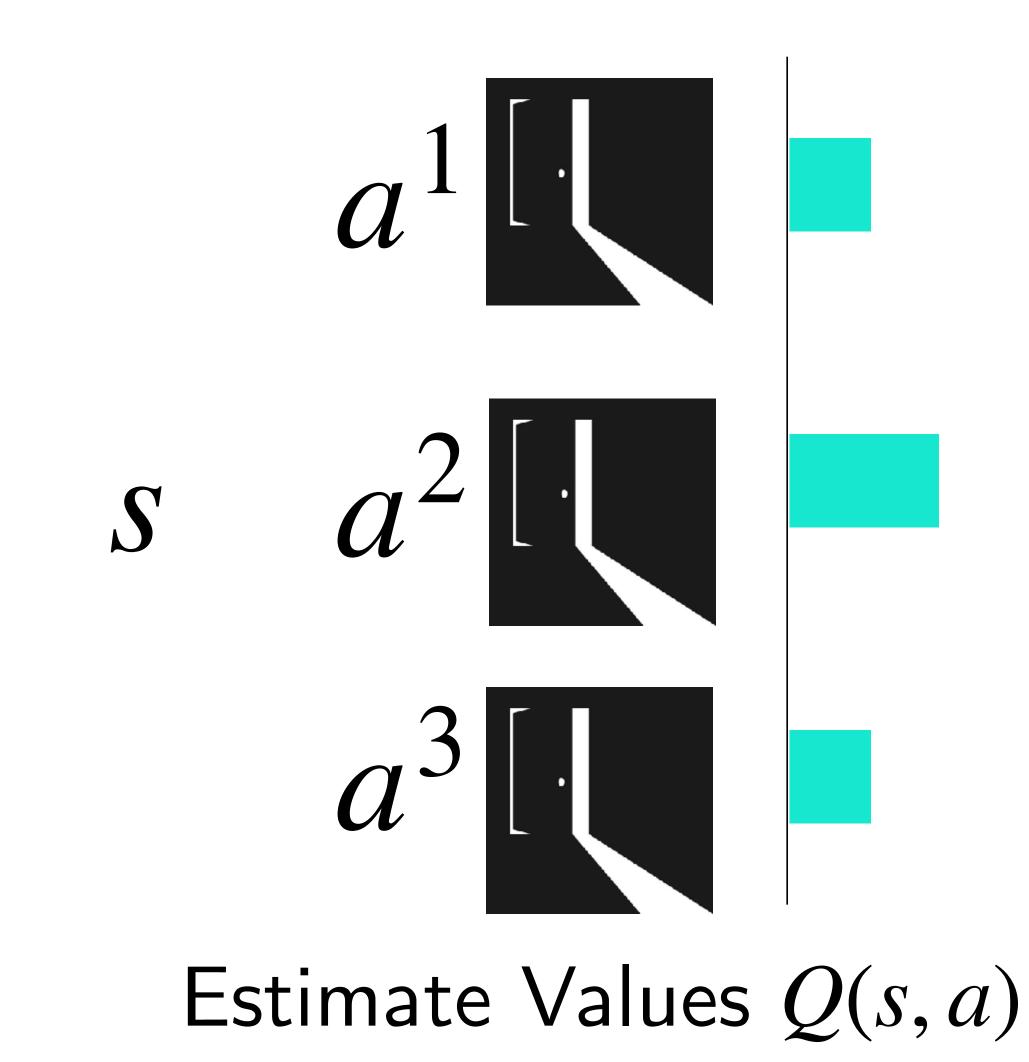


How do we estimate values of each door?

Two Ingredients of RL

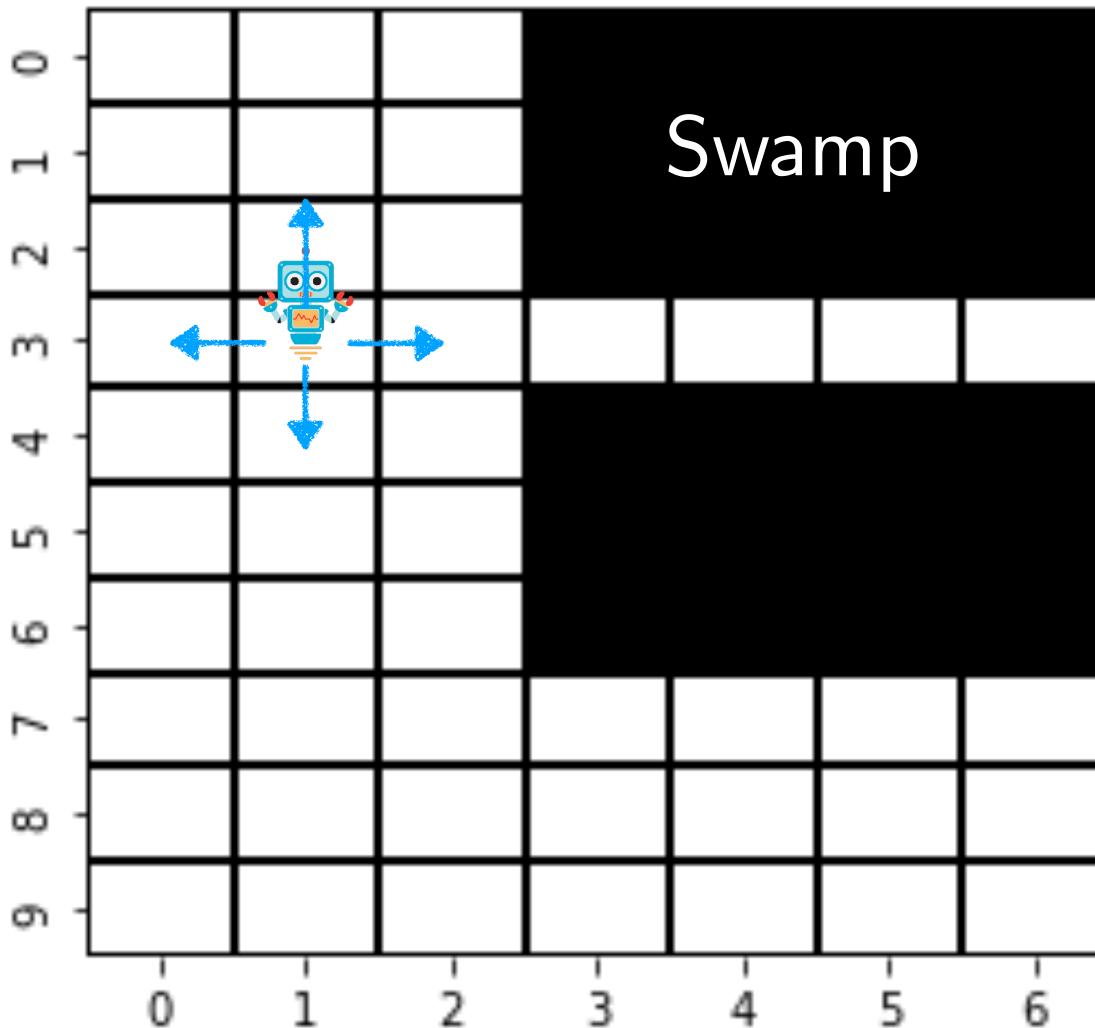


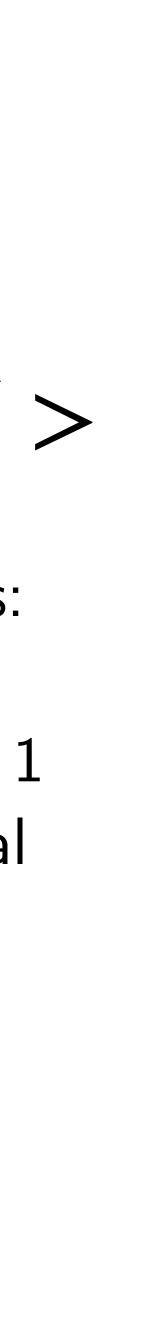
Exploration Exploitation



11

Recap: The Swamp MDP $\langle S, A, C, \mathcal{T} \rangle$ Swamp • Two absorbing states: Goal and Swamp • Cost of each state is 1 till you reach the goal • Let's set T = 308 9





When the MDP is known!

