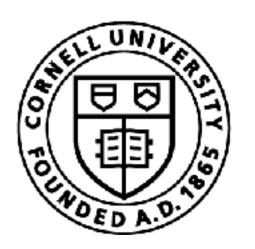
Iterative Linear Quadratic Regulator

Sanjiban Choudhury



LQR is cute... But what if my robot is not linear?

EVERY SINGLE THING ON EARTH IS ETTER BANANAS

made with mematic

Un hUI BANARD

Two concerns?

- Concern 1: Is LQR optimal for non-linear / non-quadratic costs? If not, does it totally fall apart?
- Simulation Lemma: If the model has $O(\epsilon)$, the optimal policy for the model will have $O(\epsilon T^2)$ suboptimality

Concern 2: If LQR is suboptimal, what's the point of using it?

LQR is fundamentally a way to locally approximate and update value functions

(Super cool work by Pieter Abeel et al. <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

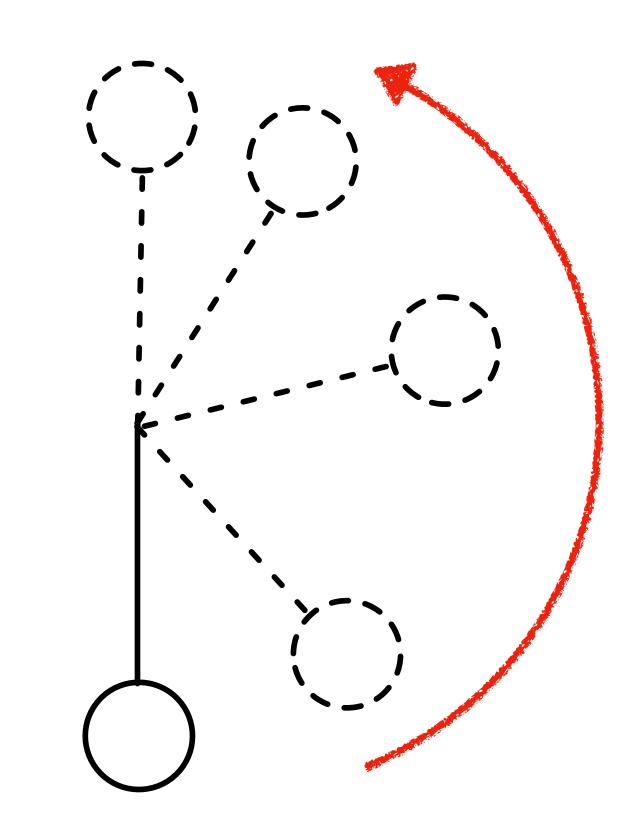


Think-Pair-Share!

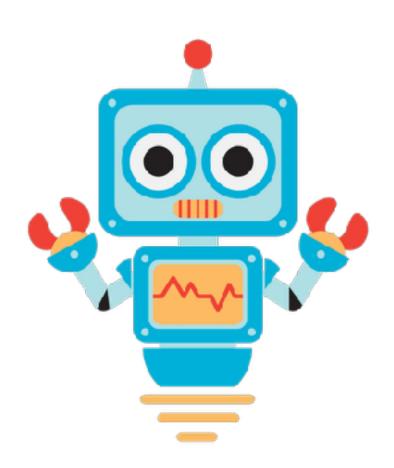
Think (30 sec): How can we use LQR to swing up a pendulum and stabilize it there?

Pair: Find a partner

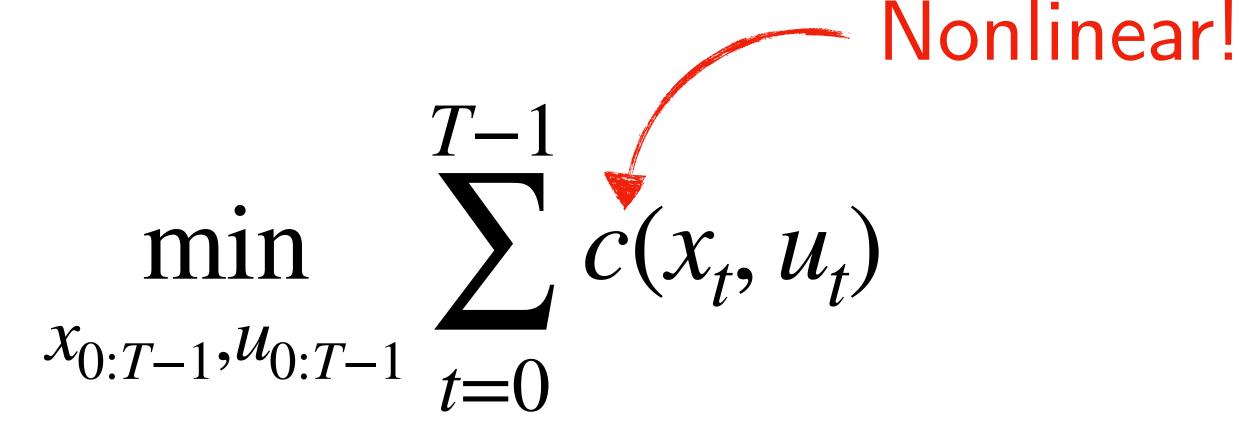
Share (45 sec): Partners exchange ideas



Goal: Solve a general continuous time MDP



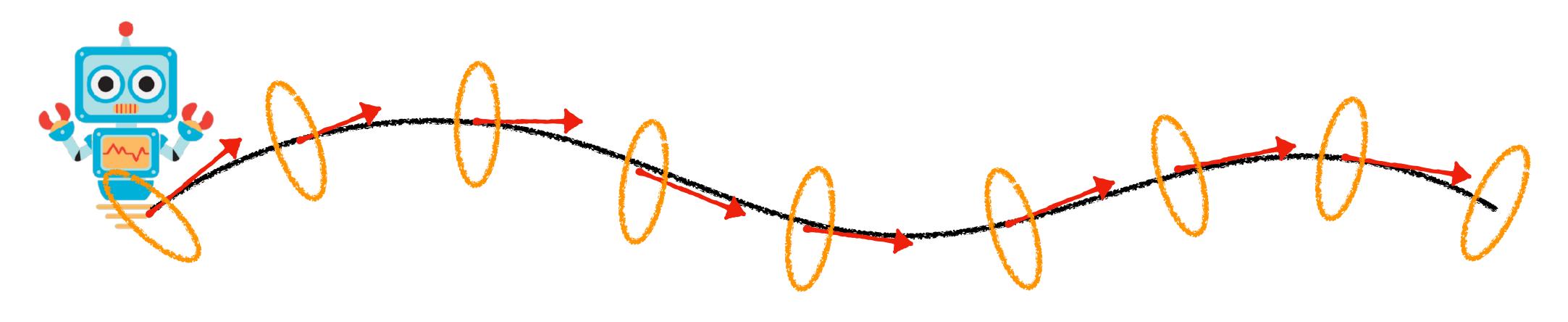
Iterative LQR (ILQR)



 $x_{t+1} = f(x_t, u_t)$

Nonlinear!

Iterative LQR (ILQR) - Spill the beans! Three simple steps!



Step 1: Forward pass - roll out current guess u(t)Step 2: Linearize dynamics, quadricize cost around roll out Step 3: Backwards pass - compute LQR gains K_t at each time

How I learned ILQR ..

Suffer through a barrage of matrix derivations!

(And god forbid you flip a sign...)

