Markov Decision Process

Sanjiban Choudhury

Announcements

Thanks for finishing
Assignment 0!

2. Assignment 1 released!

3. Slides, Python notebook released

Learning

Robot Decision Making Today!

Question from last class:

"Will we *only* look at discrete actions?"

Calculus to the rescue

Generalized Weighted Majority

Discrete Value Iteration

Develop ideas in discrete space, extend to continuous space

Normalized Exponentiated Gradient Descent

Algebraic Ricatti Equations

Learning

Robot Decision Making Today!

Decisions, decisions!

Tetris

Self-driving

Robot Baristas

Single shot decision making

Single shot decision making

Sequential decision making

How do we tractably reason over a sequence of decisions?

Markov to the rescue!

compress

State: statistic of history sufficient to predict the future

Markov Decision Process

A mathematical framework for modeling sequential decision making

State

Sufficient statistic of the system to predict future disregarding the past

Trust

Think-Pair-Share

Think (30 sec): Example of MDPs with shallow state? (Current observation good enough) Example of MDPs with deep state?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

State: statistic of history sufficient to predict the future

Action

Doing something: Control action / decisions

Cost

The instantaneous cost of taking an action in a state

-1 (

Examples of non-Markovian cost?

"Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV", S. Shen, N. Michael, V.Kumar, 2010 19

Transition

The next state given state and action

 $s' \sim \mathcal{T}(s, a)$ $s' = \mathcal{T}(s, a)$

Deterministic

Stochastic

Examples of non-Markovian dynamics?

Wind correlates disturbance across time

Includes things to define an optimization problem

$T \in \mathbb{N}$ Horizon

Discount $0 \le \gamma \le 1$

Policy

$\pi \in \Pi$

 $\pi: S_t \to a_t$ (Deterministic)

$\pi: S_t \to P(a_t)$ (Stochastic)

A function that maps state (and time) to action

Markov Decision Process \rightarrow Problem

Objective Function

 $\min_{\pi} \mathbb{E}_{\substack{a_t \sim \pi(s_t) \\ s_{t+1} \sim \mathcal{T}(s_t, a_t)}} \left[\sum_{t=0}^{T-1} \gamma^t c(s_t, a_t)\right]$

Find policy that minimizes sum of discounted future costs

Value of a state $S_t \quad \pi \quad S_{t+1} \quad \pi$ $V^{\pi}(S_{t}) = c_{t} + \gamma c_{t+1} + \gamma^{2} c_{t+2} +$ Expected discounted sum of cost from starting at a state and following a policy from then on

 $\pi^* = \arg\min \mathbb{E}_{s_0} V^{\pi}(s_0)$ π

$Q^{\pi}(S_t, a_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} + \bullet \bullet$

Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

 $Q^{\pi}(s_t, a_t) = c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} \sim \mathcal{T}(s_t, a_t) V^{\pi}(s_{t+1})$

Value of a state-action

Values matter

Let's build some intuition!

Case studies

Example 1: Tetris!

$< S, A, C, \mathcal{T} >$

Example 2: Self-driving

 $< S, A, C, \mathcal{T} >$

Example 3: Coffee making robot

$< S, A, C, \mathcal{T} >$

Solving MDPs

$\langle S, A, C, \mathcal{T} \rangle$

- Two absorbing states: Goal and Swamp
- Cost of each state is 1 till you reach the goal
- Let's set T = 30

What is the optimal value at T-1?

 $V^*(s_{T-1}) = \min c(s_{T-1}, a)$ \mathcal{A}

Time: 29

 $\pi^*(s_{T-1}) = \arg\min c(s_{T-1}, a)$ \mathcal{A}

What is the optimal value at T-2?

 $V^*(s_{T-2}) = \min[c(s_{T-2}, a) + V^*(s_{T-1})]$

Time: 28

 $\pi^*(s_{T-2}) = \arg\min[c(s_{T-2}, a) + V^*(s_{T-1})]$

Dynamic Programming all the way!

