
Temporal Difference & Q Learning

Sanjiban Choudhury

1

What if the transitions are unknown?

2

< S , A , C , 𝒯 >
s, a

s′

Exploration vs Exploitation

3
From Dan Klein

4

Doors

a1

a2

a3

-100

1000

-1

?

?

?

5

Doors

a1

a2

a3

Round 1 Round 2 Round 3

-100

1000

-1

6

Doors

a1

a2

a3

Round 1 Round 2 Round 3

-100

1000

-1

7

Doors

a1

a2

a3

Round 1 Round 2 Round 3

How do we explore/
exploit when picking

doors?

What if we played the
game over multiple time

steps?

8

9t = 1 t = 2

-100

1000

-1

10t = 1 t = 2

How do we
estimate
values of

each door?

Two Ingredients of RL

11
Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3

Recap: The Swamp MDP

12

Swamp < S , A , C , 𝒯 >

• Two absorbing states:
Goal and Swamp

• Cost of each state is 1
till you reach the goal

• Let’s set T = 30

13

When the
MDP is known!

Run Value
/ Policy Iteration

When MDP is known: Policy Iteration

14

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)] π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

Estimate value Improve policy

What happens when the
MDP is unknown?

15

16

Need to estimate the value of policy

Policy πValue Vπ(s)

17

Estimate the value of policy from sample rollouts

Policy πRoll outs

18
Value Vπ(s)Roll outs

Estimate the value of policy from sample rollouts

Activity!

Think-Pair-Share

20

Think (30 sec): Given a bunch of roll-outs, how can you estimate
value of a state? (Hint: More than one way!)

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

Option 1: Just execute the damn policy!

21
and look at the returns ..

Monte Carlo Evaluation

22

Goal: Learn from complete rollout Vπ(s) s1, a1, c1, s2, a2, c2, . . . ∼ π

Define: Return is the total discounted cost
Gt = ct+1 + γct+2 + γ2ct+3 + …

Value function is the expected return

Vπ(s) = 𝔼π[Gt |st = s]

Monte Carlo

23
Law of large numbers: as V(s) → Vπ(s) N(s) → ∞

0
1
2

3456711 10 9 8Gt

For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

24

For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

Law of large numbers: as V(s) → Vπ(s) N(s) → ∞

2630 29 28 27

25

Monte Carlo

Gt

25
Law of large numbers: as V(s) → Vπ(s) N(s) → ∞

20.5 19.5 18.5 17.5
25

16.5

0
1
2

3456

Monte Carlo

V(s)

For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

26
Law of large numbers: as V(s) → Vπ(s) N(s) → ∞

20.5 19.5 18.5 17.5
25

16.5

0
1
2

3456

Exponential Moving Average MC

V(s)

For episode in rollouts:

Update V(s) ← V(s) + α(Gt − V(s))

Can we do better than
Monte Carlo?

27

What if we want quick updates?
(No patience to wait till end)

What if we don’t have complete
episodes?

Option 2: Trust your value estimate

28

Temporal Difference (TD) learning

29

Goal: Learn from tracesVπ(s)

(st, at, ct, st+1)
Recall value function satisfiesVπ(s)

TD Idea: Update value using estimate of next state value

(st, at, ct, st+1) (st, at, ct, st+1) (st, at, ct, st+1)

Vπ(s) = c(s, π(s)) + γ𝔼s′
Vπ(s′)

V(st) ← V(st) + α (ct + γV(st+1) − V(st))
Temporal Difference Error

TD Learning

30

For every (st, at, ct, st+1)
V(st) ← V(st) + α(ct + γV(st+1) − V(st))

Did you spot the trick?

31

V(st) ← V(st) + α(ct + γV(st+1) − V(st))

Vπ(s) = c(s, π(s)) + γ𝔼s′
Vπ(s′)

32

Monte-Carlo Temporal Difference

V(s) ← V(s) + α(Gt − V(s)) V(s) ← V(s) + α(c + γV(s′) − V(s))

Zero Bias Can have bias

High Variance Low Variance

Always convergence
(Just have to wait till heat death of the universe)

May not converge if
using function approximation

We have been talking about
trying to learn the value of a

given policy
 /

What if we wanted to learn
the optimal value function

 /

π
Vπ(s) Qπ(s, a)

V*(s) Q*(s, a)
33

34

For every (st, at, ct, st+1)
Q*(st, at) = Q*(st, at) + α(c(st, at) + γmin

a′

Q*(st+1, a′)−Q*(st, at))

(s, a, s′ , c)

Q-learning: Learning off-policy

Can learn from any data!

Is this … magic?

35

We just learned in IL how distribution shift is a big deal …

It’s not magic. Q-learning relies on a set of assumptions:

1. Each state-action is visited infinite times

2. Learning rate must be annealed over timeα

36

37

38

For every (st, at, ct, st+1)
Q*(st, at) = Q*(st, at) + α(c(st, at) + γmin

a′

Q*(st+1, a′)−Q*(st, at))

(s, a, s′ , c)

Q-learning: Learning off-policy

Can learn from any data!

39

Making Q-learning better!

40

Problem: Q-learning suffers from an estimation bias min
a′

Q*(st+1, a′)

Solution: Double Q-learning Q*(st+1, arg min
a′

Q̃(st+1, a′))

Problem: Q-learning samples uniformly from replay buffer

Solution: Prioritized DQN - samples states with higher bellman error

Problem: Q-learning doesn’t seem to learn ….

Solution: Start with high exploration + learning rate, anneal!

Hessel et al. Rainbow: Combining Improvements in Deep Reinforcement Learning

41

tl;dr