Run Value / Policy Iteration

When MDP is known: Policy Iteration

0 -	- 0	0	0	0	0	0	0	0	0	0
ч.	- 0	0	0	0	0	0	0	0	0	0
2	- 0	0	0	0	0	0	0	0	0	0
m -	- 0	0	0	0	0	0	0	0	0	0
4	- 0	0	0	0	0	0	0	0	0	0
ы.	- 0	0	0	0	0	0	0	0	0	0
. و	- 0	0	0	0	0	0	0	0	0	0
5	- 0	0	0	0	0	0	0	0	0	0
ω -	- 0	0	0	0	0	0	0	0	0	0
ი.	- 0	0	0	0	0	0	0	0	0	0
	ò	i	ź	ż	4	5	6	ź	8	9

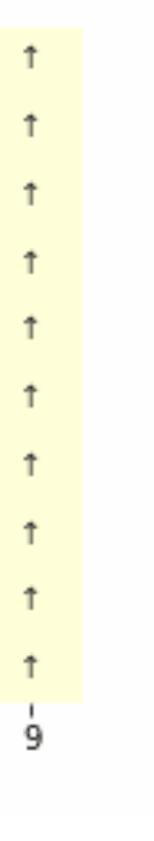
 $V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s') \qquad \pi^+(s) = \arg\min c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s,a)} V^{\pi}(s')$

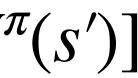
Estimate value

lter: 0

o -	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
	→	→	→	\rightarrow	→	\rightarrow	→	\rightarrow	\rightarrow
~ -	→	→	→	→	→	→	→	→	→
m -	→	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
4 -	→	→	→	→	→	→	→	→	→
<u>ہ</u> -	→	→	→	→	→	→	→	→	→
φ-	→	→	→	→	→	→	→	→	→
r -	→	→	→	→	→	→	→	→	→
∞ -	→	→	→	→	→	→	→	→	→
<u></u> თ	→	→	\rightarrow						
	ó	i	ź	ż	4	ś	é	ż	8

Improve policy





What happens when the MDP is unknown?

15

Need to estimate the value of policy

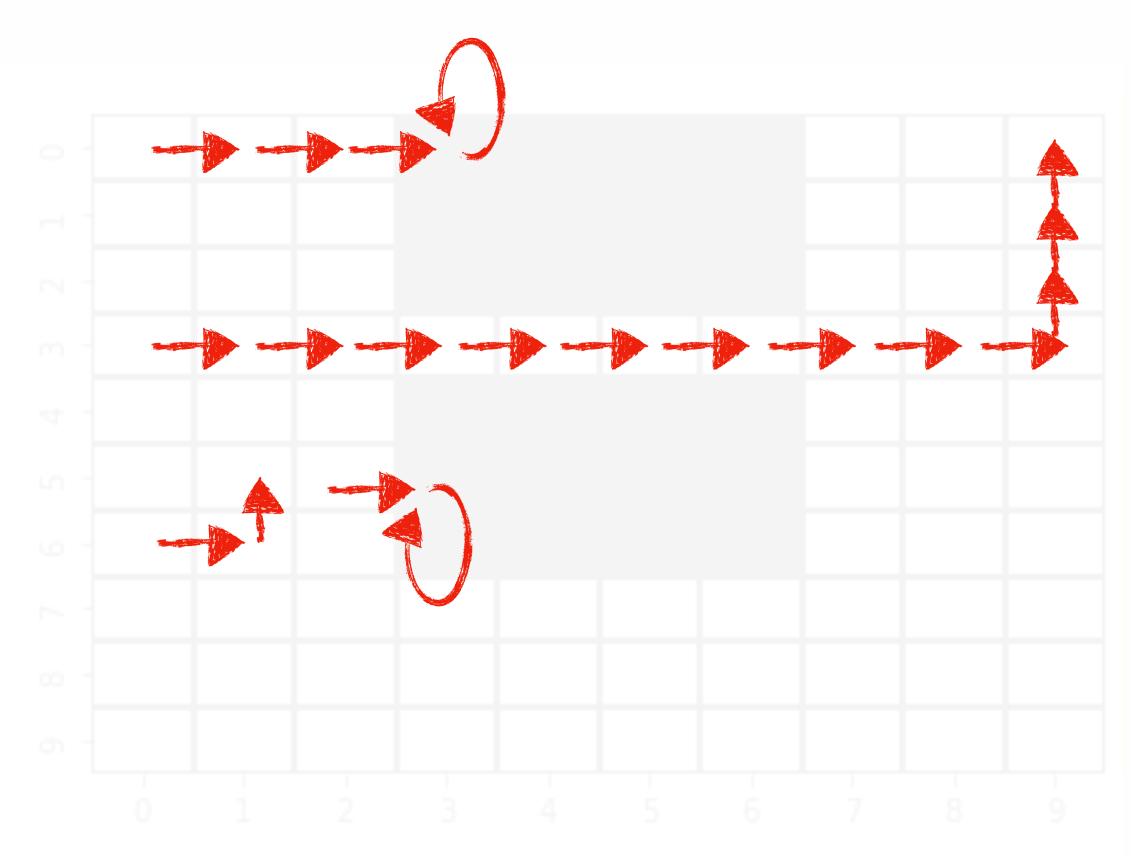
Value $V^{\pi}(s)$

lter: 0

o -	→	→	→	→	→	→	→		
	→	→	→	→	→	→	→		→
~ - M	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow		→
m -	→	→	→	\rightarrow	→	\rightarrow	→	→	→
4 -	→	→	→	\rightarrow	→	\rightarrow	→		→
<u>ہ</u> -	→	→	→	\rightarrow	→	\rightarrow	→	→	→
<u>-</u> ص	→	→	→	→	→	→	→	→	→
r -	→	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
∞ -	→	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	→	→
<u></u> თ -	→	→	→	→	→	→	→	→	→
	ó	i	ź	ż	4	5	6	ż	8