Dynamic Programming (Value-Iteration) Backup

Assume we have now a control policy of the form of a "feedforward" update term k_t and feedback term K_T that is a linear controller response to "errors" in z_T :

$$v_T = K_T z_T + k_T, (2.7.1)$$

Inductively, we assume the next-state value function (i.e. of the future timestep) can be written in the form,

$$J_{T+1} = \frac{1}{2} z_{T+1} V_{T+1} z_{T+1} + G_{T+1} z_{T+1} + W_{T+1}.$$
 (2.7.2)

Since

$$z_{T+1} = A z_T + B v_T \tag{2.7.3}$$

$$= Az_T + B(K_T z_T + k_T)$$
 (2.7.4)

$$= (A + BK_T)z_T + Bk_T, \tag{2.7.5}$$

we can write, J_{T+1} as:

$$J_{T+1} = \frac{1}{2} ((A + BK_T)z_T + Bk_T)^T V_{T+1} ((A + BK_T)z_T + Bk_T) + G_{T+1} ((A + BK_T)z_T + Bk_T) + W_{T+1}$$
(2.7.6)

$$= \frac{1}{2} z_T^T (A + BK_T)^T V_{T+1} (A + BK_T) z_T + \frac{1}{2} k_T^T B^T V_{T+1} B k_T + k_T^T B^T V_{T+1} (A + BK_T) z_T$$
(2.7.7)

$$+ C_{T+1}(A + BK_T)z_T + C_{T+1}Bk_T + W_{T+1}$$
(2.7.8)

$$= \frac{1}{2} z_T^T (A + BK_T)^T V_{T+1} (A + BK_T) z_T + \left(k_T^T B^T V_{T+1} (A + BK_T) + G_{T+1} (A + BK_T) \right) z_T$$
(2.7.9)

$$+G_{T+1}Bk_T + \frac{1}{2}k_T^T B^T V_{T+1}Bk_T + W_{T+1}$$
(2.7.10)

Additionally, we can write the cost $c_T(z_T, v_T)$ as:

$$c_T = \frac{1}{2} z_T^T Q z_T + z_T^T P v_T + \frac{1}{2} v_T^T R v_T + g_x^T z_T + g_y^T v_T + c + J_{T+1}$$
(2.7.11)

$$= \frac{1}{2} z_T^T Q z_T + z_T^T P(K_T z_T + k_T) + \frac{1}{2} (K_T z_T + k_T)^T R(K_T z_T + k_T) + g_x^T z_T + g_y^T (K_T z_T + k_T) + \epsilon$$
(2.7.12)

$$= \frac{1}{2} z_T^T Q z_T + z_T^T P K_T z_T + k_T^T P^T z_T + \frac{1}{2} z_T^T K_T^T R K_T z_T + \frac{1}{2} k_T^T R k_T + k_T^T R K_T z_T + g_x^T z_T$$

$$+ g_x^T K_T z_T + g_y^T k_T + c$$
(2.7.13)

$$= \frac{1}{2} z_T^T \left(Q + 2PK_T + K_T^T RK_T \right) z_T + \left(k_T^T P^T + k_T^T RK_T + g_x^T + g_y^T K_T \right) z_T + \frac{1}{2} k_T^T Rk_T + g_y^T k_T + c$$
(2.7.14)

Then, we can write $J_T = c_T(z_T, v_T) + J_{T+1} = \frac{1}{2}z_T^T V_T z_T + G_T z_T + W_T$ by combining like terms from above, where

$$V_T = Q + 2PK_T + K_T^T RK_T + (A + BK_T)^T V_{T+1} (A + BK_T)$$
(2.7.15)

$$G_T = k_T^T P^T + k_T^T R K_T + g_x^T + g_x^T K_T + k_T^T B^T V_{T+1} (A + B K_T) + G_{T+1} (A + B K_T)$$
(2.7.16)

$$W_T = \frac{1}{2}k_T^T Rk_T + g_u^T k_T + c + G_{T+1}Bk_T + \frac{1}{2}k_T^T B^T V_{T+1}Bk_T + W_{T+1}$$
(2.7.17)

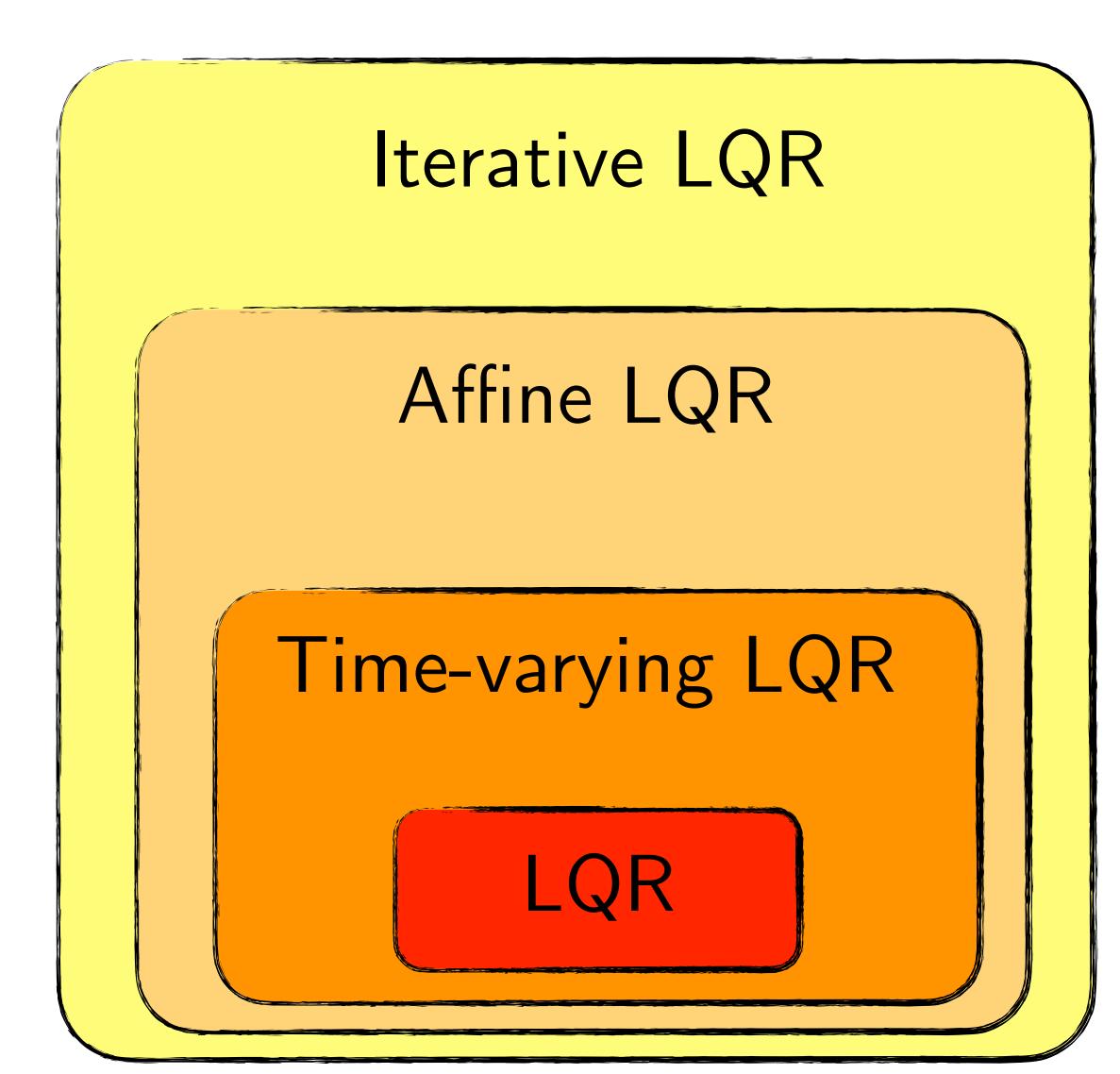
We find the control policy by minimizing J_T with respect to v_T .

$$v_T = \min_{v_T} c_T + J_{T+1} \tag{2.7.18}$$

$$= z_T^T P v_T + \frac{1}{2} v_T^T R v_T + g_u^T v_T + \frac{1}{2} (A z_T + B v_T)^T V_{T+1} (A z_T + B v_T) + G_{T+1} (A z_T + B v_T)$$
(2.7.19)

$$= \left(z_T^T P + z_T^T A^T V_{T+1} B\right) v_T + \left(G_{T+1} B + g_u^T\right) v_T + \frac{1}{2} v_T^T \left(R + B^T V_{T+1} B\right) v_T$$
(2.7.20)

