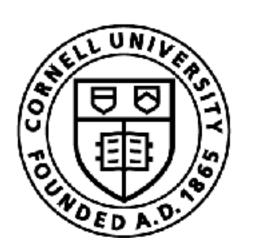
Interactive Online Learning

Sanjiban Choudhury



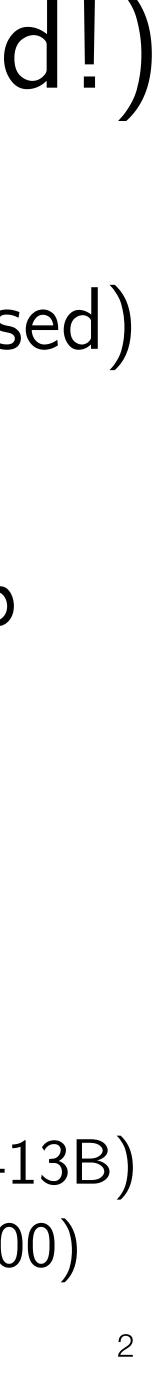
Announcements (all on Ed!)

1. Assignment 0 (survey released)

2. Lecture 1 slides + notes up on website

3. Office hours available:

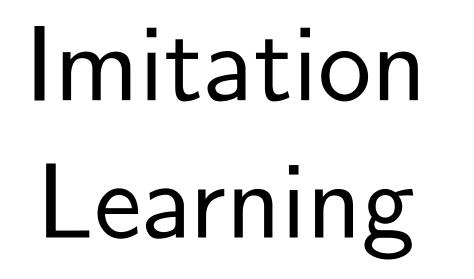
Sanjiban (Tue/Thurs 11-12pm, Gates 413B) Dhruv (Mon/Wed 11-12 pm, Rhodes 400)



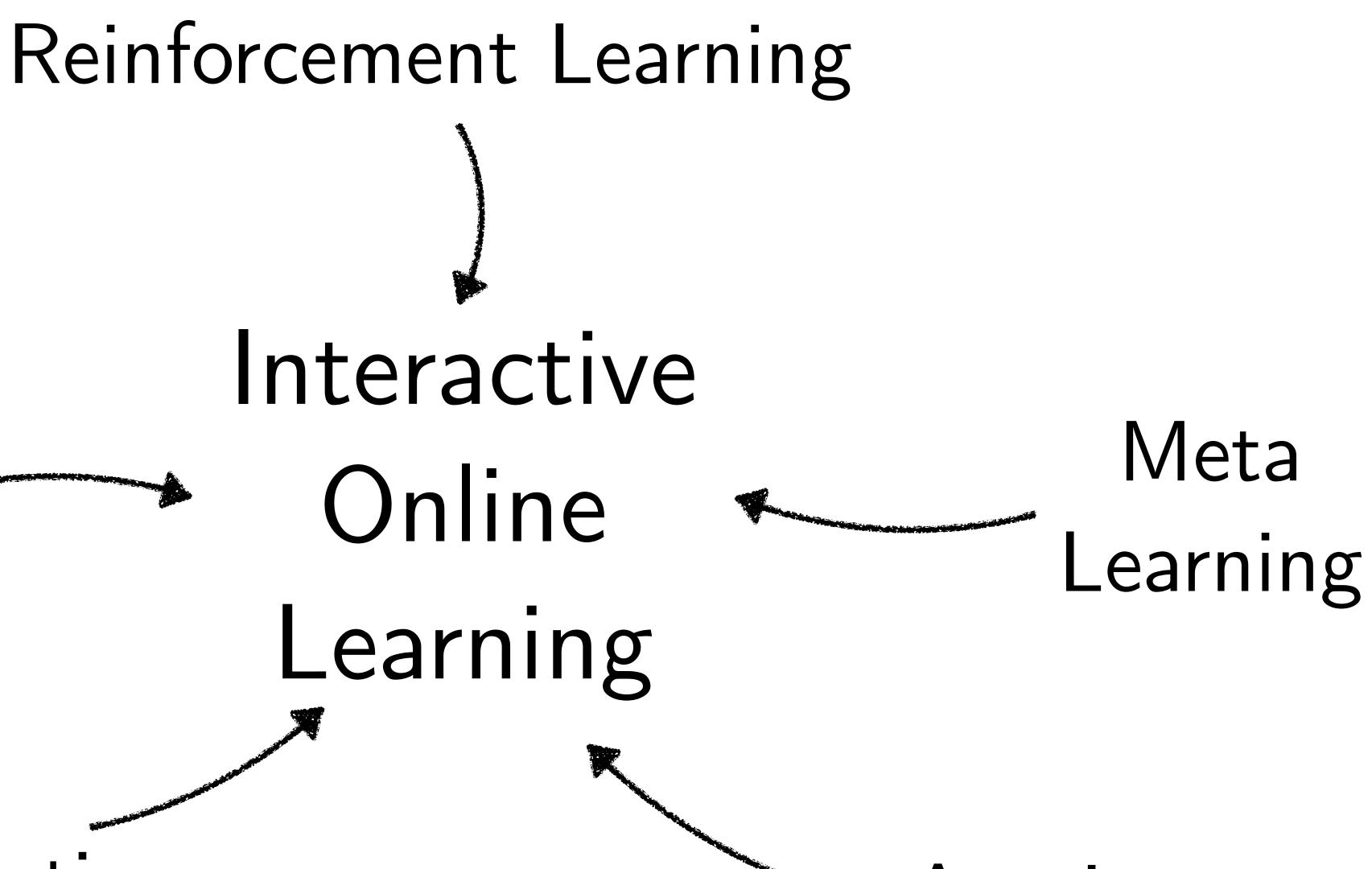
Learning

Today!

Robot Decision Making



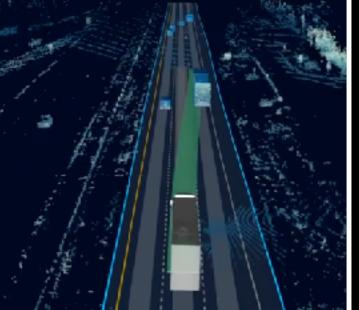
Model Predictive Control



Anytime Planning

How humans learn ...

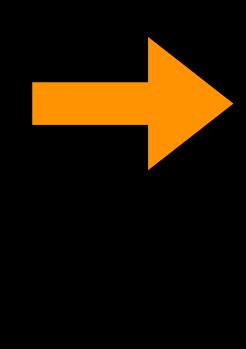
Can't we collect a LOT of data and train robots offline?



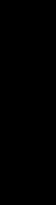
Input (s)

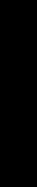
Output (a)

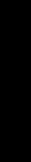
#2 Train Policy $\pi: S \to a$



#3 Deploy!









Think-Pair-Share!