0 -	14	14	13	14	14	14	14	2	1	0
	14	13	12	14	14	14	14	3	2	1
2 -	13	12	11	14	14	14	14	4	3	2
m -	12	11	10	9	8	7	6	5	4	3
4 -	13	12	11	14	14	14	14	6	5	4
<u>س</u> -	14	13	12	14	14	14	14	7	6	5
9	14	14	13	14	14	14	14	8	7	6
2	14	14	14	13	12	11	10	9	8	7
ω -	14	14	14	14	13	12	11	10	9	8
ი -	14	14	14	14	14	13	12	11	10	9
	ò	i	ź	ż	4	5	6	ż	8	9

 $V^*(s_t) = \min_{a} [c(s_t, a) + V^*(s_{t+1})]$

Time: 16

 $\pi^*(s_t) = \arg\min_{a} [c(s_t), a) + V^*(s_{t+1})]$

 $S \times A \times T$

Deterministic

What is the complexity?

Value Iteration

Time: 29 Algorithm 4: Dynamic Programming Value Iteration for computing the optimal value function.

> **Algorithm** OptimalValue(*x*, *T*) for t = T - 1, ..., 0 do for $x \in X$ do if t = T - 1 then $V(x,t) = \min c(x,a)$ end else $V(x,t) = \min_{a} c(x,a) + \sum_{x' \in \mathbb{X}} p(x'|x,a) V(x,t+1)$ end end end

$$S^2 \times A \times T$$

Stochastic

 $k \times S \times A \times T$

Efficient

Why is the optimal policy a function of time?

Pulling the goalie when you are losing and have seconds left ..

To infinity!

Infinite horizon cases

$V^{*}(s_{t}) = \min_{a_{t}} \left[c(s_{t}, a_{t}) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_{t}, a_{t})} V^{*}(s_{t+1}) \right]$

Fixed point as $t \to \infty$

 $V^*(s) = \min \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$

Bellman Equation

$V^*(s) = \min \left[c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^*(s) \right]$ $\boldsymbol{\mathcal{A}}$

How fast does it converge?

Does this converge?

Does value iteration converge?

-1

What is $V^*(s_1)$? What is $V^*(s_2)$?

tl,dr

Markov Decision Process

A mathematical framework for modeling sequential decision making

Dynamic Programming all the way!

0 -	14	14	13	14	14	14	14	2	1	0
	14	13	12	14	14	14	14	3	2	1
2 -	13	12	11	14	14	14	14	4	3	2
m -	12	11	10	9	8	7	6	5	4	3
4 -	13	12	11	14	14	14	14	6	5	4
<u>س</u> -	14	13	12	14	14	14	14	7	6	5
9 -	14	14	13	14	14	14	14	8	7	6
r -	14	14	14	13	12	11	10	9	8	7
∞ -	14	14	14	14	13	12	11	10	9	8
ი -	14	14	14	14	14	13	12	11	10	9
	ò	i	ź	3	4	5	6	ż	8	9

 $V^*(s_t) = \min_{a} [c(s_t, a) + V^*(s_{t+1})]$

Time: 16

_										
0 1	×	×	Ļ	×	×	×	×	→	→	
	×	→	4	×	×	×	×	→	→	
~ -	→	→	4	×	×	×	×	→	→	
- m	-+	→	→	-+	→	→	→	→	→	
4 -	->	→	t	×	×	×	×	→	→	
<u>ہ</u> ا	×	→	t	×	×	×	×		→	
. ص	×	×	t	×	×	×	×			
~ -	×	×	×	→	→	→	→	→		
∞ -	×	×	×	×	→	→	→	→	→	
ი -	×	×	×	×	×	→	->	→	→	
	ò	i	ź	3	4	5	6	ż	8	

 $\pi^*(s_t) = \arg\min_{a} [c(s_t), a) + V^*(s_{t+1})]$

