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What if the transitions are unknown?
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< S , A , C , 𝒯 >
s, a

s′ 



Exploration vs Exploitation
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From Dan Klein
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Doors
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How do we explore/
exploit when picking 

doors?



What if we played the 
game over multiple time 

steps?

8



9t = 1 t = 2

-100

1000

-1



10t = 1 t = 2

How do we 
estimate 
values of 

each door?



Two Ingredients of RL
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Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3



Recap: The Swamp MDP
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Swamp < S , A , C , 𝒯 >

• Two absorbing states: 
Goal and Swamp 

• Cost of each state is 1 
till you reach the goal  

• Let’s set T = 30
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When the 
MDP is known!

Run Value  
/ Policy Iteration



When MDP is known: Policy Iteration
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Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )] π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′ )]

Estimate value Improve policy



What happens when the 
MDP is unknown?
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Need to estimate the value of policy

Policy πValue Vπ(s)
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Estimate the value of policy from sample rollouts

Policy πRoll outs
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Value  Vπ(s)Roll outs

Estimate the value of policy from sample rollouts



Activity!



Think-Pair-Share 
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Think (30 sec): Given a bunch of roll-outs, how can you estimate 
value of a state? (Hint: More than one way!)

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 



Option 1: Just execute the damn policy!
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and look at the returns ..



Monte Carlo Evaluation
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Goal: Learn  from complete rollout Vπ(s) s1, a1, c1, s2, a2, c2, . . . ∼ π

Define: Return is the total discounted cost
Gt = ct+1 + γct+2 + γ2ct+3 + …

Value function is the expected return

Vπ(s) = 𝔼π[Gt |st = s]



Monte Carlo
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Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞

0
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3456711 10 9 8Gt

For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return  
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)
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For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return  
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞

2630 29 28 27

25

Monte Carlo

Gt
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Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞
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V(s)

For episode in rollouts:

Increment counter N(s) ← N(s) + 1

Increment total return  
S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)
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Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞
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Exponential Moving Average MC

V(s)

For episode in rollouts:

Update V(s) ← V(s) + α(Gt − V(s))



Can we do better than 
Monte Carlo?
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What if we want quick updates?  
(No patience to wait till end)

What if we don’t have complete 
episodes?



Option 2: Trust your value estimate 
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Temporal Difference (TD) learning

29

Goal: Learn  from tracesVπ(s)

(st, at, ct, st+1)
Recall value function  satisfiesVπ(s)

TD Idea: Update value using estimate of next state value

(st, at, ct, st+1) (st, at, ct, st+1) (st, at, ct, st+1)

Vπ(s) = c(s, π(s)) + γ𝔼s′ 
Vπ(s′ )

V(st) ← V(st) + α (ct + γV(st+1) − V(st))
Temporal Difference Error



TD Learning
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For every (st, at, ct, st+1)
V(st) ← V(st) + α(ct + γV(st+1) − V(st))



Did you spot the trick?
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V(st) ← V(st) + α(ct + γV(st+1) − V(st))

Vπ(s) = c(s, π(s)) + γ𝔼s′ 
Vπ(s′ )
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Monte-Carlo Temporal Difference

V(s) ← V(s) + α(Gt − V(s)) V(s) ← V(s) + α(c + γV(s′ ) − V(s))

Zero Bias Can have bias

High Variance Low Variance

Always convergence 
(Just have to wait till heat death of the universe)

May not converge if  
using function approximation



We have been talking about 
trying to learn the value of a 

given policy   
 /  

What if we wanted to learn 
the optimal value function 

 /  

π
Vπ(s) Qπ(s, a)

V*(s) Q*(s, a)
33



34

For every (st, at, ct, st+1)
Q*(st, at) = Q*(st, at) + α(c(st, at) + γmin

a′ 

Q*(st+1, a′ )−Q*(st, at))

(s, a, s′ , c)

Q-learning: Learning off-policy

Can learn from any data!



Is this … magic?
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We just learned in IL how distribution shift is a big deal …

It’s not magic. Q-learning relies on a set of assumptions:

1. Each state-action is visited infinite times

2. Learning rate  must be annealed over timeα
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For every (st, at, ct, st+1)
Q*(st, at) = Q*(st, at) + α(c(st, at) + γmin

a′ 

Q*(st+1, a′ )−Q*(st, at))

(s, a, s′ , c)

Q-learning: Learning off-policy

Can learn from any data!



39



Making Q-learning better!
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Problem: Q-learning suffers from an estimation bias min
a′ 

Q*(st+1, a′ )

Solution: Double Q-learning Q*(st+1, arg min
a′ 

Q̃(st+1, a′ ))

Problem: Q-learning samples uniformly from replay buffer

Solution: Prioritized DQN - samples states with higher bellman error

Problem: Q-learning doesn’t seem to learn …. 

Solution: Start with high exploration + learning rate, anneal!

Hessel et al. Rainbow: Combining Improvements in Deep Reinforcement Learning
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tl;dr