(2.7.21)

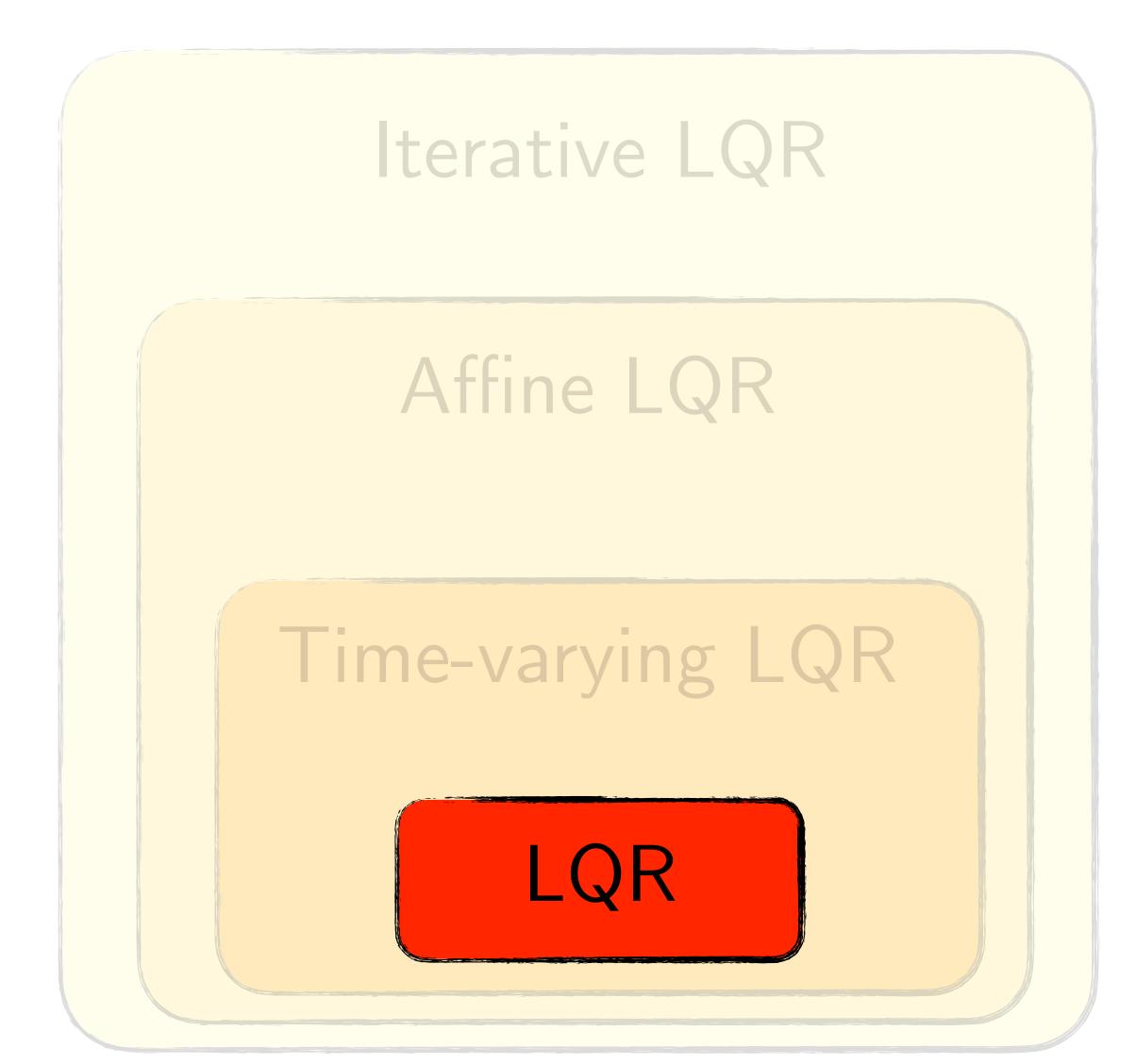


 $x_{t+1} = \frac{\partial f}{\partial x} \left| \delta x_t + \frac{\partial f}{\partial u} \right| \delta u_t + f(x_t^*, u_t^*)$

 $x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$

 $x_{t+1} = A_t x_t + B_t u_t$

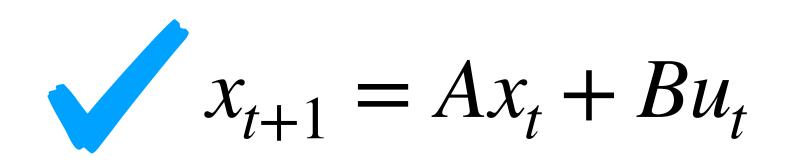
 $x_{t+1} = Ax_t + Bu_t$



 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \delta u_t + f(x_t^*, u_t^*) \end{array} \right|$

 $x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$

 $x_{t+1} = A_t x_t + B_t u_t$

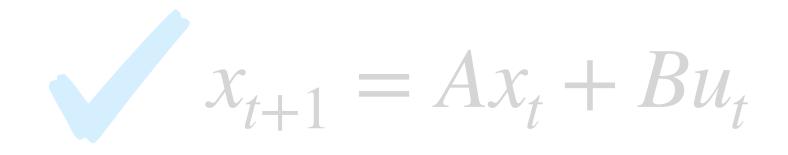




 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \delta u_t + f(x_t^*, u_t^*) \end{array} \right|$

