
Markov Decision Process

Sanjiban Choudhury

1

2

1. Thanks for finishing
Assignment 0!

Announcements

2. Assignment 1 released!

3. Slides, Python notebook
released

3

Learning
Robot

Decision
Making

Today!

4

Question from last class:

“Will we only look at
discrete actions?”

Calculus to the rescue
Develop ideas in discrete space, extend to continuous space

Generalized Weighted
Majority

Normalized Exponentiated
Gradient Descent

Discrete Value Iteration
Algebraic Ricatti

Equations

6

Learning
Robot

Decision
Making

Today!

Decisions, decisions!

Self-driving Robot BaristasTetris

What makes decision making hard?

8

Single shot decision making

What makes decision making hard?

9

Single shot decision making

What makes decision making hard?

10

Sequential decision making

What makes decision making hard?

11

How do we tractably reason over a sequence of decisions?

Markov to the rescue!

12

Courtesy: Byron Boots

Markov Decision Process

13

< S , A , C , 𝒯 >
A mathematical framework for modeling sequential decision making

14

< S , A , C , 𝒯 >State
Sufficient statistic of the system
to predict future disregarding

the past

s ∈ S

Trust

Activity!

Think-Pair-Share

16

Think (30 sec): Example of MDPs with shallow state?
 (Current observation good enough)

 Example of MDPs with deep state?

Pair: Find a partner

Share (45 sec): Partners exchange
 ideas

17

< S , A , C , 𝒯 >Action
Doing something:

Control action / decisions a ∈ A

18

< S , A , C , 𝒯 >Cost
The instantaneous cost of
taking an action in a state c(s, a)

2 Ke et al.

(a) (b)

Fig. 1: Behavior cloning fails with multi-modal demonstrations. Experts go left or right
around obstacle. Learner interpolates between modes and crashes into obstacle.

Interestingly, this oddity is not restricted to behavior cloning. [4] show that
a more sophisticated approach, GAIL [5], also exhibits a similar trend. Their
proposed solution, InfoGAIL [4], tries to recover all the latent modes and learn
a policy for each one. For demonstrations with several modes, recovering all such
policies will be prohibitively slow to converge.

Our key insight is to view imitation learning algorithms as minimizing diver-
gence between the expert and the learner trajectory distributions. Specifically, we
examine the family of f -divergences. Since they cannot be minimized exactly,
we adopt estimators from [6]. We show that behavior cloning minimizes the
Kullback-Leibler (KL) divergence (M-projection), GAIL minimizes the Jensen-
Shannon (JS) divergence and DAgger minimizes the Total Variation (TV).
Since both JS and KL divergence exhibit a mode-covering behavior, they end
up interpolating across modes. On the other hand, the reverse-KL divergence
(I-projection) has a mode-seeking behavior and elegantly collapses on a subset
of modes fairly quickly.

The contributions and organization of the remainder of the paper are:

1. We introduce a unifying framework for imitation learning as minimization
of f -divergence between learner and trajectory distributions (Section 3).

2. We propose algorithms for minimizing estimates of any f -divergence. Our
framework is able to recover several existing imitation learning algorithms for
different divergences. We closely examine reverse KL divergence and propose
efficient algorithms for it (Section 4).

3. We argue for using reverse KL to deal with multi-modal inputs (Section 5).
We empirically demonstrate that reverse KL collapses to one of the demon-
strator modes on both bandit and RL environments, whereas KL and JS
unsafely interpolate between the modes (Section 6).

2 Related Work

Imitation learning (IL) has a long-standing history in robotics as a tool to pro-
gram desired skills and behavior in autonomous machines [7–10]. Even though
IL has of late been used to bootstrap reinforcement learning (RL) [11–15], we fo-
cus on the original problem where an extrinsic reward is not defined. We ask the

Examples of non-Markovian cost?

19“Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010

20

< S , A , C , 𝒯 >Transition

The next state given state and action

s′ = 𝒯(s, a) s′ ∼ 𝒯(s, a)
Deterministic Stochastic

Examples of non-Markovian dynamics?

21

Wind correlates disturbance across time

Markov Decision Process Problem→

22

Includes things to define an optimization problem

Horizon T ∈ ℕ

Discount 0 ≤ γ ≤ 1

s0 a0 c0 s1 a1 c1 s2 sT

⋯
c0Return: γc1+ + ⋯ γT−1cT−1

(Costs are more valuable if they happen soon)

Markov Decision Process Problem→

23

Policy Objective Function

π ∈ Π

π : st → at

A function that maps
state (and time) to action

min
π

𝔼
at ∼ π(st)

st+1 ∼ 𝒯(st, at)

[
T−1

∑
t=0

γtc(st, at)]

Find policy that minimizes
sum of discounted future costs

π : st → P(at)

(Deterministic)

(Stochastic)

Value of a state

24

Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

Expected discounted sum of cost from
starting at a state
and following a policy from then on

st π

⋯

π* = arg min
π

𝔼s0
Vπ(s0)

Value of a state-action

25

st st+1 π

= ct γct+1+ + γ2ct+2 +Qπ(st, at)

at
π

⋯
⋯

Expected discounted sum of cost from
starting at a state, executing action
and following a policy from then on

Qπ(st, at) = c(st, at) + γ𝔼st+1∼𝒯(st,at)V
π(st+1)

Values matter

Let’s build some
intuition!