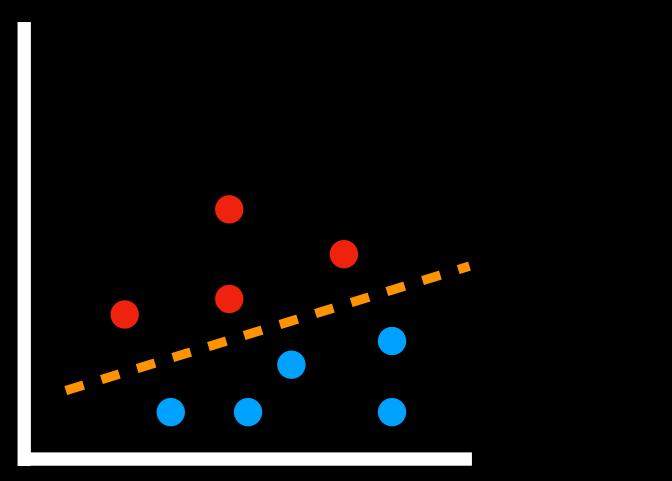
Think (30 sec): What are different sources of train-test mismatch?

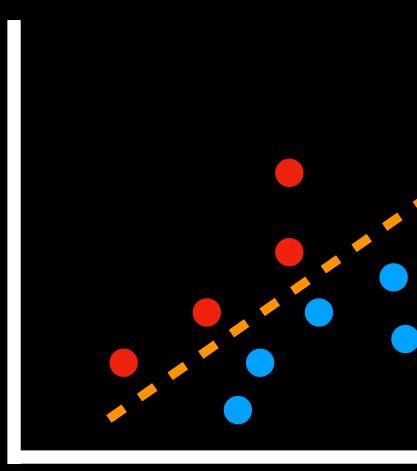
Pair: Find a partner

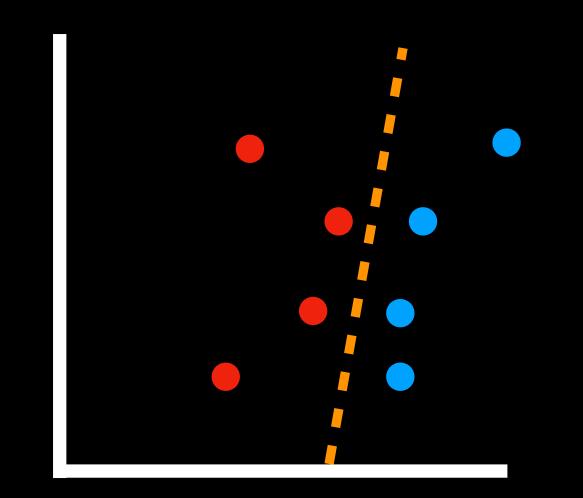
Share (45 sec): Partners exchange ideas

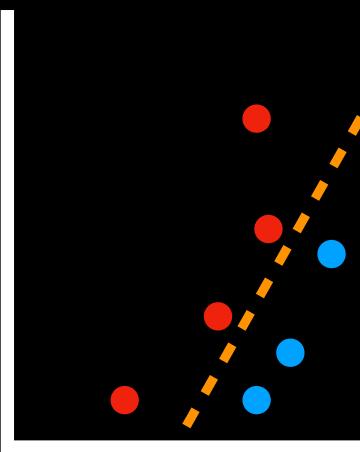
Train 7 **BST**

Case 1: Data changes over time



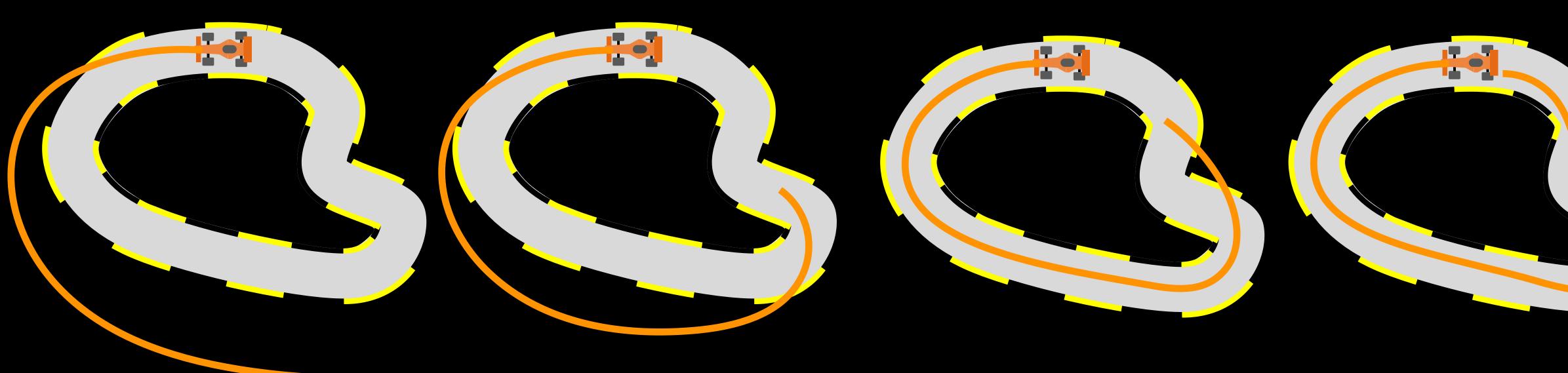


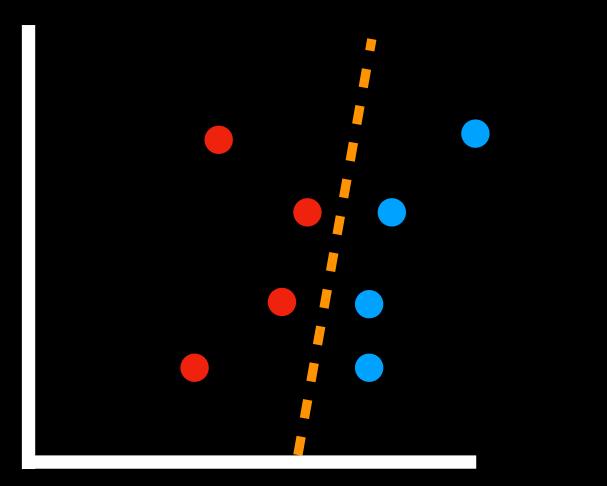


