Constraints and Games

Sanjiban Choudhury

Linear (LQR)

Model-Predictive Control

- Continuously optimizes trajectory subject to nonlinear momentum dynamics
- Solve for future kinematic configurations
- Leverages optimized code and problem structure for speed

NeurIPS 2020: RL Workshop

var. index

Cost

var. index

Any real world robot has to obey hard constraints from physics, safety, legal, ...

Constraints

Non-Linear (iLQR)

Linear (LQR)

Think-Pair-Share!

Think (30 sec): What are *hard* constraints for a self-driving car navigating an intersection?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

So ... How do we deal with these constraints?

Re-parameterization: The quick 'n' easy way to solve constraints!

44.450

Example: Swing up using iLQR

How do we enforce a torque limit? Torque limit

 $\tau_{\min} \leq \tau \leq \tau_{\max}$

Idea: Reformulate the variables so the constraint must be satisfied

 $\tau_{min} \leq \tau \leq \tau_{max}$

Recipe for Re-parameterization

Such that

 $x^* = \arg\min f(x)$

(Unconstrained objective)

Recipe for Re-parameterization $x^* = \arg\min_{x} f(x)$ s.t. $x \in X_{feasible}$

Step 1: Reformulate the variables so the constraint must be satisfied

$$x = g(z)$$
 w

Step 2: Solve the unconstrained optimization problem in z!

Step 3: Plug in z^* to get constrained optimal solution $x^* = g(z^*)$

where $z \in [-\infty, \infty]$

Fun Fact: Dynamics is form of re-parameterization

Think about how you would deal with dynamics in a non-reparametrization fashion ...

$x_{t+1} - f(x_t, u_t) = 0$

$x_{t+1} = f(f(\dots, f(x_0, u_0), \dots, u_{t-1}), u_t)$

... when does re-parameterization fail?

Failure 1: Stuck on the far side of the sigmoid

Let's say z is very high

Failure 2: Constraints too complex to re-parameterize

Such that

Hang on Why not put a really really really high cost for violating constraints?

 $\min_{x} \quad f(x)$ g(x) = 0

Seems easy to implement ... what could possibly go wrong?

 $2(x_1 - 4)^2 + (x_2 - 1)^2$ **s.t.** $x_1 - x_2 = 0$

Activity: Apply Penalty Method!

min x

f(x)

g(x) = 0

V1: A statement on the gradient

 $\left. \nabla_{x} f(x) \right|_{x = x^{*}} = \lambda \left. \nabla_{x} g(x) \right|_{x = x^{*}}$

V1: A statement on the gradient

A saddle point

$\max\min f(x) - \lambda^T g(x)$ X

V1: A statement on the gradient

V2: A saddle point

V3: A game (We will adopt this view)

A general theme in optimization is that it can be more efficient to phrase a problem as a saddle-point-finding exercise rather than as a difficult, pure optimization.

Dual Game: We control lambdas!

Dual λ

 $\min_{x} \max_{\lambda} f(x) - \lambda^T g(x)$

 \mathcal{X}_1

 X_{γ}

Primal *x*

Let's play this game!

Dual player is too aggressive ...

Stably change λ

Follow the Regularized Leader!

Specific FTRL: Gradient Descent

Augmented Lagrangian $\lim_{x} \frac{\min f(x)}{g(x) = 0}$

For t = 1 ... T

Update x_t

 $x_{t+1} = \arg\min f(x) - \lambda_t^T g(x) + \eta g(x)^2$

(Augmentation)

 $\lambda_{t+1} = \lambda_t - \eta g(x_t)$

tl,dr

Dual player is too aggressive ...