 $x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$

 $x_{t+1} = A_t x_t + B_t u_t$

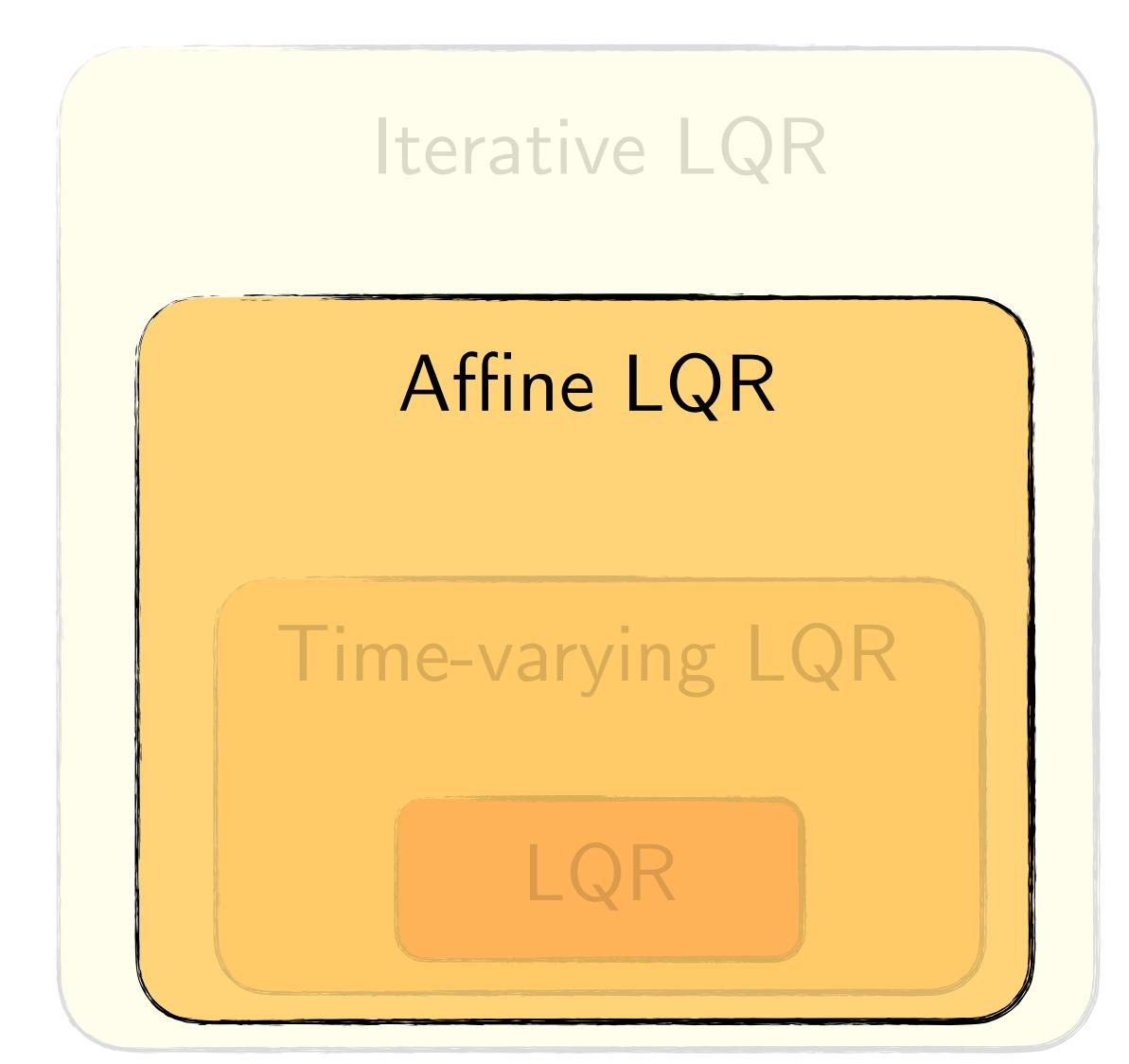




 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \delta u_t + f(x_t^*, u_t^*) \end{array} \right|$

 $x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$

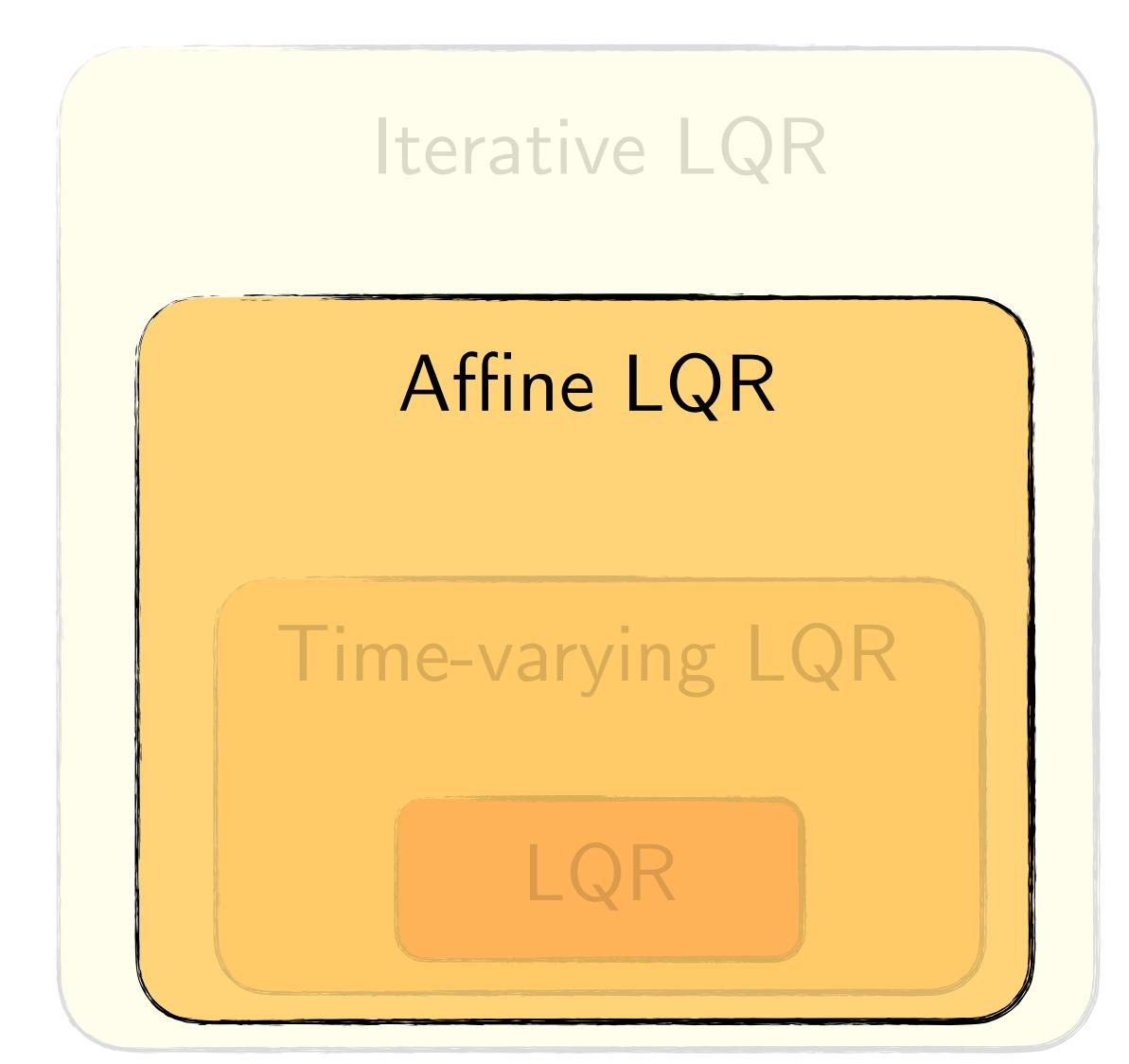
 $x_{t+1} = A_t x_t + B_t u_t$ $x_{t+1} = Ax_t + Bu_t$



 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \delta u_t + f(x_t^*, u_t^*) \end{array} \right|$

 $x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$

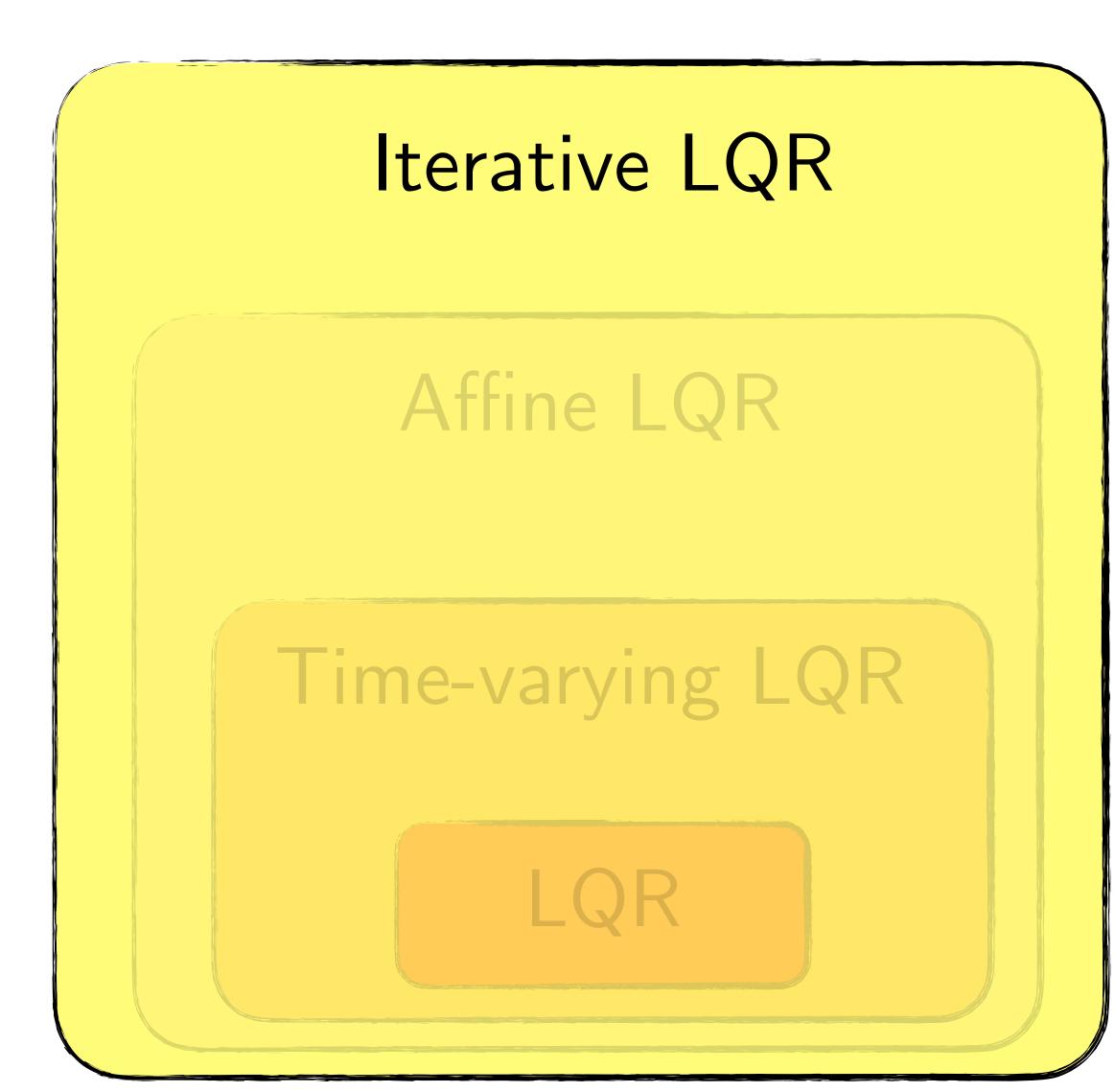
 $x_{t+1} = A_t x_t + B_t u_t$ $x_{t+1} = Ax_t + Bu_t$