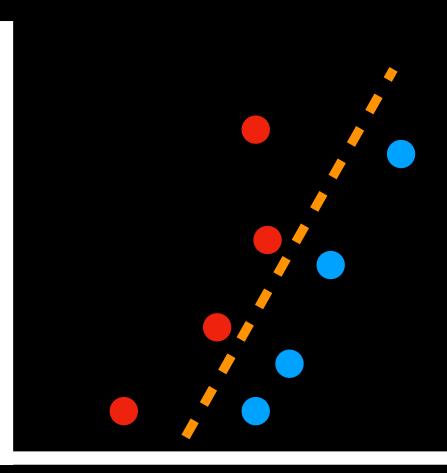


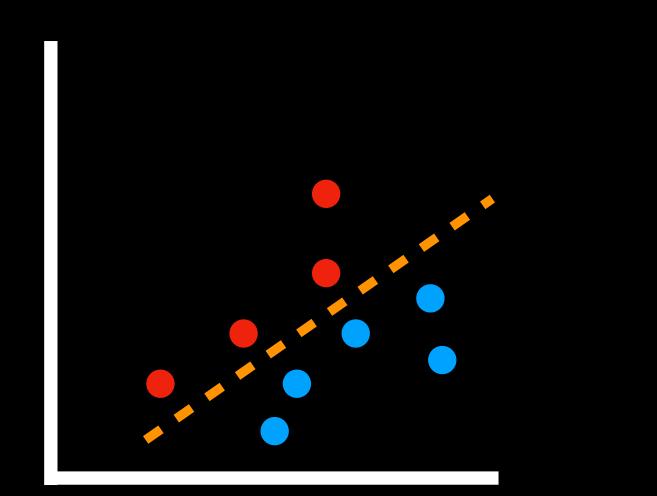
11

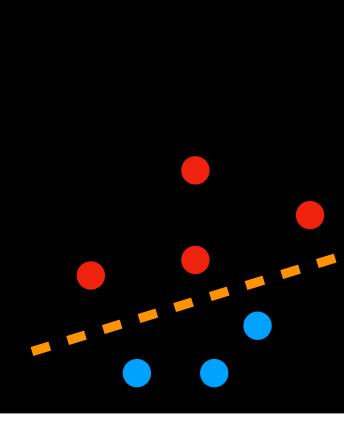
Case 2: Data changes with robot behavior



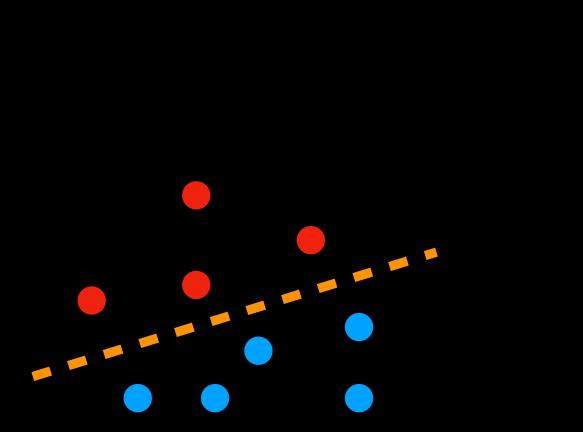


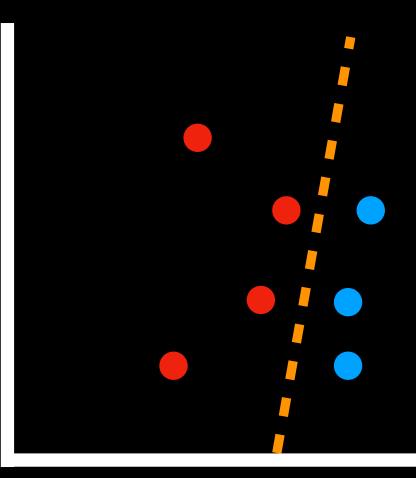


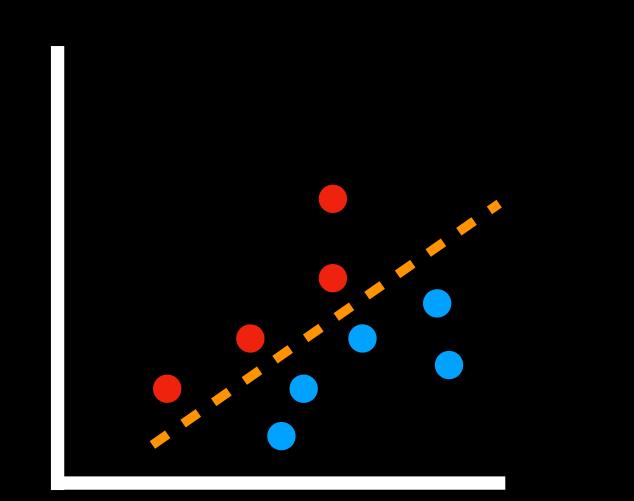


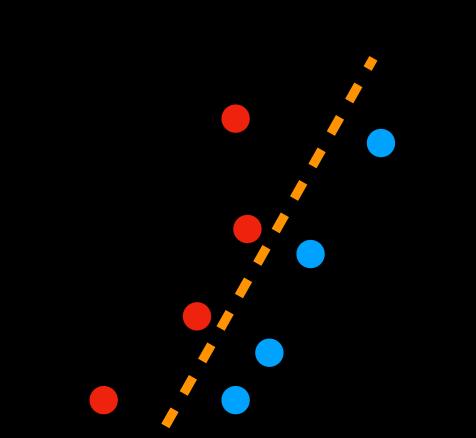


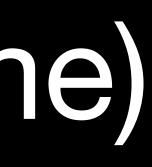
Case 3: Data changes adversarially (game)