Policy π

Estimate the value of policy from sample rollouts



Roll outs

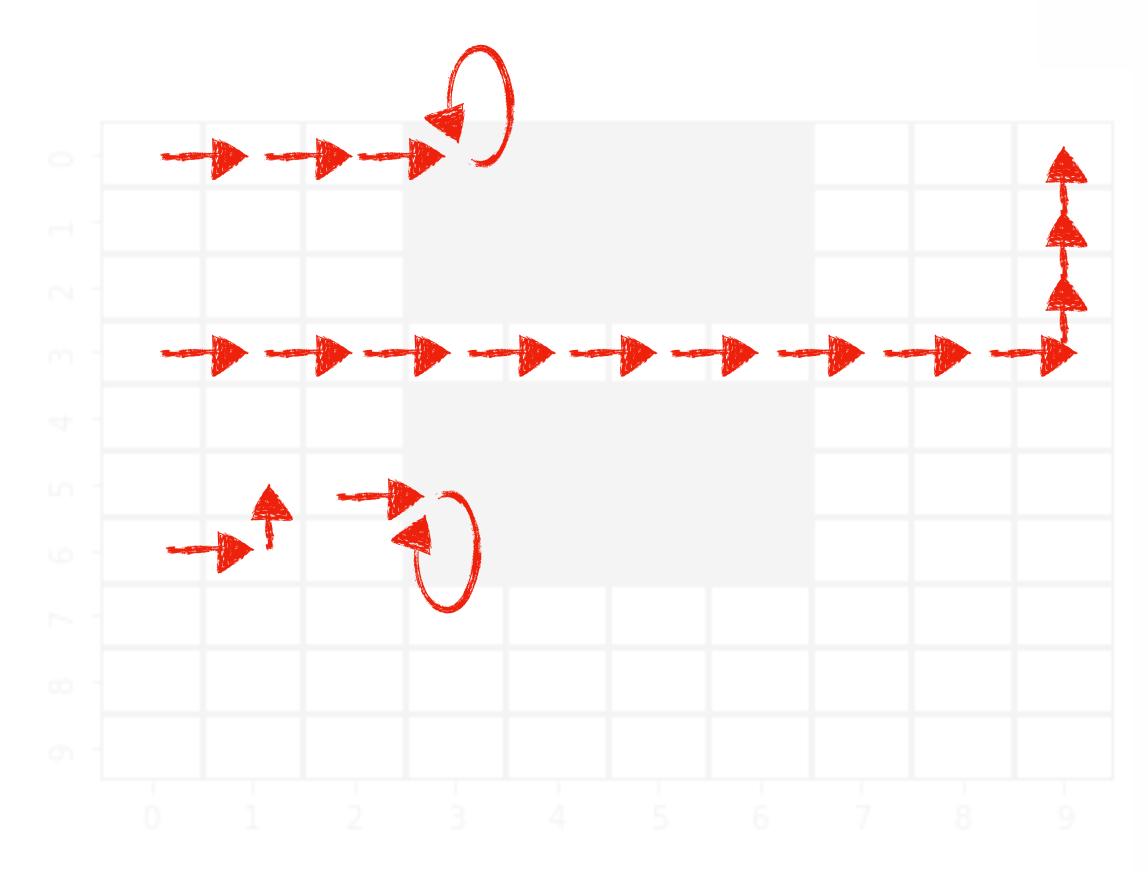
lter: 0

o -	→	→	→	→	→	→	→	→	
	→	→	→	→	→	→	→		→
~ ~	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
m -	→	→	→	→	→	→	→	→	→
4 -	→	\rightarrow	\rightarrow	→	→	→	\rightarrow	→	→
<u>ہ</u> -	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
<u>-</u> ب	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→	→
~ -	→	→	→	→	→	→	→	→	→
∞ -	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→
<u></u> თ -	→	→	→	→	→	→	→	→	→
	ó	i	ź	ż	4	5	6	ż	8

Policy π

17

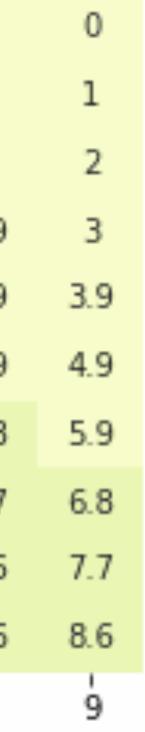
Estimate the value of policy from sample rollouts



Roll outs

0 -	74	75	76	77	77	77	77	2	1
	74	75	76	77	77	77	77	3	2
~ -	74	75	76	77	77	77	77	3.9	3
m -	55	56	56	57	50	40	26	4.9	3.9
4 -	74	75	76	77	77	77	77	5.9	4.9
<u>س</u> -	74	75	76	77	77	77	77	6.8	5.9
ω-	74	75	76	77	77	77	77	7.7	6.8
r -	15	14	13	12	11	10	9.6	8.6	7.7
∞ -	16	15	14	13	12	11	10	9.6	8.6
ი -	17	16	15	14	13	12	11	10	9.6
	ò	i	ź	ż	4	5	é	ż	8

Value $V^{\pi}(s)$



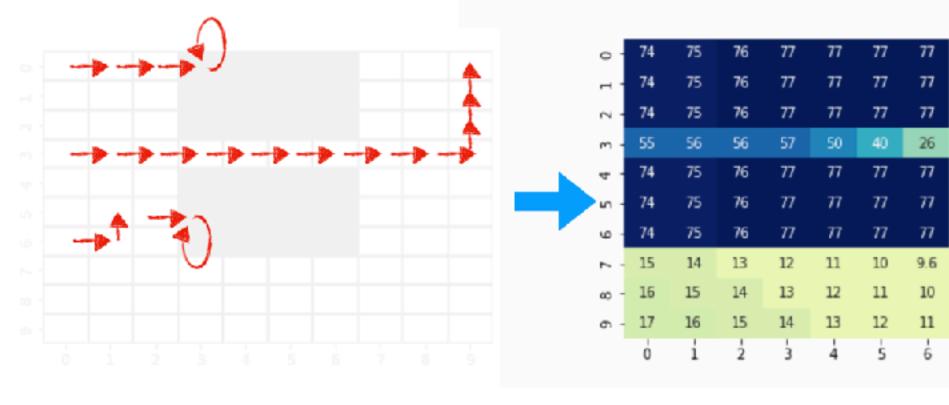
Think-Pair-Share

value of a state? (Hint: More than one way!)

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Think (30 sec): Given a bunch of roll-outs, how can you estimate

