Markov Decision Process

Sanjiban Choudhury

Announcements

1. Thanks for finishing Assignment 0!
2. Assignment 1 released!
3. Slides, Python notebook released

Robot
 Decision Making

Today!

Question from last class:

"Will we only look at discrete actions?"

Calculus to the rescue

Develop ideas in discrete space, extend to continuous space

Generalized Weighted Majority

Normalized Exponentiated
Gradient Descent

Discrete Value Iteration

Algebraic Ricatti
Equations

Robot
 Decision Making

Today!

Decisions, decisions!

Tetris

Self-driving

Robot Baristas

What makes decision making hard?

Single shot decision making

What makes decision making hard?

Single shot decision making

What makes decision making hard?

Sequential decision making

What makes decision making hard?

How do we tractably reason over a sequence of decisions?

Markov to the rescue!

Courtesy: Byron Boots

State: statistic of history sufficient to predict the future

Markov Decision Process

A mathematical framework for modeling sequential decision making

State

Sufficient statistic of the system to predict future disregarding the past

Activity!

Think-Pair-Share

Think (30 sec): Example of MDPs with shallow state? (Current observation good enough) Example of MDPs with deep state?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Action

Doing something:
 Control action / decisions

$a \in A$

Cost

The instantaneous cost of taking an action in a state

$$
c(s, a)
$$

Examples of non-Markovian cost?

"Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV", S. Shen, N. Michael, V.Kumar, 2010

Transition

The next state given state and action
$s^{\prime}=\mathscr{T}(s, a)$
Deterministic

$$
s^{\prime} \sim \mathscr{T}(s, a)
$$

Stochastic

Examples of non-Markovian dynamics?

Wind correlates disturbance across time

Markov Decision Process \rightarrow Problem

Includes things to define an optimization problem

Horizon $\quad T \in \mathbb{N}$

Discount $0 \leq \gamma \leq 1 \quad$ Return: $c_{0}+\gamma c_{1}+\cdots \cdots \gamma^{T-1} c_{T-1}$
(Costs are more valuable if they happen soon)

Markov Decision Process \rightarrow Problem

$$
\begin{gather*}
\text { Policy } \\
\pi \in \Pi \\
\pi: s_{t} \rightarrow a_{t} \quad \text { (Deterministic } \tag{Deterministic}\\
\pi: s_{t} \rightarrow P\left(a_{t}\right) \quad \text { (Stochastic) }
\end{gather*}
$$

A function that maps state (and time) to action

Objective Function

Find policy that minimizes sum of discounted future costs

Value of a state

$$
V^{\pi}\left(s_{t}\right)=c_{t}+\gamma c_{t+1}+\gamma^{2} c_{t+2}+
$$

Expected discounted sum of cost from starting at a state and following a policy from then on

$$
\pi^{*}=\arg \min _{\pi} \mathbb{E}_{s_{0}} V^{\pi}\left(s_{0}\right)
$$

Value of a state-action

$$
Q^{\pi}\left(s_{t}, a_{t}\right)=c_{t}+\gamma c_{t+1}+\gamma^{2} c_{t+2}+\cdots
$$

Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

$$
Q^{\pi}\left(s_{t}, a_{t}\right)=c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1} \sim \mathscr{T}\left(s_{t}, a_{t}\right)} V^{\pi}\left(s_{t+1}\right)
$$

Values matter

Let's build some intuition!

Case studies

Example 1: Tetris!

Example 2: Self-driving

Example 3: Coffee making robot

$\langle S, A, C, \mathscr{T}\rangle$?

Solving MDPs

Setup

$$
<S, A, C, \mathscr{T}\rangle
$$

- Two absorbing states: Goal and Swamp
- Cost of each state is 1 till you reach the goal
- Let's set T $=30$

What is the optimal value at $\mathrm{T}-1$?

Time: 29

$V^{*}\left(s_{T-1}\right)=\min _{a} c\left(s_{T-1}, a\right) \quad \pi^{*}\left(s_{T-1}\right)=\arg \min _{a} c\left(s_{T-1}, a\right)$

What is the optimal value at T-2?