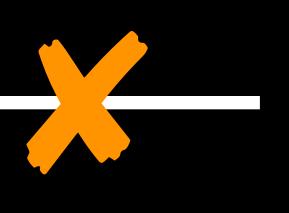








Challenge: Don't know the test distribution upfront



Collect Data

Interactive Learning

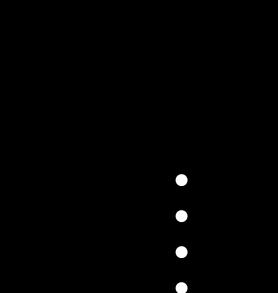
Learner

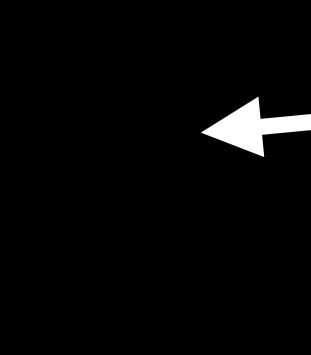
Adversary

Interactive Learning

Initialize policy

Update policy





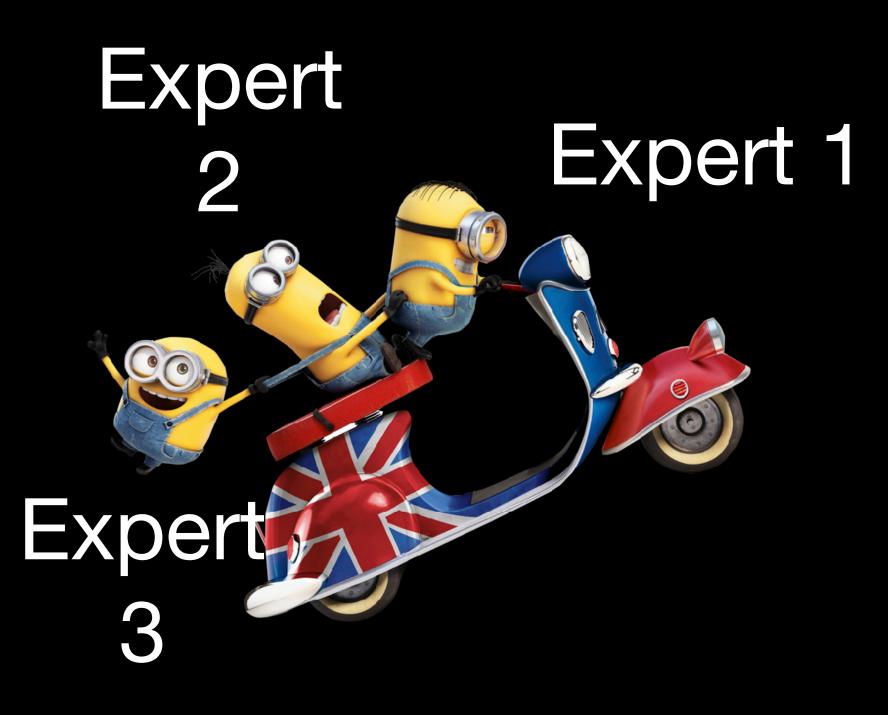
Adversary

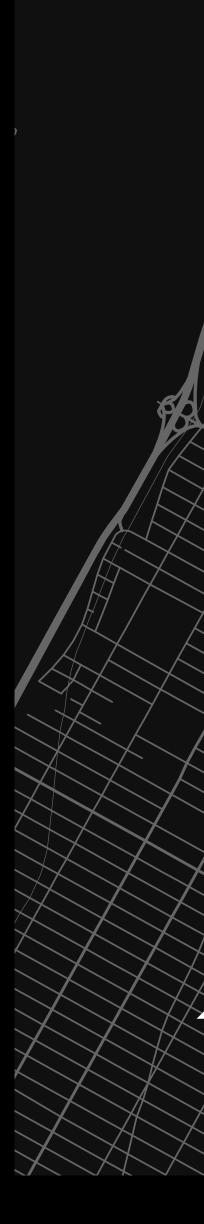