 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \delta u_t + f(x_t^*, u_t^*) \end{array} \right|$

 $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t u_t + \mathbf{x}_t^{off}$

 $x_{t+1} = A_t x_t + B_t u_t$ $x_{t+1} = Ax_t + Bu_t$



 $x_{t+1} = \frac{\partial f}{\partial x} \left| \begin{array}{c} \delta x_t + \frac{\partial f}{\partial u} \\ \end{array} \right| \delta u_t + f(x_t^*, u_t^*)$

 $x_{t+1} = A_t x_t + B_t u_t$ $x_{t+1} = Ax_t + Bu_t$

The iLQR Algorithm

- 1. Propose some initial (feasible) trajectory $\{x_t, u_t\}_{t=0}^{T-1}$
- 2. Linearize the dynamics, *f* about trajectory:

$$\left. \frac{\partial f}{\partial x} \right|_{x_t} = A_t, \quad \left. \frac{\partial f}{\partial u} \right|_{u_t} = B_t$$

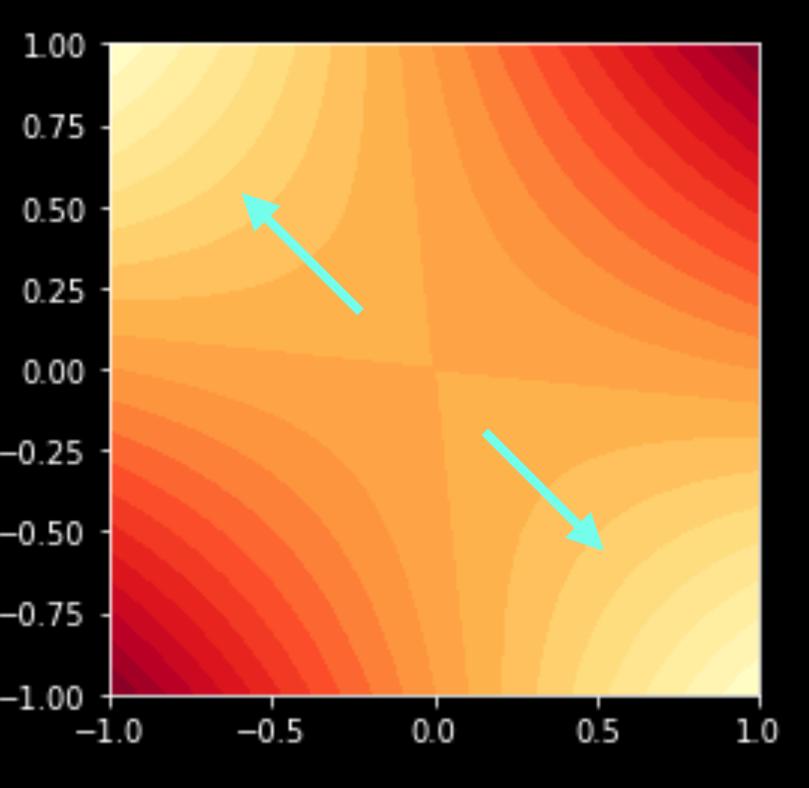
Linearization can be obtained by three methods:

- (a) Analytical: either manually or via *auto-diff*, compute the correct derivatives.
- (b) Numerical: use finite differencing.
- (c) Statistical: Collect samples by deviations around the trajectory and fit linear model.
- Compute second order Taylor series expansion the cost func-3. tion c(x, u) around x_t and u_t and get a quadratic approximation $c_t(\tilde{x}_t, \tilde{u}_t) = \tilde{x}_t^{\top} \tilde{Q}_t \tilde{x}_t + \tilde{u}_t^{\top} \tilde{R}_t \tilde{u}_t$ where the \tilde{x}_t, \tilde{u}_t variables represent changes in the proposed trajectory in homogenous coordinates. ¹²
- 4. Given $\{A_t, B_t, \tilde{Q}_t, \tilde{R}_t\}_{t=0}^{T-1}$, solve an affine quadratic control problem and obtain the proposed feedback matrices (on the homogeneous represenation of *x*).

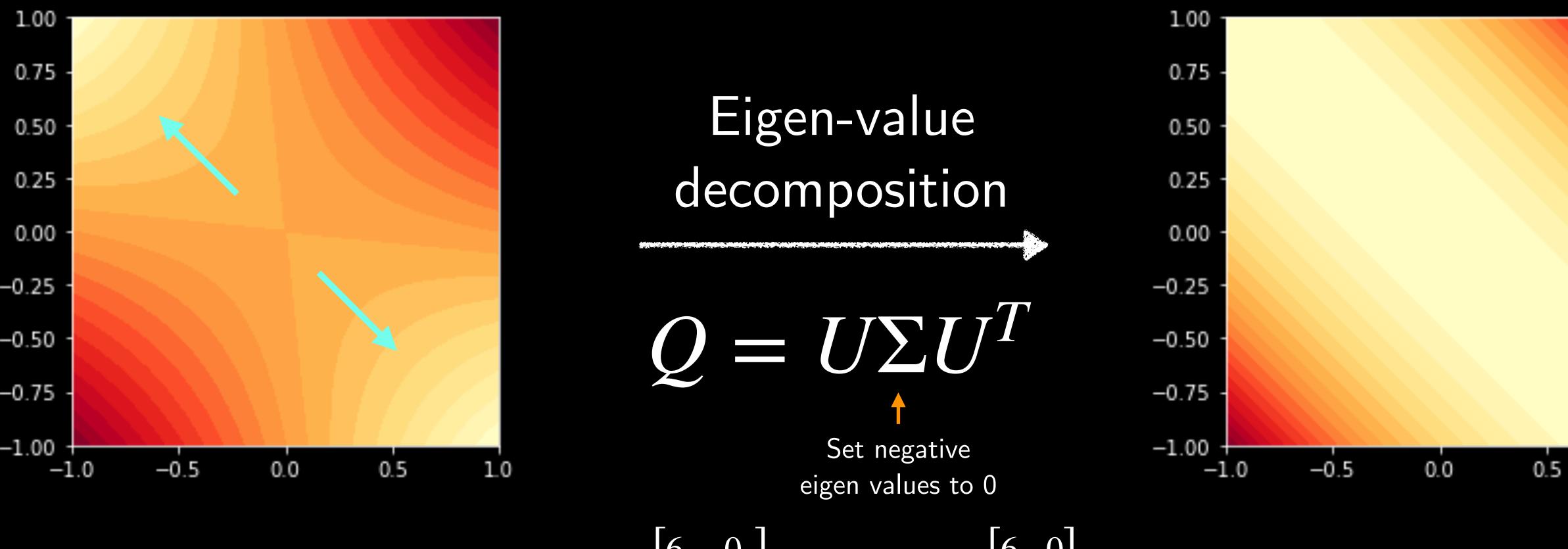
- 5. Forward simulate the full nonlinear model f(x, u) using the computed controls $\{u_t\}_{t=0}^{T-1}$ that arise from feedback matrices applied to the sequence of states $\{x_t\}_{t=0}^{T-1}$ that arise from that forward simulation.
- 6. Using the newly obtained $\{x_t, u_t\}_{t=0}^{T-1}$ repeat steps from 2.