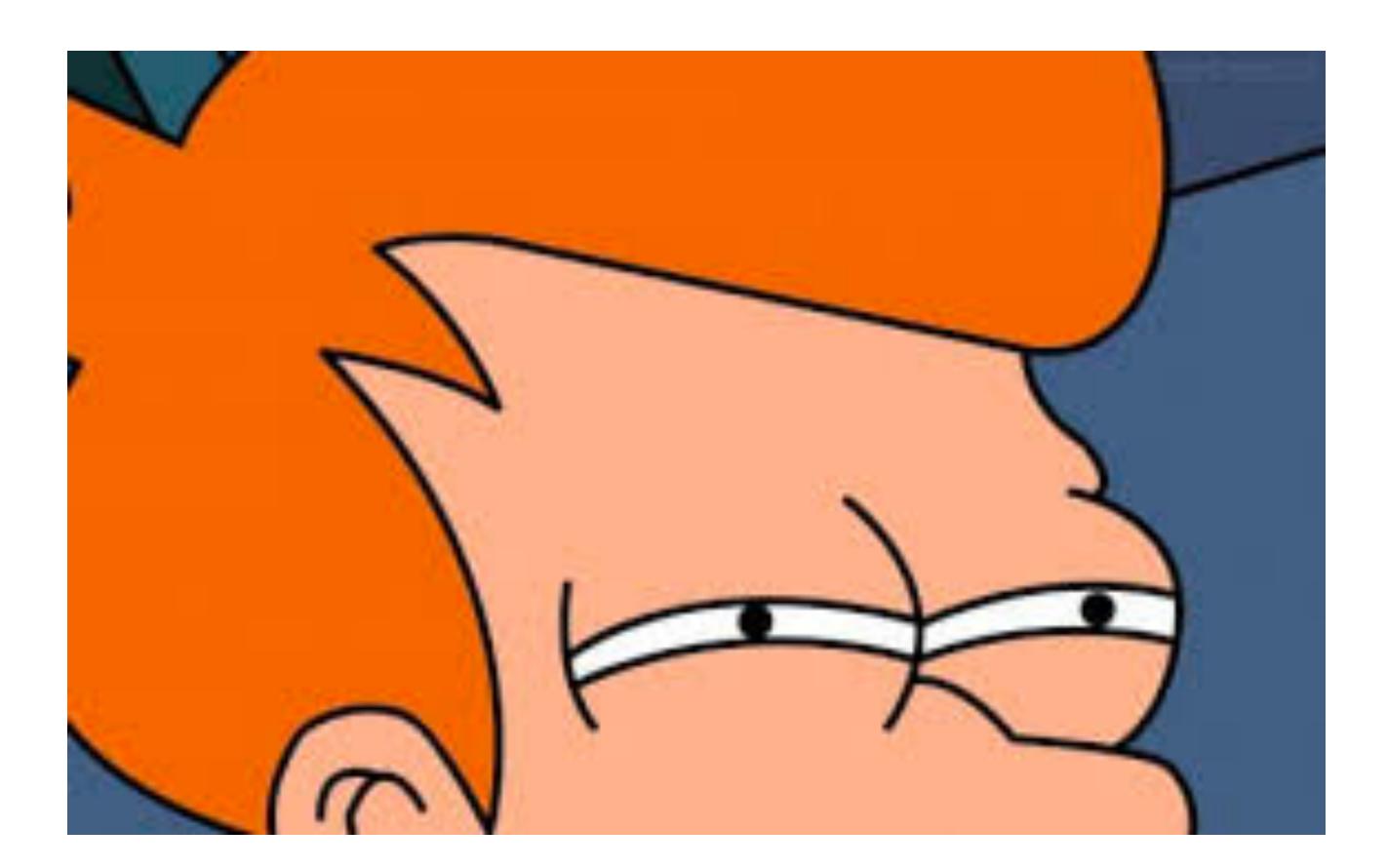


Roll outs

Value $V^{\pi}(s)$

3	2	1
3.9	з	2
4.9	3.9	3
5.9	4.9	3.9
6.8	5.9	4.9
7.7	6.8	5.9
8.6	7.7	6.8
9.6	8.6	7.7
10	9.6	8.6
7	8	9

Option 1: Just execute the damn policy!



and look at the returns ..

Monte Carlo Evaluation

Goal: Learn $V^{\pi}(s)$ from complete rollout

Define: Return is the total discounted cost

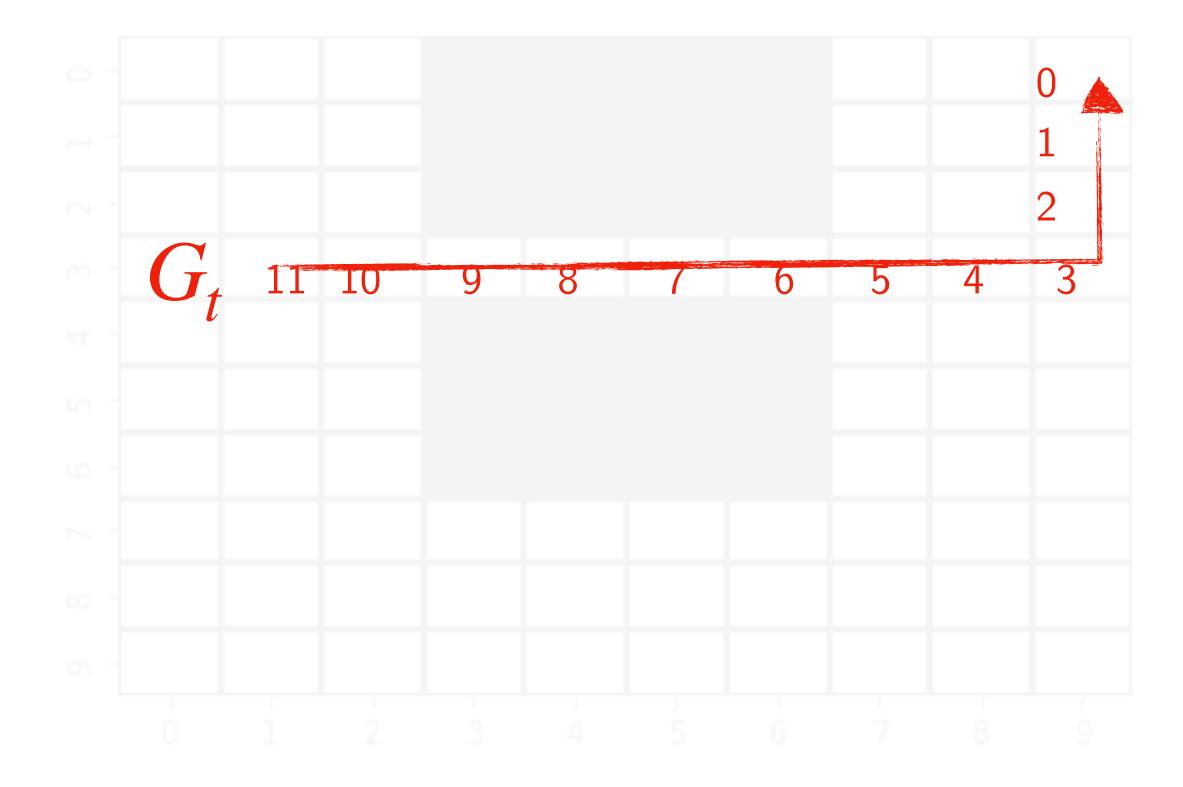
Value function is the expected return

 $S_1, a_1, c_1, s_2, a_2, c_2, \ldots \sim \pi$

 $G_t = c_{t+1} + \gamma c_{t+2} + \gamma^2 c_{t+3} + \dots$

 $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t | s_t = s]$

Monte Carlo



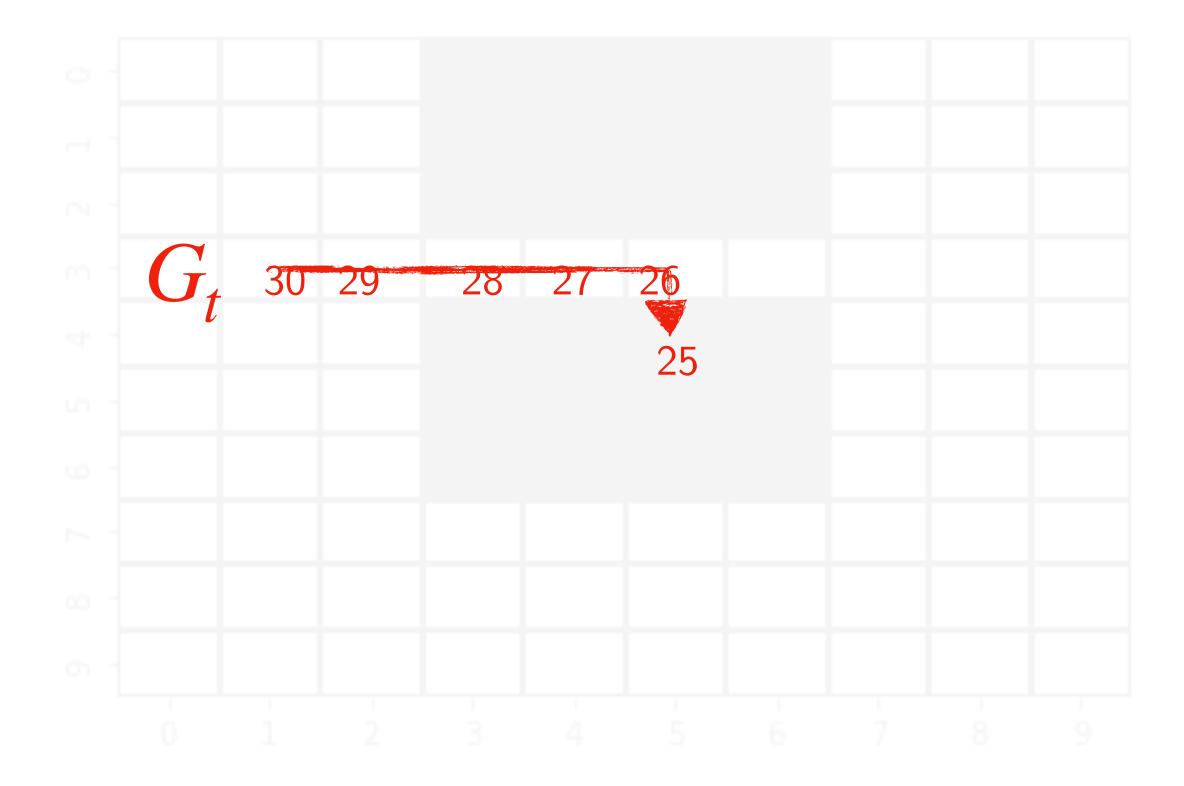
Law of large numbers: $V(s) \rightarrow V^{\pi}(s)$ as $N(s) \rightarrow \infty$