Chooses loss

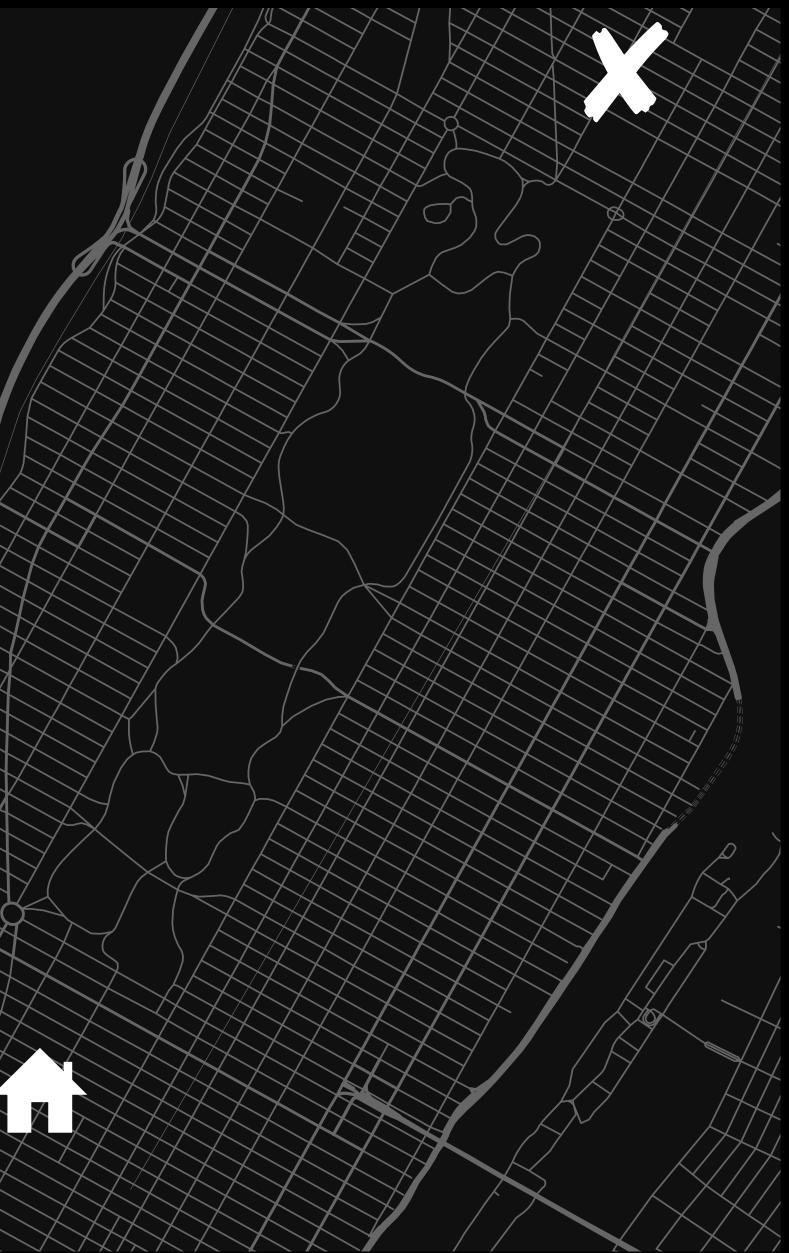
Chooses loss

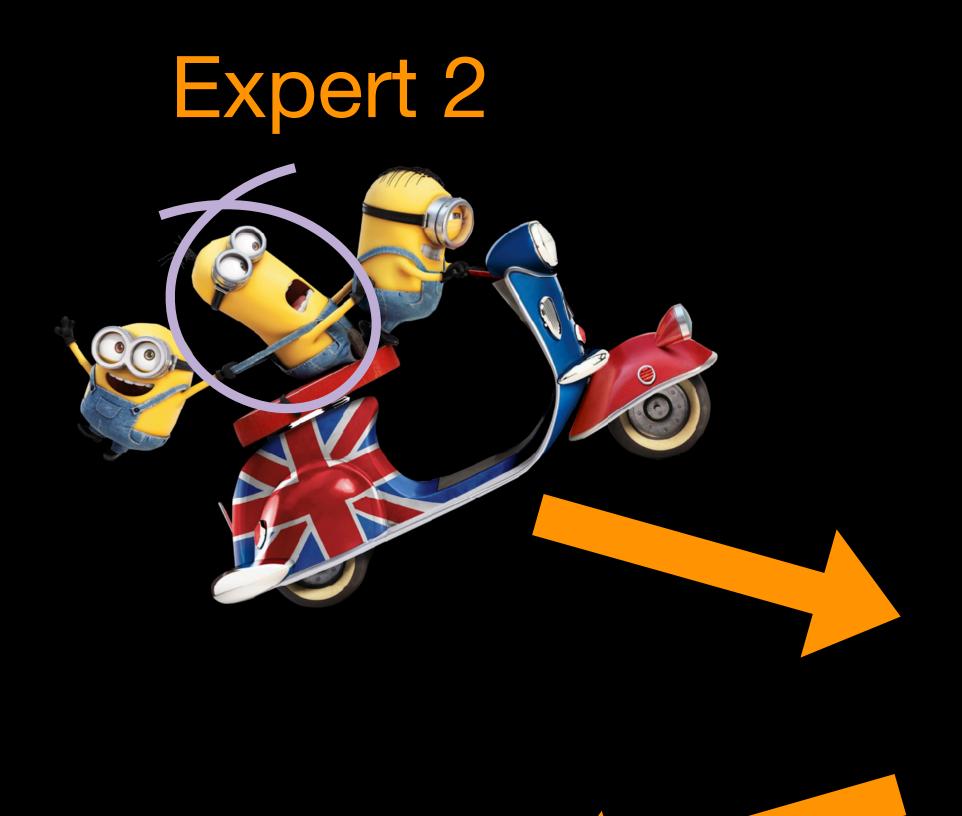
- - - \bullet

Prediction with Expert Advice

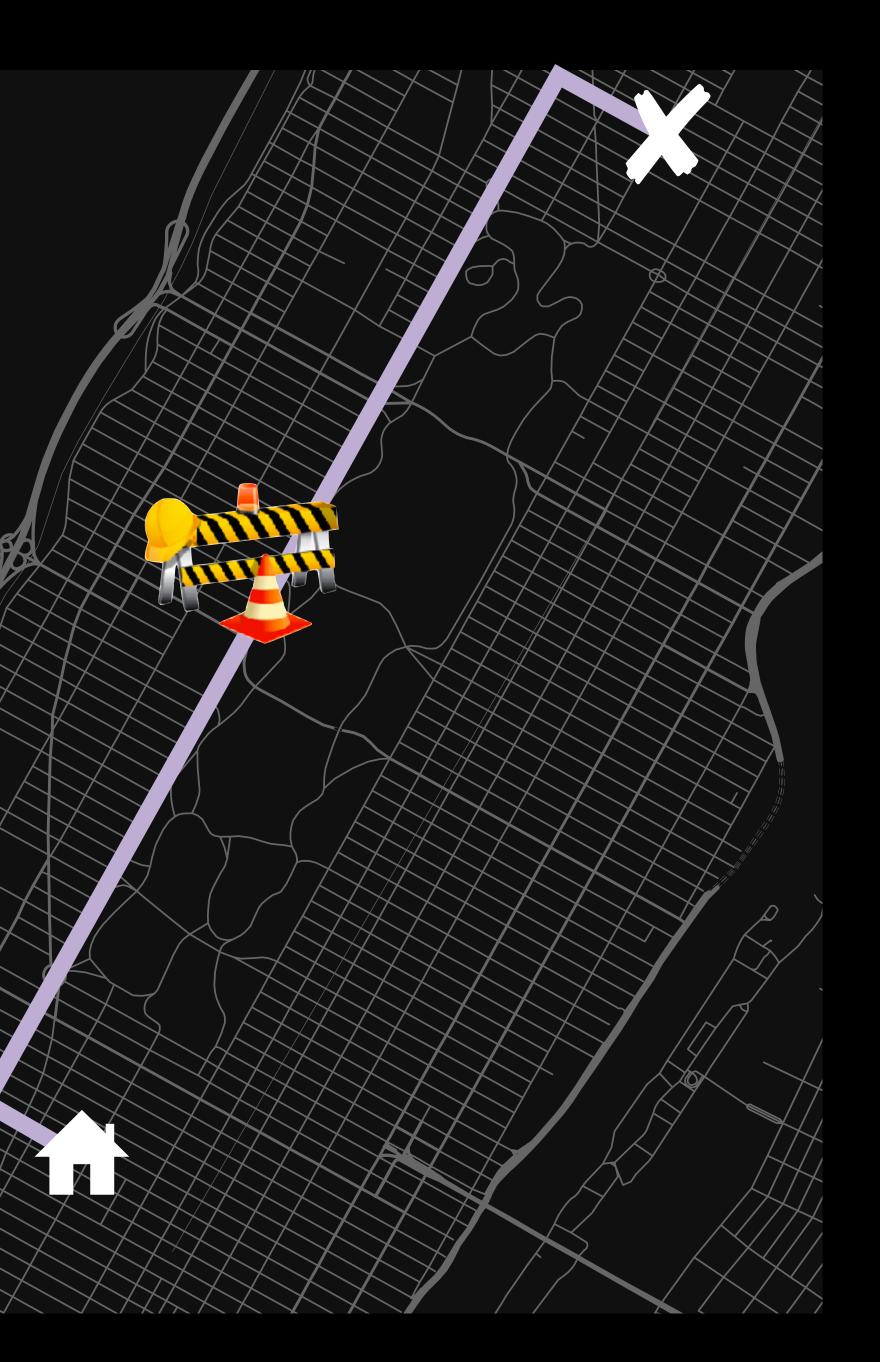


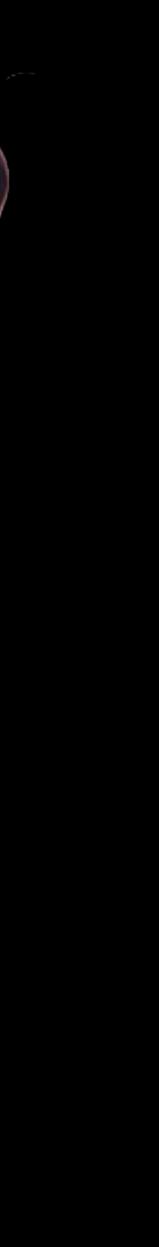






LOSS = 1.0

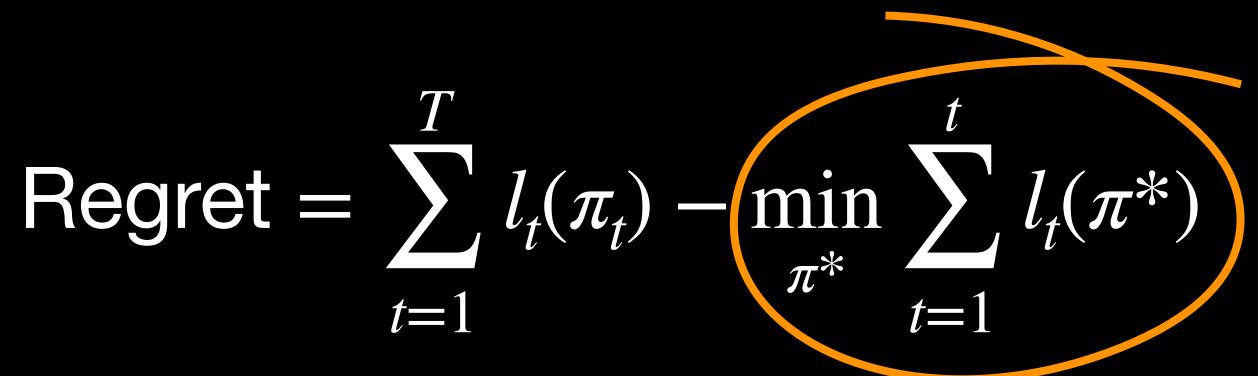




19

Let's formalize!

(Best in (Learner) hindsight)



