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Announcements

1. Thanks for finishing
Assignment 0!

2. Assignment 1 released!

3. Slides, Python notebook
released




Robot
Decision
Making

Today!



“Will we only look at
discrete actions?’



5 g,
ﬁ"‘ Calculus to the rescue

Develop ideas in discrete space, extend to continuous space

Generalized Weighted Normalized Exponentiated
Majority 7 Gradient Descent

Algebraic Ricatti
Equations

Discrete Value lteration



Robot
Decision
Making

Today!



Decisions, decisions!

Tetris Self-driving Robot Baristas



What makes decision making hard?’
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Single shot decision making



What makes decision making hard?’
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Single shot decision making



What makes decision making hard?’




What makes decision making hard?’

How do we tractably reason over a sequence of decisions?’



Markov to the rescuel

predict
data about past data about future
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compress I expand
bottleneck

State: statistic of history sufficient to predict the future

Courtesy: Byron Boots
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Markov Decision Process

A mathematical framework for modeling sequential decision making

<S,A,C.,T >
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State

Sufficient statistic of the system
to predict future disregarding
the past

Momentum

Position
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Think-Pair-Share

Think (30 sec): Example of MDPs with shallow state?

(Current observation good enough)
Example of MDPs with deep state?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas

State: statistic of history sufficient to predict the future
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Action

Doing something:
Control action / decisions
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Cost

The instantaneous cost of
taking an action in a state
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Examples of non-Markovian cost?

“Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV”, S. Shen, N. Michael, V.Kumar, 2010 19



lransition

The next state given state and action

s'=T(s,a) s'~ T(s,a)

Deterministic Stochastic
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Examples of non-Markovian dynamics?
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Wind correlates disturbance across time
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Markov Decision Preeess — Problem

Includes things to define an optimization problem

Horizon 7 & N

Discount 0<y<1 Return: ¢y +  y¢; + eee y'7lep

(Costs are more valuable if they happen soon)
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Markov Decision Preeess — Problem

Policy

mell

T . St —> at (Deterministic)

T . A\ —> P(dt) (Stochastic)

A function that maps
state (and time) to action

Objective Function

min
/A

T-1
- [ Z th(Sta Clt)]

a, ~ 7(s,) s

Sip1 ~ I (8 a,)

Find policy that minimizes
sum of discounted future costs
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Vi(s,)

Value of a state
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Expected discounted sum of cost from
starting at a state
and following a policy from then on
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Value of a state-action

Expected discounted sum of cost from
starting at a state, executing action
and following a policy from then on

—— ———— e ——

Q" (spa) = c(sp,a) +YE;  gis.a)V (Si41)
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Values matter




L et's build some
intuition!




Case studies



Example 1: Tetris!

<S,A,C,T >
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Example 2: Selt-driving
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Example 3: Coffee making robot

<S.A.C.T9 >

4
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Solving MDPs

Image courtesy Dan Klein
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Swamp

o

<S.A.C.I9 >

® Two absorbing states:
Goal and Swamp

@ Cost of each state is 1
till you reach the goal

@ let'sset T =30
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What is the optimal value at T-17

Time: 29

(ST—la Cl)

= arg minc

T (S7_1)

(ST—la Cl)

— minc

VE(s7_1)

d

d
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What is the optimal value at T-27

Time: 28

n*(s7_r) = argmin|c(sy_», a) + V*(s7_;)]

V¥(sr_») = min[c(s;_,, a) + V¥(s7_¢)]

A

a
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Dynamic Programming all the way!

Time: 16
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V¥(s,) = min|c(s,, a) + V*(s,,1)] m*(s,) = arg min[c(s,), a) + V*(s,, )]

a
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Value lteration

~r

Time: 29 Algorithm 4: Dynamic Programming Value Iteration for comput-

ing the optimal value function.

o 1 1 1 1 1 1 1 1 1 0
N 1 1 1 1 1 1 1 1 1 Algorithm OptimalValue(x, T)
fort=T—-1,...,0do
™~ 1 1 1 1 1 1 1 1 | 1
for x € X do
| 1 | | 1 1 1 1 1 1 .
" if t =T — 1 then
1 1 1 1 1 1 1 1 1 1 ‘ V(x,t) = minc(x, a)
a
1 1 1 1 1 1 1 1 1 1 end
*® 1 1 1 1 1 1 1 1 1 1 else
- ; 1 1 1 1 1 1 1 1 1 ‘ V(x,t) =minc(x,a) + ¥ p(x'|x,a)V(x,t +1)
x'eX
1 1 1 1 1 1 1 1 1 1
°° end
0 - S S end
0 1 2 3 - 5 b 7 8 9

end

What is

. SXAXT STXAXT kXSXAXT
the complexity?

Deterministic Stochastic Efficient
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Why is the optimal policy a function of time?

Pulling the goalie
when you
are losing and have
seconds left ..
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To infinity!




Infinite horizon cases

V*(s,) = min [c(s, a) +VE; g (.a)V (S41)]

i,

Fixed point as t = o

VF(s) = min [c(s,a) + yE g0V (5)]
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Bellman Equation

VF(s) = min [c(s,a) + YE g0V (5)]

Does this converge?

How fast does it converge?
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Does value iteration converge?’

What is V*(s,) ? What is V*(s,) ?
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tl . d r Markov Decision Process
!

A mathematical framework for modeling sequential decision making

<S.A.C.T >

Value of a state-action Dynamic Programming all the way!
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Qﬂ(sp Clt) = ¢ + YCiy1 + yzcﬂrz 4+ oo

Time: 16

Expected discounted sum of cost from
starting at a state, executing action
and following a policy from then on
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