Time: 28

$V^{*}\left(s_{T-2}\right)=\min _{a}\left[c\left(s_{T-2}, a\right)+V^{*}\left(s_{T-1}\right)\right]$

$$
\pi^{*}\left(s_{T-2}\right)=\arg \min _{a}\left[c\left(s_{T-2}, a\right)+V^{*}\left(s_{T-1}\right)\right]
$$

Dynamic Programming all the way!

Time: 16

14	14	13	14	14	14	14	2	1	0
14	13	12	14	14	14	14	3	2	1
13	12	11	14	14	14	14	4	3	2
12	11	10	9	8	7	6	5	4	3
13	12	11	14	14	14	14	6	5	4
14	13	12	14	14	14	14	7	6	5
14	14	13	14	14	14	14	8	7	6
14	14	14	13	12	11	10	9	8	7
14	14	14	14	13	12	11	10	9	8
14	14	14	14	14	13	12	11	10	9
0	1	2	3	4	5	6	7	8	9

$V^{*}\left(s_{t}\right)=\min _{a}\left[c\left(s_{t}, a\right)+V^{*}\left(s_{t+1}\right)\right]$

$\left.\pi^{*}\left(s_{t}\right)=\arg \min _{a}\left[c\left(s_{t}\right), a\right)+V^{*}\left(s_{t+1}\right)\right]$

Value Iteration

Algorithm 4: Dynamic Programming Value Iteration for comput-

1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
${ }^{1}$	1	2	3	4	5	6	7	8	9

Algorithm OptimalValue (x, T)
for $t=T-1, \ldots, 0$ do
for $x \in \mathbb{X}$ do
if $t=T-1$ then
$V(x, t)=\min _{a} c(x, a)$
end
else
$V(x, t)=\min _{a} c(x, a)+\sum_{x^{\prime} \in \mathbb{X}} p\left(x^{\prime} \mid x, a\right) V(x, t+1)$
end
end
end

What is

the complexity?
$S \times A \times T$
Deterministic
$S^{2} \times A \times T$
Stochastic
$k \times S \times A \times T$
Efficient

Why is the optimal policy a function of time?

Pulling the goalie when you are losing and have seconds left ..

To infinity!

Infinite horizon cases

$$
V^{*}\left(s_{t}\right)=\min _{a_{t}}\left[c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1} \sim \mathscr{T}\left(s_{t}, a_{t}\right)} V^{*}\left(s_{t+1}\right)\right]
$$

Fixed point as $t \rightarrow \infty$

$$
V^{*}(s)=\min _{a}\left[c(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{*}(s)\right]
$$

Bellman Equation

$$
V^{*}(s)=\min _{a}\left[c(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim \mathscr{T}(s, a)} V^{*}(s)\right]
$$

Does this converge?
How fast does it converge?

Does value iteration converge?

What is $V^{*}\left(s_{1}\right)$? What is $V^{*}\left(s_{2}\right)$?

Markov Decision Process
A mathematical framework for modeling sequential decision making

Value of a state-action

$Q^{\pi}\left(s_{t}, a_{t}\right)=c_{t}+\gamma c_{t+1}+\gamma^{2} c_{t+2}+\cdots$
Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

$$
Q^{\pi}\left(s_{t}, a_{t}\right)=c\left(s_{t}, a_{t}\right)+\gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}\left(s_{t}, a_{t}\right.} V^{\pi}\left(s_{t+1}\right)
$$

Dynamic Programming all the way!

Time: 16

$V^{*}\left(s_{t}\right)=\min _{a}\left[c\left(s_{t}, a\right)+V^{*}\left(s_{t+1}\right)\right]$

$\left.\pi^{*}\left(s_{t}\right)=\arg \min _{a}\left[c\left(s_{t}\right), a\right)+V^{*}\left(s_{t+1}\right)\right]$