Approximations always hurt

#1: Q and R not PSD / PD Quadracizing non-convex cost function



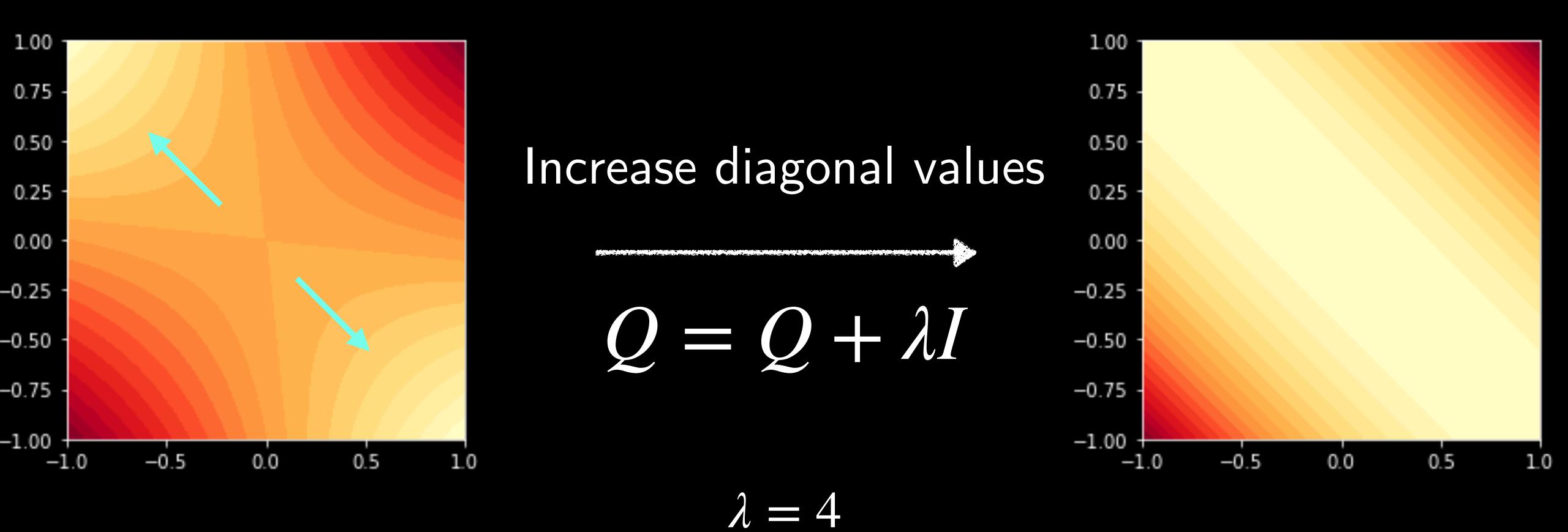
#1: Q and R not PSD / PD



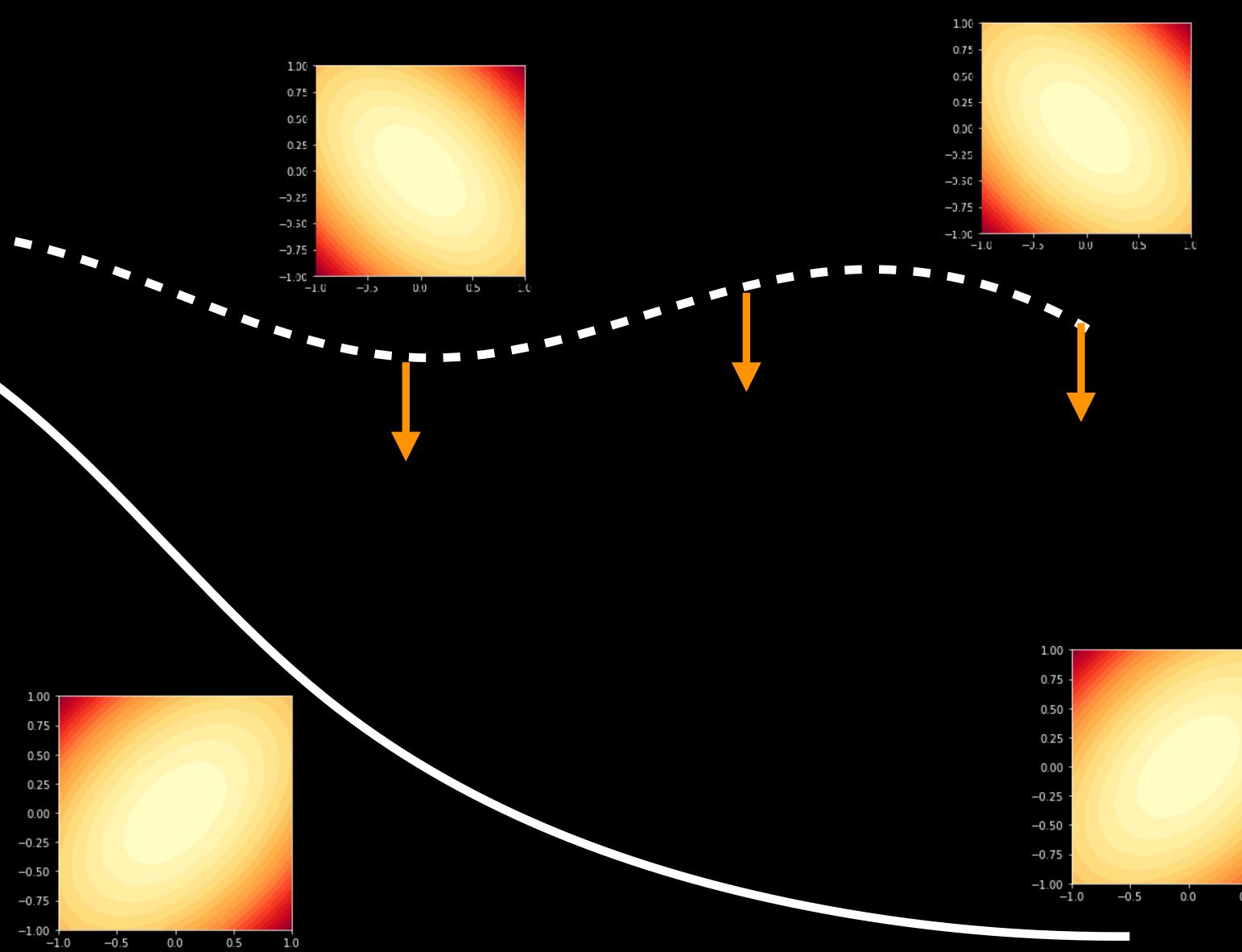
 $\Sigma = \begin{bmatrix} 6 & 0 \\ 0 & -4 \end{bmatrix} \longrightarrow \Sigma = \begin{bmatrix} 6 & 0 \\ 0 & 0 \end{bmatrix}$