How do we design algorithms that are no-regret?

Regret = $\sum_{t=1}^{T} l_t(\pi_t) - \min_{\pi^*} \sum_{t=1}^{T} l_t(\pi^*)$ t = 1

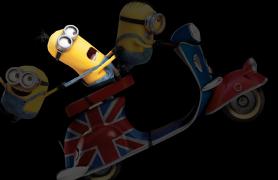
FOLLOW THE LEADER!

At every round *t*, choose the best expert in hindsight

$$\pi_t = \arg\min_{\pi} \sum_{i=1}^{t-1} l_i(\pi)$$
(lowest total loss)

23

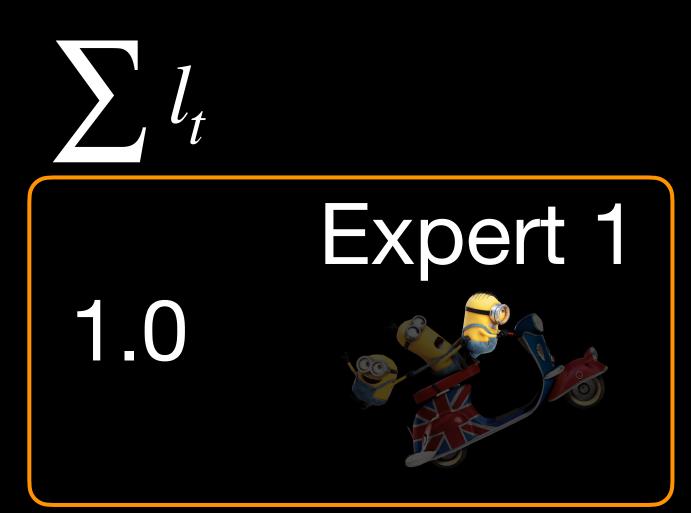
Expert 2



0.5

0.2

Avg. Regret:



