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Congratulate yourself!
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Analytically solve continuous 
state action MDP (LQR)

Handle non-linear costs, 
dynamics (iLQR)

Handle constraints (AuLa)



Today’s plan: Let’s interact (a lot!)
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Long Horizons

Non-convexity

Partial Observability

Nirvana!
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Long Horizons

Nirvana!



6



7

Takeoff Enroute Touchdown
(Plan to multiple sites)(Avoid sensed obstacles)(Respect power constraints)

Obstacles 
in LZ

Mountain

Map created 
by sensor

Tower



Can apply iLQR!
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Problem: How do we plan 200 km?
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No-fly-zones

Mountains

20
0 

ki
lo

m
et

er
s

NFZ Mountain
NFZ

Mountain

Path

(a) (b)

NFZ

Mountain

0s

Time to 
Collision

10s
Gradient 
direction

NFZ

Mountain

Optimizer path

Time to 
collision < 3s

(c) (d)

NFZ

Mountain

RRT* Path

RRT* Tree

NFZ

Mountain

RRT* Path Optimizer path

(e) (f)

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Number of Vertices in Tree

N
o

rm
a

li
z
e

d
 C

o
s
t 

o
f 

P
a

th
 t

o
 G

o
a

l

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

10

Iteration Steps
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Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.
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CHOMP1 path
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Figure 39: Ensemble { RRT*Tunnel1, CHOMP1 } performance in mountainous terrain - datapoint where
RRT*Tunnel1 finds a good solution. (a) Flying between a NFZ and an unmapped mountain in Mesa, AZ (The
skid camera view) (b) The mapped environment and traced path (c) The gradient due to the time to collision points
into the no-fly-zone (d) CHOMP1 gets stuck in a bad local minimum and has a critically low time to collision (e) The
RRT*Tunnel1 is very diverse and contorts to find a near optimal trajectory (f) Comparison of the RRT*Tunnel1

trajectory to CHOMP1 shows that RRT*Tunnel1 is safer (g) The best path in the RRT*Tunnel1 tree converges near
optimal after sampling around 320 vertices. (h) CHOMP1 cannot lower cost below a certain limit because perturbations
violate no-fly-zone constraint.

Problem:  
Take forever to plan at high 

resolution ALL the way to goal

Example mission:

Fly from Phoenix to Flagstaff 
as fast as possible (200 km)



Activity!



Think-Pair-Share 
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Think (30 sec): How do we plan in real-time 
for a helicopter to go from A to B that is 
really really far apart?

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 
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Iteration Steps
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Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.
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Figure 39: Ensemble { RRT*Tunnel1, CHOMP1 } performance in mountainous terrain - datapoint where
RRT*Tunnel1 finds a good solution. (a) Flying between a NFZ and an unmapped mountain in Mesa, AZ (The
skid camera view) (b) The mapped environment and traced path (c) The gradient due to the time to collision points
into the no-fly-zone (d) CHOMP1 gets stuck in a bad local minimum and has a critically low time to collision (e) The
RRT*Tunnel1 is very diverse and contorts to find a near optimal trajectory (f) Comparison of the RRT*Tunnel1

trajectory to CHOMP1 shows that RRT*Tunnel1 is safer (g) The best path in the RRT*Tunnel1 tree converges near
optimal after sampling around 320 vertices. (h) CHOMP1 cannot lower cost below a certain limit because perturbations
violate no-fly-zone constraint.



Receding Horizon Control (also called MPC!)
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1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon



Problem: What happens when your 
global path is impossible to track?
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4 Introduction

(a) (b)

Emergency landing of UAV 
which can only turn left

Figure 1.3: (a) The motion planner has to quickly plan a landing for a UAV whose right wing is damaged
mid-flight. As a result, the UAV can only turn left. (b) Planning algorithms are equipped to deal with such
unconventional dynamics as shown in this classic RRT example from LaValle [1998] where a car can only turn
left. Because RRTs are probabilistically complete, given enough time they will be able to find a feasible plan if
it exists. However, the tree explores a lot of configurations in this process. In the emergency landing setting, a
planner does not have the time budget to do so.

for the system to explore all possible configurations. Moreover, it is di�cult to apply any type of
human intuition for these unconventional systems to improve real-time planning performance.

1.2 Why does a motion planning system need to adapt?

The need for a motion planning system to be cognizant of the nature of the planning prob-
lems can be attributed to the inherent hardness of the real-time planning problem. The factors
contributing to the hardness can be distilled into three major categories

(a)

Dynamic 
No Fly  
Zones

Limited 
Sensor Range

Partially Known 
Environment

No dynamically feasible  
collision free trajectory

Asymptotic Optimality 
does not imply 
finite-time 
performance

(b) (c)

Need  
focussed 
search

Figure 1.4: Factors contributing to the hardness of motion planning for mobile robots. (a) Limited sensing range
and dynamic no-fly-zones (NFZs) requires fast re-planning (b) Dynamic constraints imply that even if there is
a collision-free configuration space path, it does not mean a feasible trajectory exists in the same homotopy. (c)
The real-time performance of the planning algorithm outweighs any asymptotic guarantees it might have.

1. Partially known world: The full environment through which the robot is navigating is
not known apriori and must be perceived with on-board sensors. Fig. 1.4(a) depicts the
environment from the perspective of an autonomous helicopter. The limited sensing range
in conjunction with unforeseen no-fly-zones (NFZs) forces the system to react immediately



Hierarchy of value functions

14

cM

Planner 
(Level 1)

Value 
Predictions

Value 
Errors

Planner 
(Level 2)

ccM

Value 
Errors

Value 
Predictions

Controller 
(Level 0)

Value 
Predictions

Value 
Errors

Planner 
(Level N) cccM
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Non-convexity

Nirvana!
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Activity!



Think-Pair-Share 

20

Think (30 sec): How will you get iLQR to find the 
best plan to merge between multiple cars?

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 



Ways to initialize iLQR
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Try multiple random seeds 

Try to find discrete modes
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Mode  A single basin of solution≡

≡

R

A

B

R Yields to A

B Yields to R
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Mode  A single basin of solution≡

≡

R

AB

C

R Yields to A
R Yields to B
C Yields to R



How do you find modes for this …. ?
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Train a learner to predict modes
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[Toussiant’18], 
[Deits&Tedrake’15],  
[Mordatch etal’12]

mode: a single 
basin of solution,  

e.g. workspace tube,  
sequence of phases, 

symbols, etc iLQR



Machine 
learning 
“mode” 

predictor

iLQR

Can be formulated as a list-prediction problem! 

Dey, D., Liu, T. Y., Hebert, M., & Bagnell, J. A. (2013). Contextual sequence prediction with application to control library 
optimization. Proceedings of robotics: Science and systems VIII.

Train a learner to predict modes
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Partial Observability

Nirvana!





Partially Observable Markov Decision Process (POMDP)
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NP-Hard at best

Undecidable in some cases

We will have a whole lecture on 
how to get around solving 

POMDPs!