Quadracizing non-convex cost function

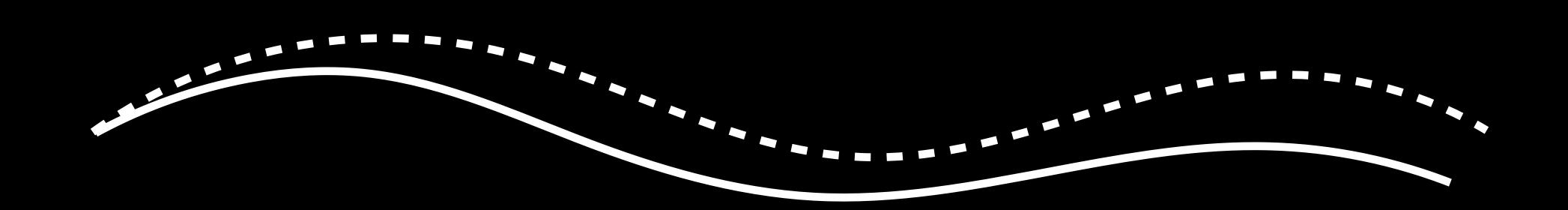
#1: Q and R not PSD / PD Quadracizing non-convex cost function



#2: Approximation Errors Compound



#2: Approximation Errors Compound



Slowly change controls

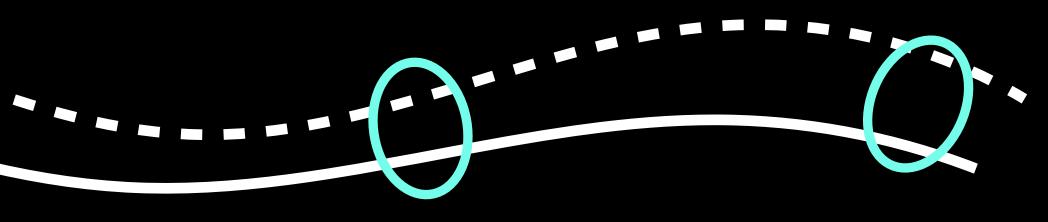
 $u = (1 - \alpha)u_{old} + \alpha u_{new}$

#2: Approximation Errors Compound

Trust region: Control and state sampling

$C_{new}(x, u) = c(x, u) + \lambda_x$

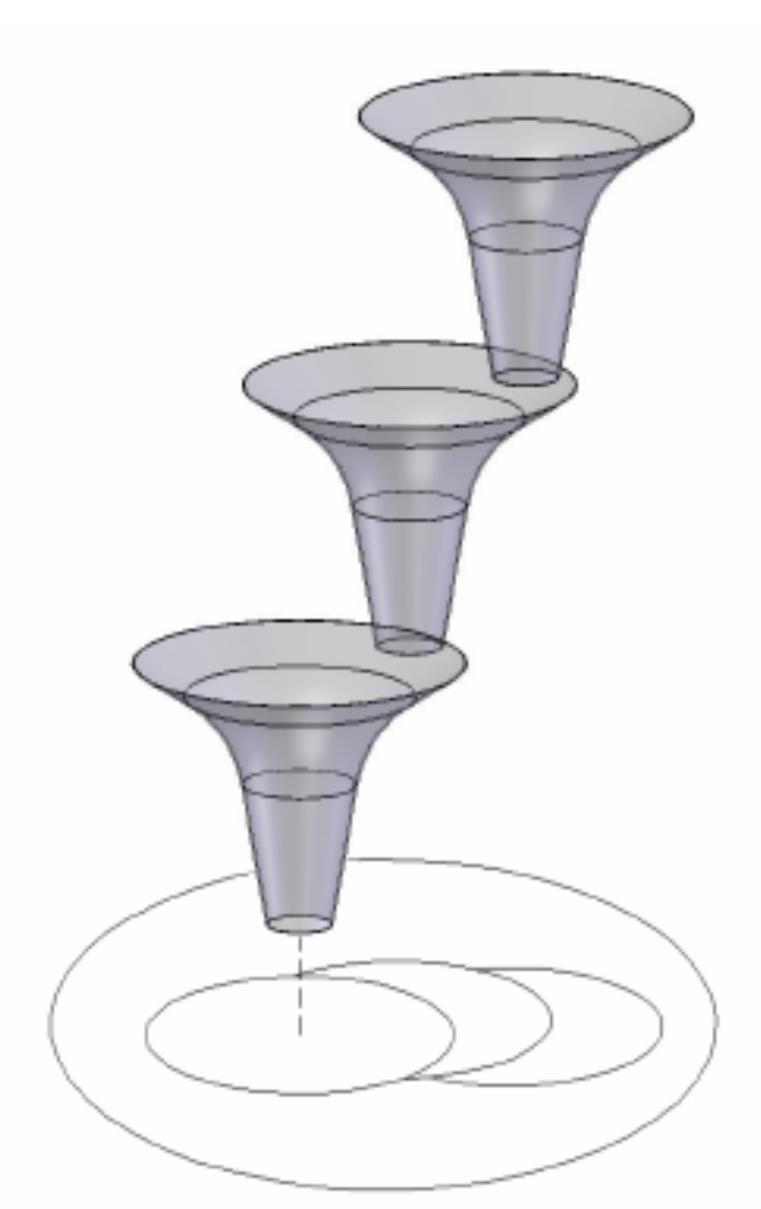
(Penalize deviations from old state / control)