For episode in rollouts:

Increment counter $N(s) \leftarrow N(s) + 1$ Increment total return $S(s) \leftarrow S(s) + G_t$

Update V(s) = S(s)/N(s)

Monte Carlo



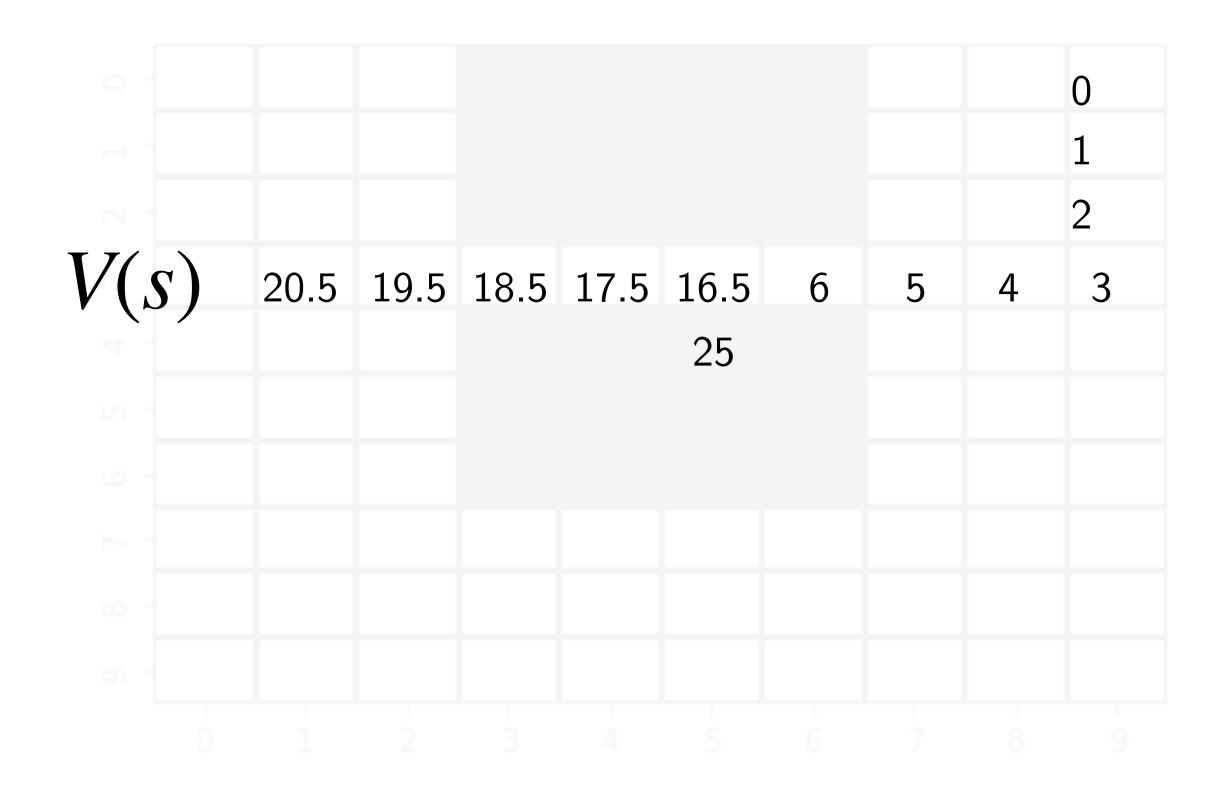
Law of large numbers: $V(s) \rightarrow V^{\pi}(s)$ as $N(s) \rightarrow \infty$

For episode in rollouts:

Increment counter $N(s) \leftarrow N(s) + 1$ Increment total return $S(s) \leftarrow S(s) + G_t$

Update V(s) = S(s)/N(s)

Monte Carlo



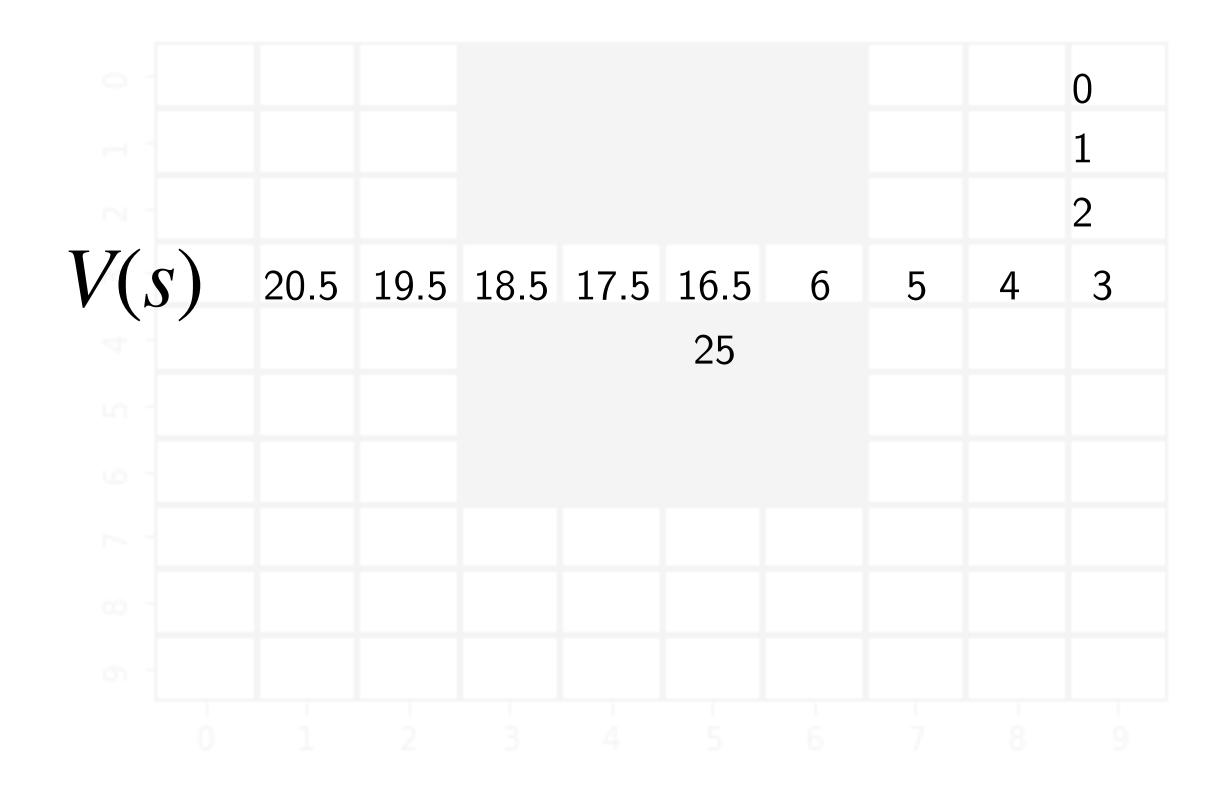
Law of large numbers: $V(s) \rightarrow V^{\pi}(s)$ as $N(s) \rightarrow \infty$

For episode in rollouts:

Increment counter $N(s) \leftarrow N(s) + 1$ Increment total return $S(s) \leftarrow S(s) + G_t$

Update V(s) = S(s)/N(s)