 l_2 l_1 0.5 1.0

0.2

0.5

0.5

0.2

Expert 2

0.2

0.5

Expert 3

Avg. Regret: 0.80

Expert 3

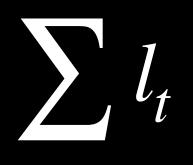
0.7

0.2

0.2

0.5

Avg. Regret: 040



0.9

Expert 1

1.0 0.5

0.2

0.2

0.5

Expert 3

1.0 0.2 0.5

0.5 0.2

Avg. Regret: 0.53

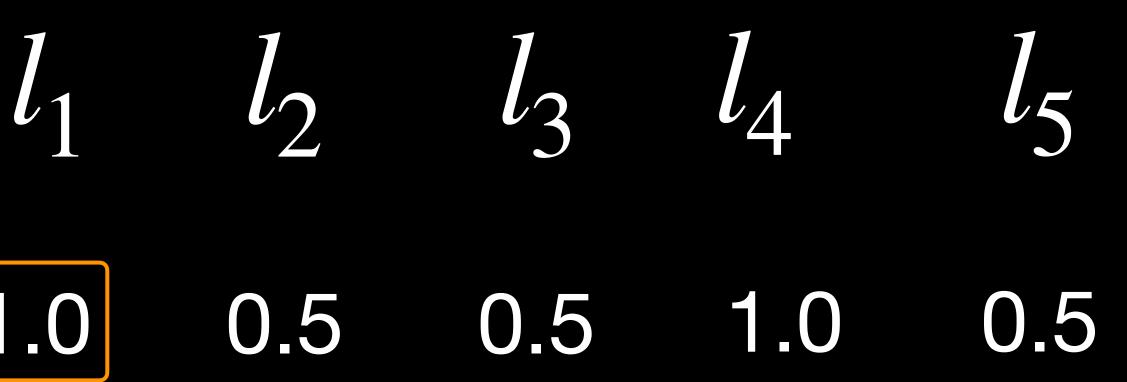
1.0 0.5

0.2

0.5

1.9

Expert 1



Avg. Regret: 040

1.0 0.5

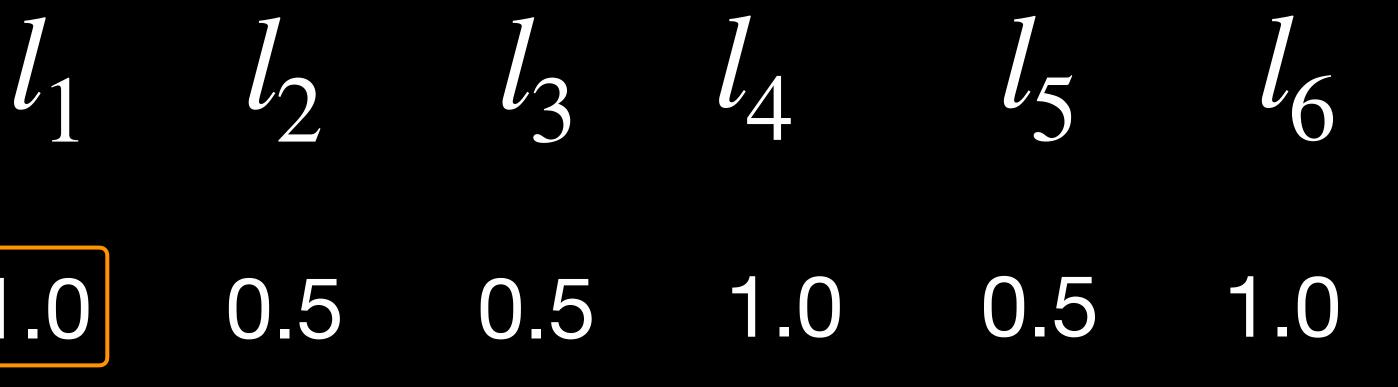
0.2

0.5

0.2

2.9

Expert 1



Avg. Regret: 0.32

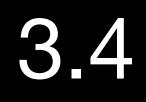
1.0 0.5

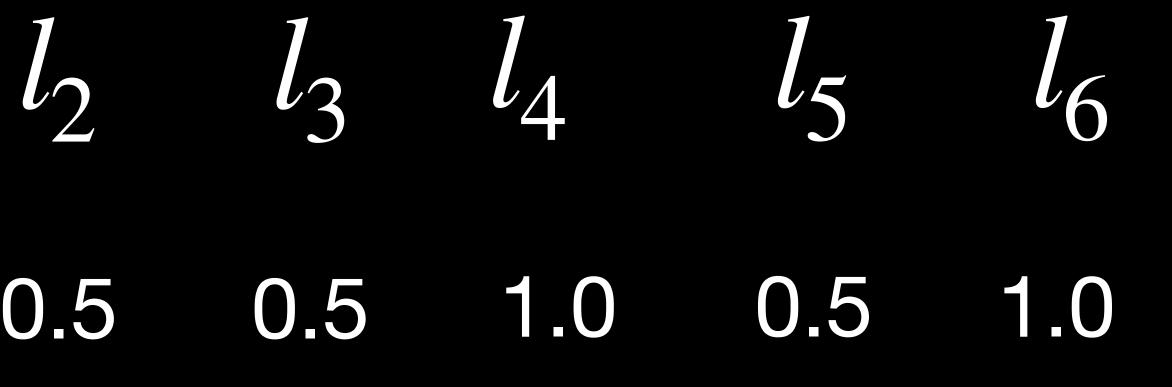
0.2

0.5

0.2

Expert 1





Avg. Regret: 026

FTL appears to be no regret ...

Let's prove it!

Can you make FTL have high regret?

Expert 1

Expert 2

Avg. Regret:

l 1

1.0

0.0

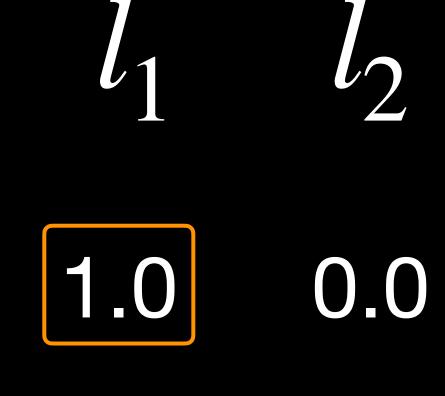
Avg. Regret:

