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Non-Linear (iLQR)

Linear (LQR) \



Model-Predictive Control

Continuously optimizes trajectory subject to nonlinear
momentum dynamics

Solve for future kinematic configurations

Leverages optimized code and problem structure for speed
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Any real world robot
has to obey hard constraints |
from physics, safety, legal, ... Constraints

Non-Linear (iLQR)

Linear (LQR)









Think-Pair-Share!

Think (30 sec): What are hard constraints for a self-driving car
navigating an intersection?’

Pair: Find a partner

Share (45 sec): Partners exchange
ideas




So ...

How do we deal with
these constraints?




'Re-parameterization:

The quick n’ easy
" way to solvg,,, =
. constraints!
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Example: Swing up using iLQR

Torque limit
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How do we enforce a torque limit?
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ldea: Reformulate the variables so the
constraint must be satisfied

max
.'//
. 0.5 —1’
TWZln S T S Tmax 3
Tm in - -2 0 2 4
— OO < o0

T = S1gmoid(z, 7,,;., T

ik max)
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Recipe for Re-parameterization

P arg mlnf(x) (Unconstrained
X objective)

Such that X & Xfeasible
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Recipe for Re-parameterization

x* = arg min f(x) s.T. x € Xfeasible

X

Step 1: Reformulate the variables so the constraint must be satistied

X = g(z) where 7 € [—00,0]

Step 2: Solve the unconstrained optimization problem in z!

Step 3: Plug in z* to get constrained optimal solution x* = g(z*)
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i‘ Fun Fact: Dynamics is form of re-parameterization

At _f(xv ut) =0

X+1 = f(f(.. -f(x()’ MO)- s Uy 1), Uy)

Think about how you would deal with dynamics
in a non-reparametrization fashion ...



.. when does re-parameterization fail?




Failure 1: Stuck on the far side of the sigmoid

! K

Let's say z is very high

o0x

What is 7

07
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Failure 2: Constraints too complex to re-parameterize

Such that g(.X) — O
hix) <0



Hang on ....
Why not put a really
really really high cost for
violating constraints?
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Penalty method

min  f(x)

gx) =0

94
min f{x)+—g(x)’

Seems easy to implement ...

2

what could possibly go wrong?
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Activity: Apply Penalty Method!

2(x; — 4)* + (x, — 1)?
S.t. x; —x, =0
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Lagrange's key insight

min  f(x)

g(x) =0

gx) =0

J(x)
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Lagrange's key insight

V1: A statement on the gradient

fo(X) |x=x* = A ng(x) |x=x*
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agrange's key insight

V1: A statement on the gradient

A saddle point

max min f{x)—1" g(x)
A X
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Lagrange's key insight

V1: A statement on the gradient

V2: A saddle point

V3. A game

(We will adopt this view)

o O
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A general theme in
optimization is that it
can be more efficient to
phrase a problem as a
saddle-point-finding exercise
rather than as a ditficult,

pure optimization.
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Dual Game: We control lambdas!

min max f(x)—1" g(x)

X A
X Primal x
-
) —




min
X ,y

Let's play this game!

1

9 9)
—(X~ +
2( ye)
x—1 =0

y—1=0
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Dual player is too
aggressive ...




Stably change A

Follow the
Regularized Leader!

Specific FTRL:
Gradient Descent
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min

Augmented Lagrangian -

Fort=1..1T

>

aa  Update x,
<

X4 = argmin f(x) — 4/ g(x) +ng(x)*

G Update 4,
Ap1 = A — 18(X,)

J(x)
gx) =0
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Dual Game: We control lambdas!

min max f{x)—1’ g(x)

X A
x| Primal x
2 ©
A </
- 12
. min  f(x)
Augmented Lagrangian = "
Dual player is too Fort—1 T
aggressive ...
aa | Update x, Augmentation
4

X,p1 = argminf(x) — 47 g(x) +ng(x)>

@ Update A,
Ay = A4 —18(x)




