Linear Quadratic Regulator: The Analytic MDP

Sanjiban Choudhury

Announcements

1. No office hours for Sanjiban on Thursday this week :(

It's time to bring in the robots!

BostonDynamics

the second

Activity!

Think-Pair-Share

Think (30 sec): How do we model the Atlas backflip as a Markov Decision Problem <S, A, C, T>?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

The Inverted Pendulum: A fundamental dynamics model

Why not discretize the dynamics and apply value / policy iteration?

THE CURSE OF DIMENSIONALITY

No Discretization! Can we analytically represent and update the value function?

 $V^*(s) = \min \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$

Time: 0

0 -	15	14	13	30	30	30	30	2]
	14	13	12	30				3	2
~ -	13	12	11	30				4	З
m -	12	11	10	9	8	7	6	5	4
4 -	13	12	11	30	30	30	30	6	5
ഗ-	14	13	12	30				7	6
<u>ہ</u>	15	14	13	30				8	7
~ -	16	15	14	13	12	11	10	9	8
∞ -	17	16	15	14	13	12	11	10	9
ი -	18	17	16	15	14	13	12	11	1
	ó	i	ź	ż	4	5	6	7	8

 $V^*(s) = \min_{a} \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$

Can represent analytically ... (piecewise linear?)

But updating seems hard!

13

Can we analytically represent and update the value function?

*linear dynamics, quadratic costs

14

Let's formalize!

It's quadratics all the way down!

$V_{t} = Q + K_{t}^{T}RK_{t} + (A + BK_{t})^{T}V_{t+1}(A + BK_{t})$

 $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

The LQR Algorithm

Initialize $V_T = Q$ For $t = T \dots 1$

Compute gain matrix $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

Update value $V_t = Q + K_t^T R K_t + (A + B K_t)^T V_{t+1} (A + B K_t)$

Value Iteration for Inverted Pendulum

Time: 100

Value converges when system is stabilizable

Can solve Ricatti equations for fixed point

Value Iteration for Inverted Pendulum

Time: 1

An Easy Starting Point

Another Easy Starting Point

A Hard Starting Point

Another Hard Starting Point

When does LQR converge? $V = Q + K^T R K + (A + BK)^T V (A + BK)$ $K = (R + B^T V B)^{-1} B^T V A$ When the closed loop system is stable, i.e. Eigen values of (A+BK) are inside the unit circle on the complex plane

When does LQR converge? $V = Q + K^T R K + (A + BK)^T V (A + BK)$ $K = (R + B^T V B)^{-1} B^T V A$ When the closed loop system is stable, i.e. Eigen values of (A+BK) are inside the unit circle on the complex plane

https://en.wikipedia.org/wiki/Algebraic Riccati equation

How can we find the fixed point of this equation?

Discrete time algebraic ricatti equation (DARE)

What if Q is not PSD?

$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

What if R is not positive definite? $R = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Hint: Gain matrix update?

 $K_{t} = (R + B^{T}V_{t+1}B)^{-1}B^{T}V_{t+1}A$

What about handling uncertainty?

Gaussian noise in dynamics ?

$$x_{t+1} \sim \mathcal{N}($$

$(Ax_t + Bu_t, \Sigma)$

Some Trivia!

In 1960 three major papers were published by R. Kalman and coworkers...

1. One of these [Kalman and Bertram 1960], publicized the vital work of Lyapunov in the time-domain control of nonlinear systems.

the design equations for the linear quadratic regulator (LQR).

theory, providing the design equations for the discrete Kalman filter.

- A productive year from Kalman
- 2. The next [Kalman 1960a] discussed the optimal control of systems, providing
- 3. The third paper [Kalman 1960b] discussed optimal filtering and estimation

(from http://www.uta.edu/utari/acs/history.htm)

Trivia: Duality between control and estimation

R. Kalman "A new approach to linear filtering and prediction problems." (1960)

linear-quadratic Kalman-Bucy filter regulator

- VA
- B
- R
- t

(Table from E.Todorov "General duality between optimal control and estimation", CDC, 2008)

(state variance) (dynamics) (dynamics noise) (measurement) (motion noise)

tl;dr

It's quadratics all the way down!

The LQR Algorithm

Initialize $V_T = Q$

For $t = T \dots 1$

Compute gain matrix $K_t = (R + B^T V_{t+1} B)^{-1} B^T V_{t+1} A$

Update value $V_t = Q + K_t^T R K_t + (A + B K_t)^T V_{t+1} (A + B K_t)$

31