Exponential Moving Average MC



Law of large numbers: $V(s) \rightarrow V^{\pi}(s)$ as $N(s) \rightarrow \infty$

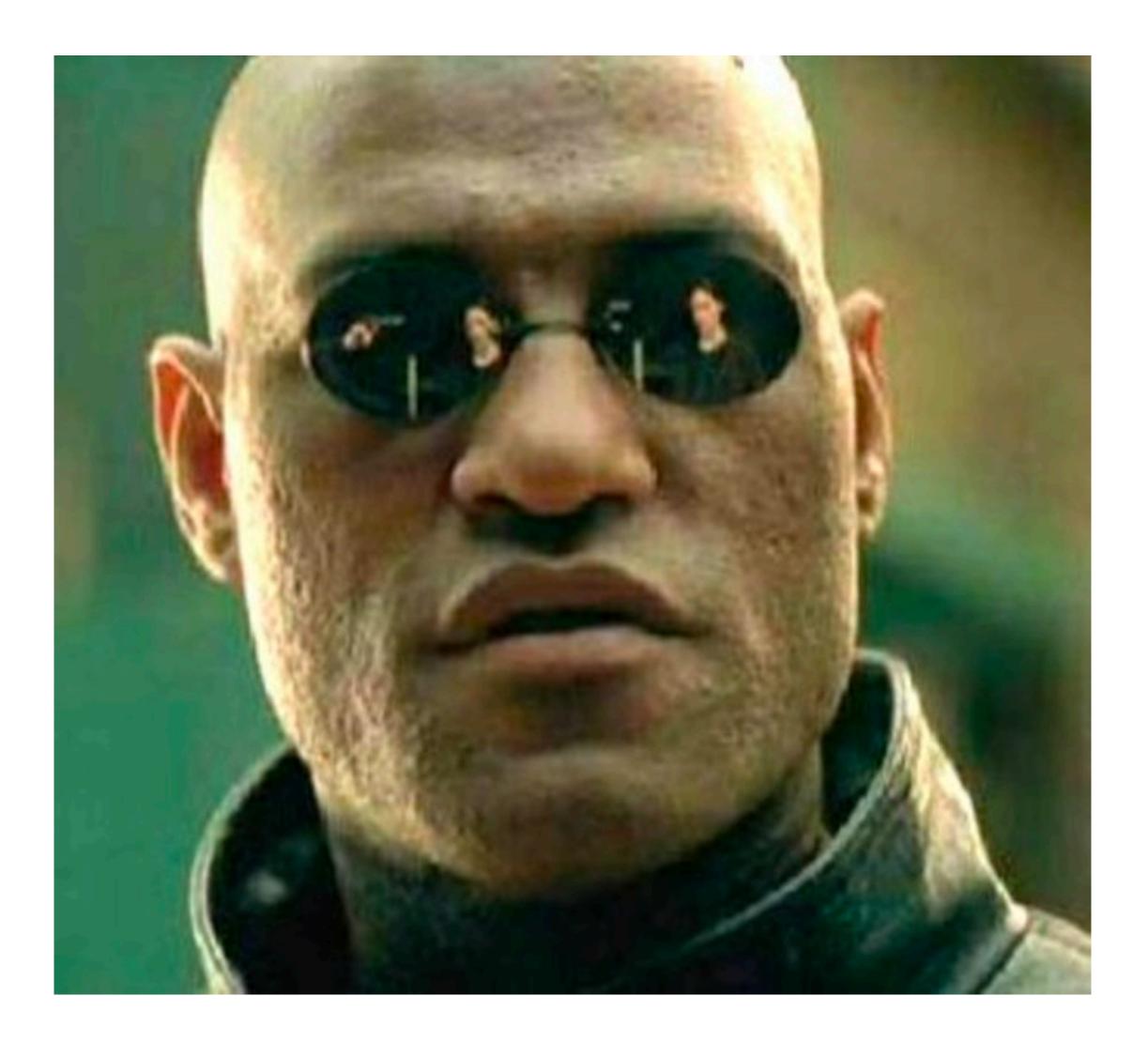
For episode in rollouts:

Update $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Can we do better than Monte Carlo?

What if we want quick updates? (No patience to wait till end)

What if we don't have complete episodes?



Option 2: Trust your value estimate

Temporal Difference (TD) learning

Goal: Learn $V^{\pi}(s)$ from traces

$$(s_t, a_t, c_t, s_{t+1})$$
 (s_t, a_t, c_t, s_{t+1})

Recall value function $V^{\pi}(s)$ satisfies $V^{\pi}(s) = c(s,$

TD Idea: Update value using estimate of next state value

 $V(s_t) \leftarrow V(s_t) +$

(
$$s_t, a_t, c_t, s_{t+1}$$
) (s_t, a_t, c_t, s_{t+1})

$$\pi(s)) + \gamma \mathbb{E}_{s'} V^{\pi}(s')$$

$$\vdash \alpha \left(c_t + \gamma V(s_{t+1}) - V(s_t) \right)$$

Temporal Difference Error

For every (s_t, a_t, c_t, s_{t+1})

TD Learning

$V(s_t) \leftarrow V(s_t) + \alpha(c_t + \gamma V(s_{t+1}) - V(s_t))$

Did you spot the trick?

$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s'} V^{\pi}(s')$



 $V(s_t) \leftarrow V(s_t) + \alpha(c_t + \gamma V(s_{t+1}) - V(s_t))$

Monte-Carlo

$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Zero Bias

High Variance

Always convergence

(Just have to wait till heat death of the universe)

Temporal Difference

 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

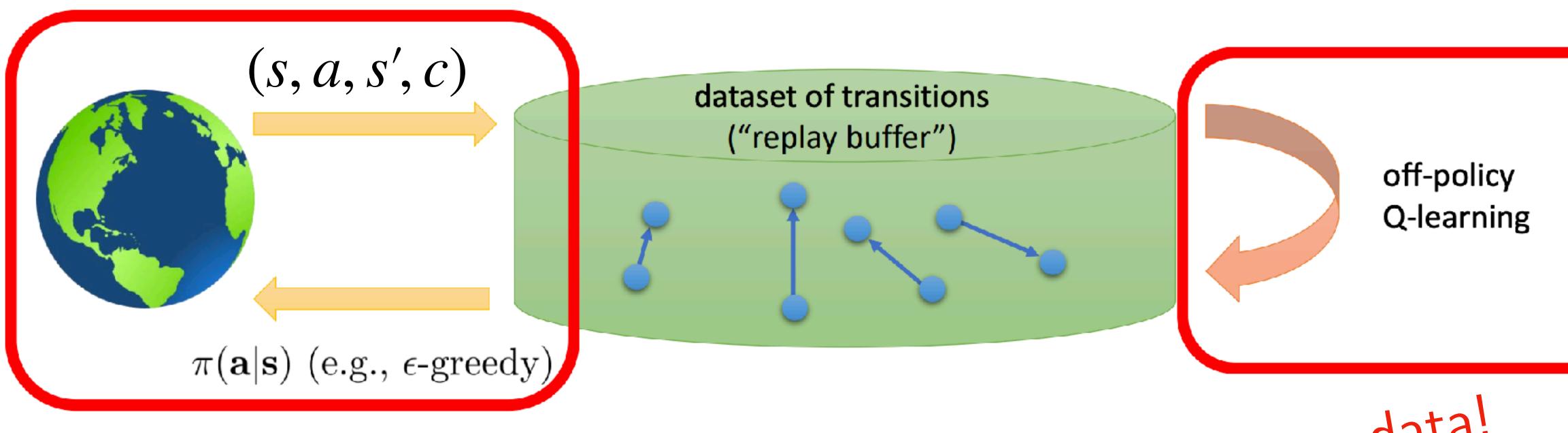
Low Variance

May *not* converge if using function approximation

We have been talking about trying to learn the value of a given policy π $V^{\pi}(s) / Q^{\pi}(s, a)$

What if we wanted to learn the optimal value function $V^*(s) \mid Q^*(s,a)$

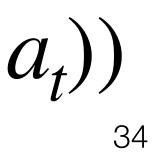
Q-learning: Learning off-policy



For every (s_t, a_t, c_t, s_{t+1})

Can learn from any data!