Case studies

Example 1: Tetris!

29

12 draft: modern adaptive control and reinforcement learning

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k ⇥ 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x0 will
be given the current state x and the action a. Solving deterministic

< S , A , C , 𝒯 >

?

Example 2: Self-driving

30

< S , A , C , 𝒯 >

?

Example 3: Coffee making robot

31

< S , A , C , 𝒯 >

?

Solving MDPs

Image courtesy Dan Klein

Setup

33

Swamp < S , A , C , 𝒯 >

• Two absorbing states:
Goal and Swamp

• Cost of each state is 1
till you reach the goal

• Let’s set T = 30

What is the optimal value at T-1?

34

π*(sT−1) = arg min
a

c(sT−1, a)V*(sT−1) = min
a

c(sT−1, a)

What is the optimal value at T-2?

35

V*(sT−2) = min
a

[c(sT−2, a) + V*(sT−1)] π*(sT−2) = arg min
a

[c(sT−2, a) + V*(sT−1)]

Dynamic Programming all the way!

36

π*(st) = arg min
a

[c(st), a) + V*(st+1)]V*(st) = min
a

[c(st, a) + V*(st+1)]

Value Iteration

37

What is
the complexity?

18 draft: modern adaptive control and reinforcement learning

mizing the expectation over the optimal value function:

p⇤(x, t) = argmin
a

⇥
c(x, a) + E

⇥
V⇤(x0, t + 1)

⇤⇤

= argmin
a

"
c(x, a) + Â

x0
p(x0|a, x) V⇤(x0, t + 1)

#
,

V⇤(x, t) = min
a

⇥
c(x, a) + E

⇥
V⇤(x0, t + 1)

⇤⇤

= min
a

"
c(x, a) + Â

x0
p(x0|a, x) V⇤(x0, t + 1)

#
.

Applying backwards induction (dynamic programming) instead of
a recursive formulation, we get what is known as Value Iteration:

Algorithm 4: Dynamic Programming Value Iteration for comput-
ing the optimal value function.

Algorithm OptimalValue(x, T)
for t = T � 1, . . . , 0 do

for x 2 X do
if t = T � 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + Â
x02X

p(x0|x, a)V(x, t + 1)

end
end

end

This approach now has complexity O(|X|2|A|T). However, since
we often don’t have to sum over all x 2 X as the probability of
transitioning to those states may be 0, this typically reduces to
O(k|X||A|T), where k is the average number of neighbouring states.
In a deterministic problem, of course k = 1. If our environment is
continuous, the sums above become integrals as we are integrating
over the state space.

Infinite Horizon Problems

Recall that when we have a finite horizon, both the optimal value
function and the optimal policy are functions of time. However, as
T approaches infinity, we expect that the optimal value function
and the optimal policy no longer have such dependence on time.
Consider, for example, the maze problem above: we would expect
the value function to stabilize as the horizon T gets large. Similarly,
it would seem surprising to alter our policy at different time steps

Deterministic Stochastic Efficient

S × A × T S2 × A × T k × S × A × T

Why is the optimal policy a function of time?

38

Pulling the goalie
when you

are losing and have
seconds left ..

39

To infinity!

Infinite horizon cases

40

V*(st) = min
at

[c(st, at) + γ𝔼st+1∼𝒯(st,at)V*(st+1)]

t → ∞

V*(s) = min
a

[c(s, a) + γ𝔼s′ ∼𝒯(s,a)V*(s)]

Fixed point as

Bellman Equation

41

V*(s) = min
a

[c(s, a) + γ𝔼s′ ∼𝒯(s,a)V*(s)]

Does this converge?

How fast does it converge?

Does value iteration converge?

42

s1 s2

-1

+1

What is ? What is ?V*(s1) V*(s2)

γ = 1

43

tl;dr Markov Decision Process

 X

< S , A , C , ! >
A mathematical framework for modeling sequential decision making

Dynamic Programming all the way!

 X

π*(st) = arg min
a

[c(st), a) + V*(st+1)]V*(st) = min
a

[c(st, a) + V*(st+1)]

Value of a state-action

 X

st st+1 π

= ct γct+1+ + γ2ct+2 +Qπ(st, at)

at
π ⋯
⋯

Expected discounted sum of cost from
starting at a state, executing action
and following a policy from then on

Qπ(st, at) = c(st, at) + γ"st+1∼$(st,at)V
π(st+1)