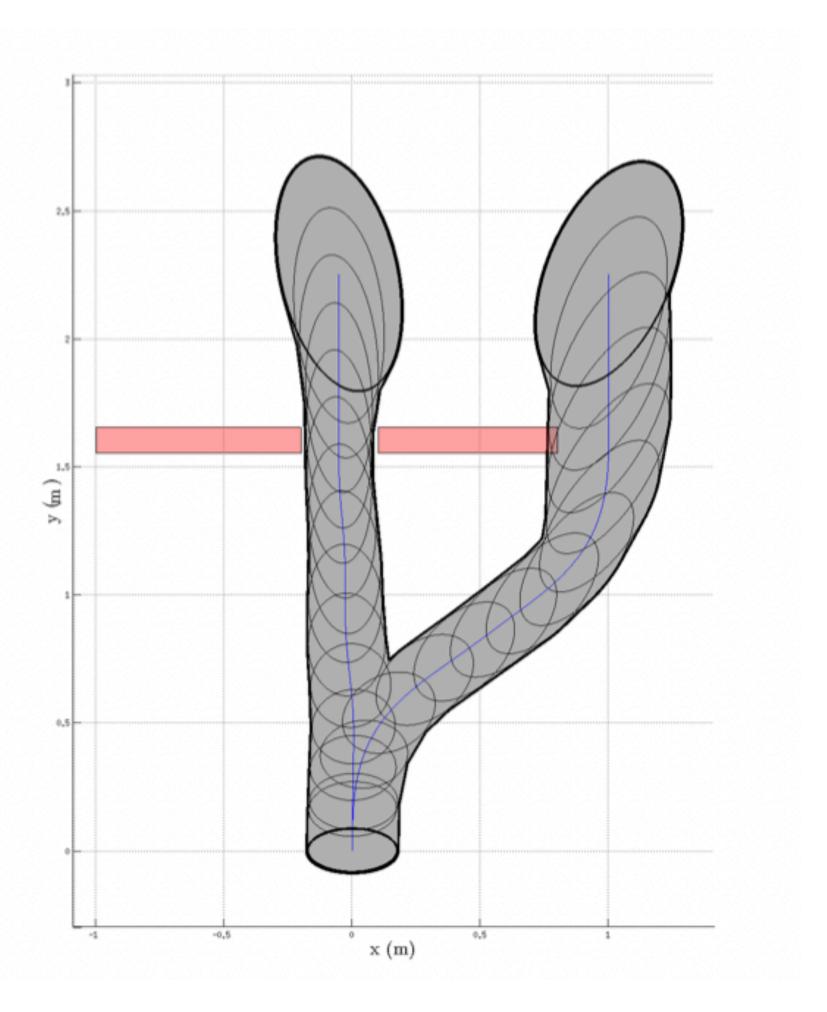


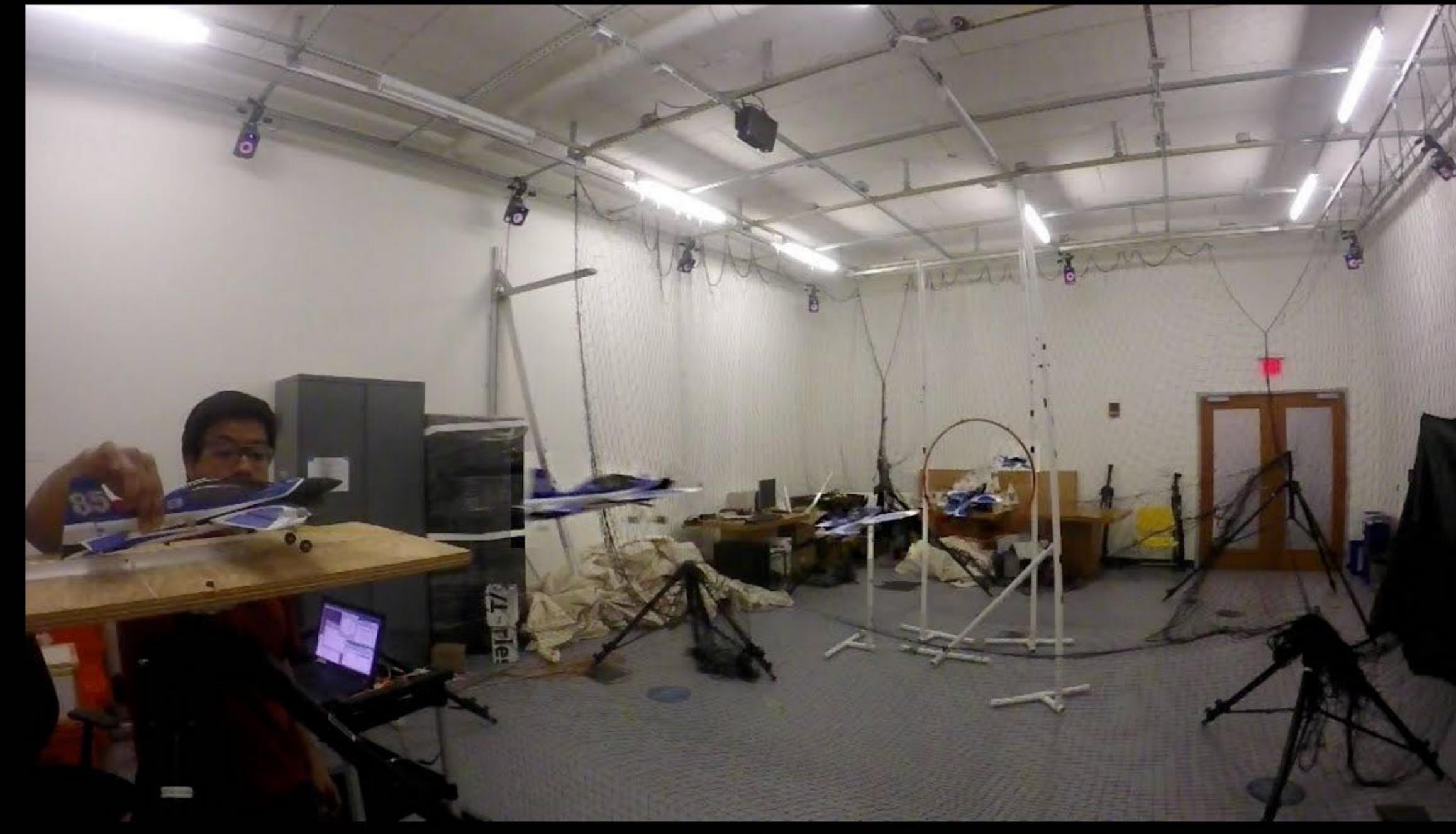
$$|x - x_{old}| + \lambda_u | u - u_{old}|$$

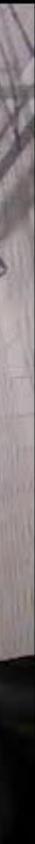
How general is this idea?

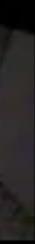
#1: Cover the world with funnels









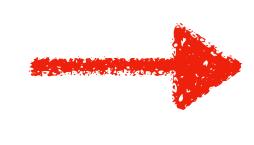


#2: Replace linear/quadratic with a LEARNER

for i = 1 N

Roll-out current policy

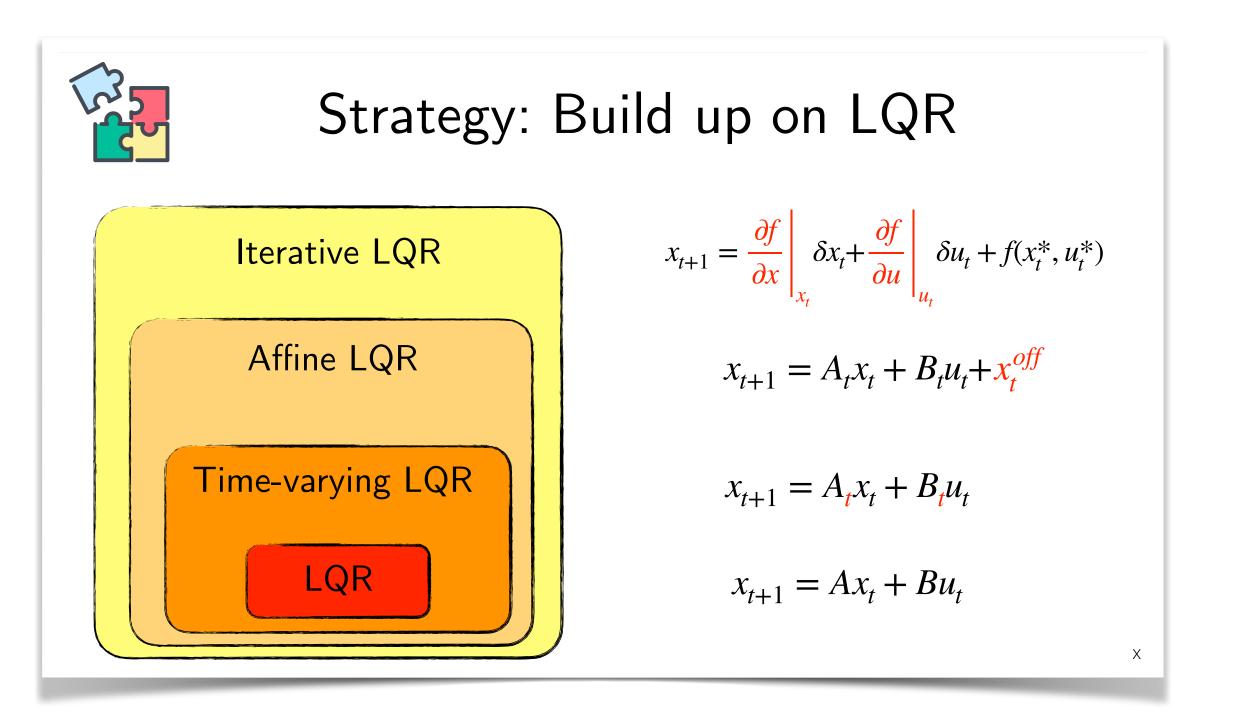
Update policy



Train model from collected data!

tl;dr

LQR is fundamentally a way to *locally* approximate and update value functions



Approximations always hurt

#1: Q and R not PSD / PD

#2: Approximation Errors Compound