 $Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$



It's not magic. Q-learning relies on a set of assumptions:

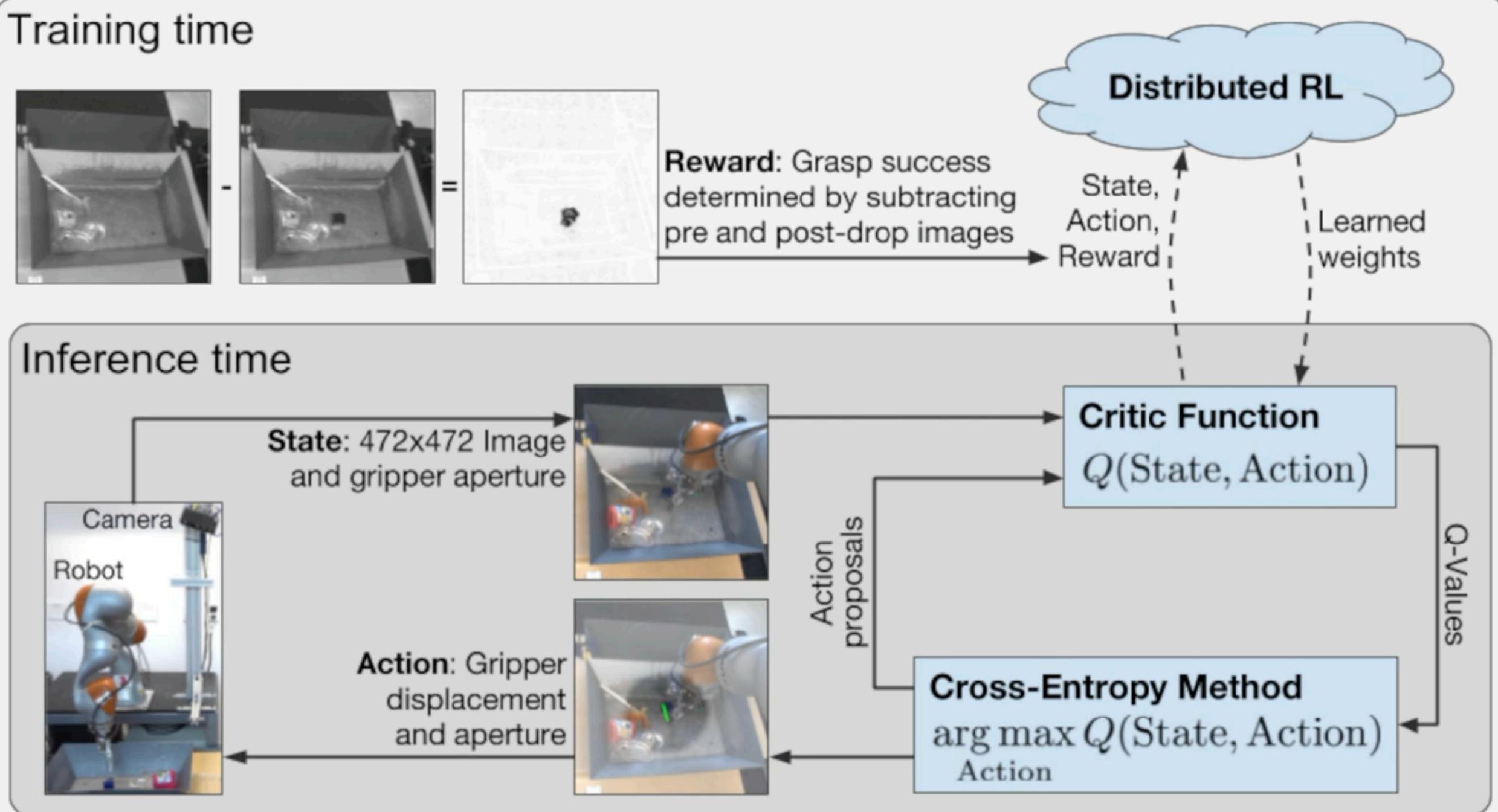
2. Learning rate α must be annealed over time

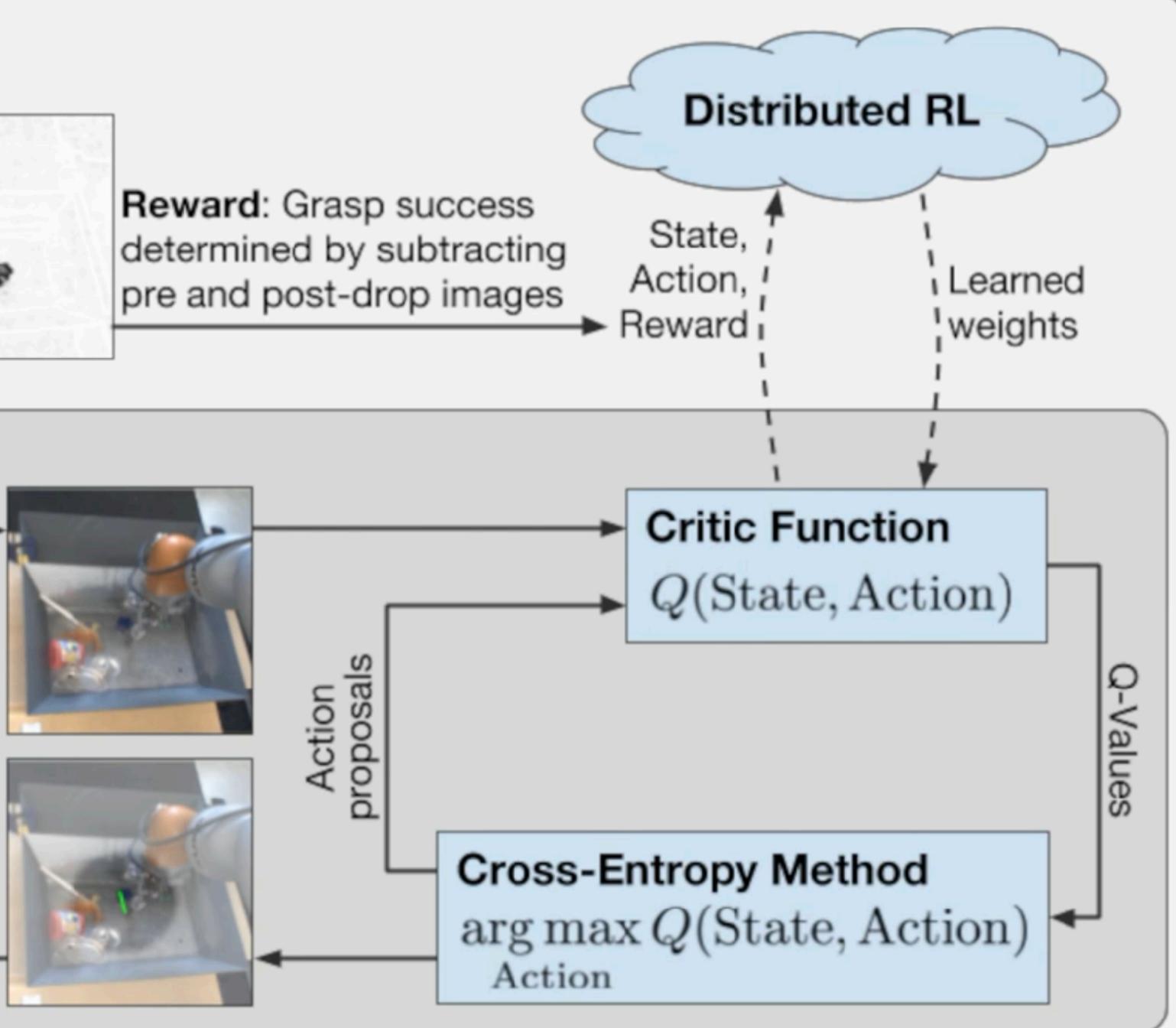
Is this ... magic?

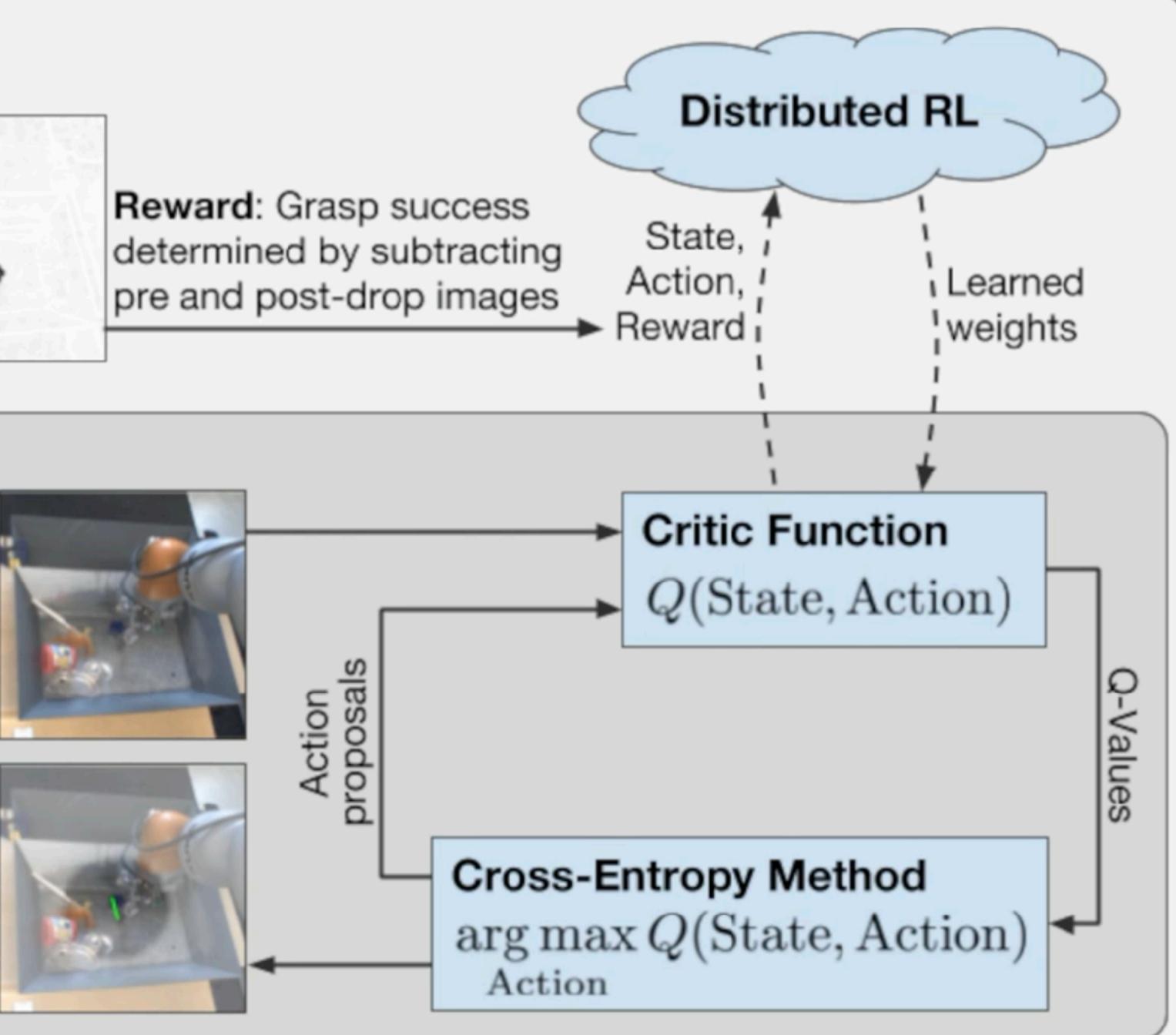
We just learned in IL how distribution shift is a big deal ...

- 1. Each state-action is visited *infinite* times

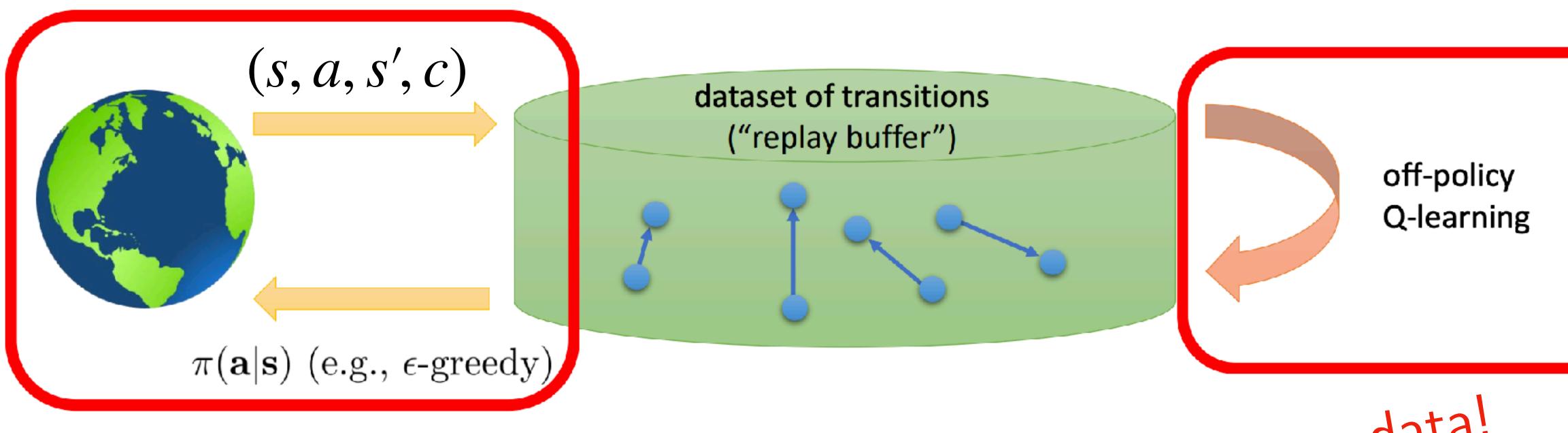
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation







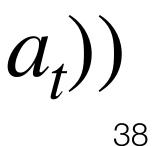
Q-learning: Learning off-policy



For every (s_t, a_t, c_t, s_{t+1})

Can learn from any data!

 $Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))$



Large-scale Q-learning with continuous actions (QT-Opt)





Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-**Based Robotic Manipulation Skills**

Making Q-learning better!

Problem: Q-learning suffers from an estimation bias $\min Q^*(s_{t+1}, a')$ $Q^*(s_{t+1}, \arg\min_{a'} \tilde{Q}(s_{t+1}, a'))$ Solution: Double Q-learning

Problem: Q-learning samples uniformly from replay buffer Solution: Prioritized DQN - samples states with higher bellman error Problem: Q-learning doesn't seem to learn Solution: Start with high exploration + learning rate, anneal!

Hessel et al. Rainbow: Combining Improvements in Deep Reinforcement Learning

tl,dr



Monte-Carlo

 $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Zero Bias

High Variance

Temporal Difference

 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

Low Variance

Always convergence

(Just have to wait till heat death of the universe)

May *not* converge if using function approximation

Q-learning: Learning off-policy

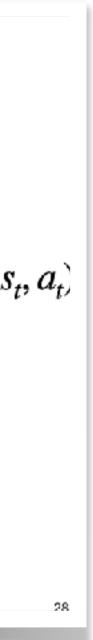
For every (s_t, a_t, c_t, s_{t+1})

 $Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t)$

Notice we are *not* approximating $Q^{\pi}(s_t, a_t)$

We don't even care about π

We can learn from any data!



41