 l_{1} l_{2} 1.0 0.0

0.0

1.0

Expert 2



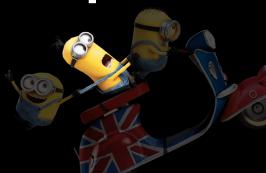
0.0

Avg. Regret: 0.50

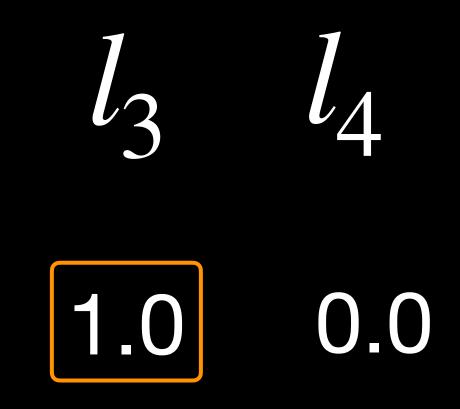
2 l_1 1.0 0.0

0.0

Expert 2



1.0



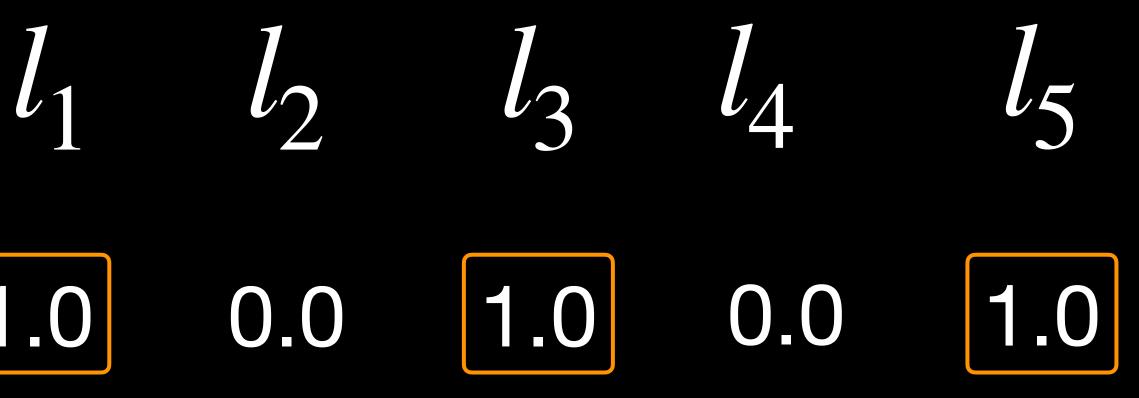
Avg. Regret: 0.67

2.0

Expert 1

1.0 0.0

0.0



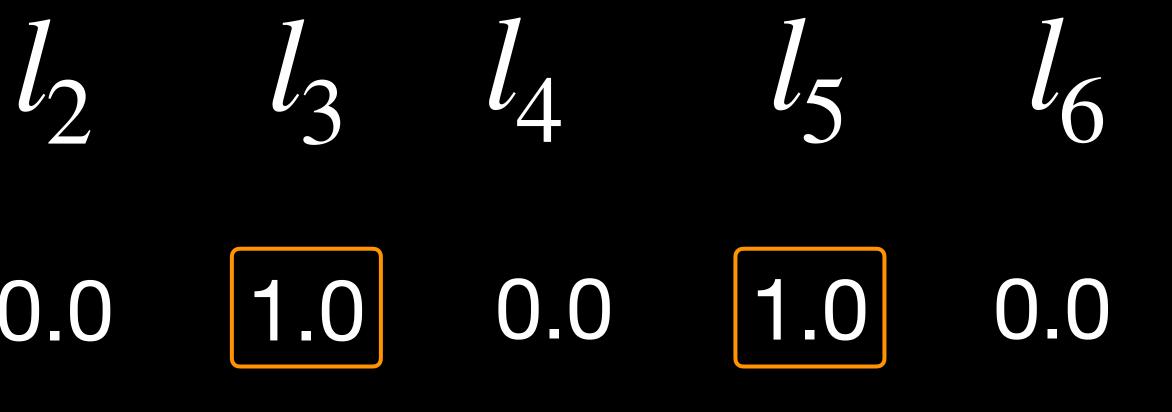
1.0 0.0 0.0

Avg. Regret: 050

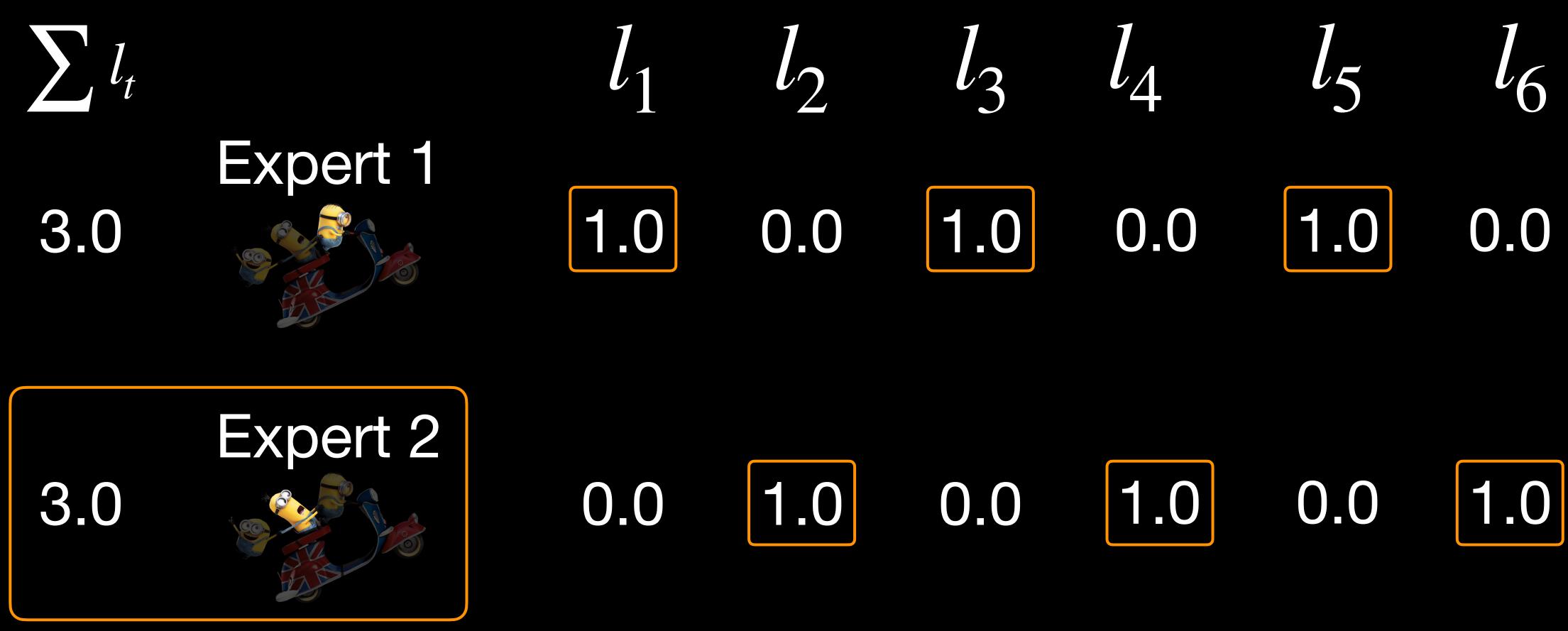
1.0 0.0

Expert 2

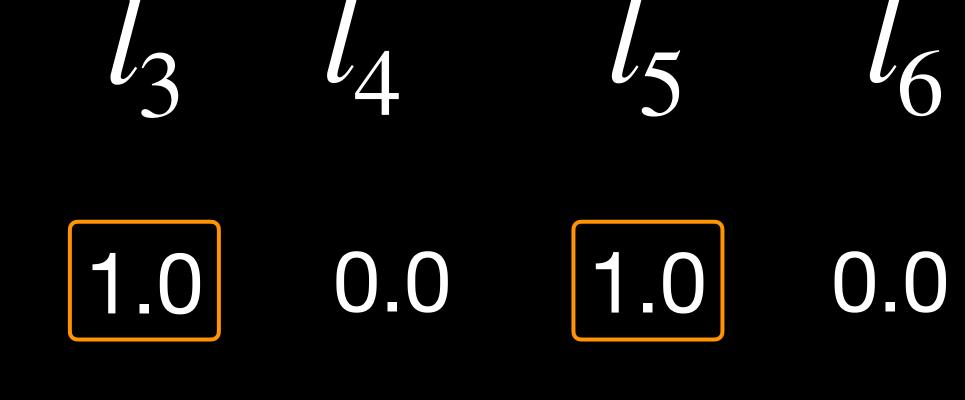
0.0



Avg. Regret: 060



Predictions not stable \rightarrow High regret!

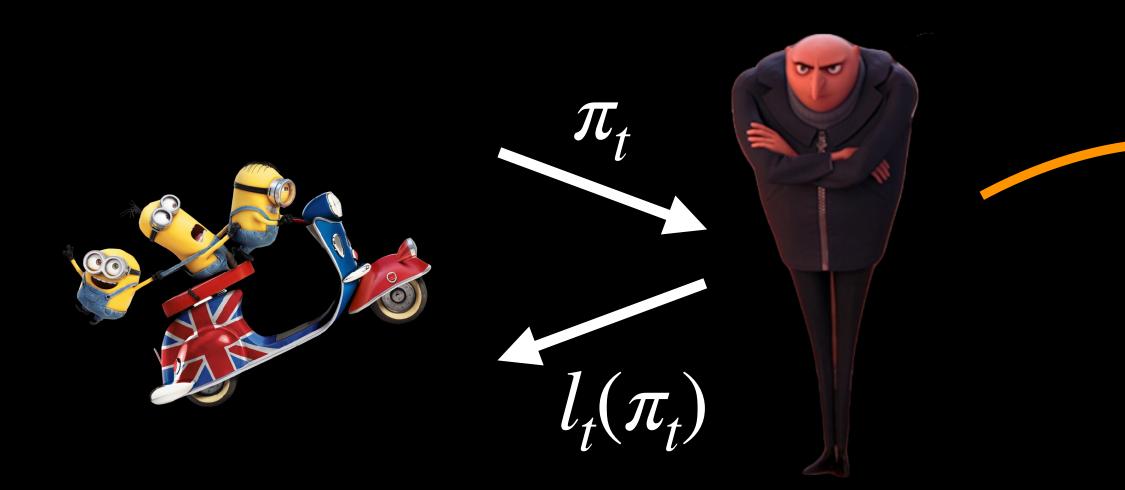


Avg. Regret: 050

Cover's Impossibility Result

"A powerful enough adversary can drive the Regret of **any deterministic online algorithm** to O(T) by anticipating its prediction and setting maximal loss"

How can we curb the power of the adversary?

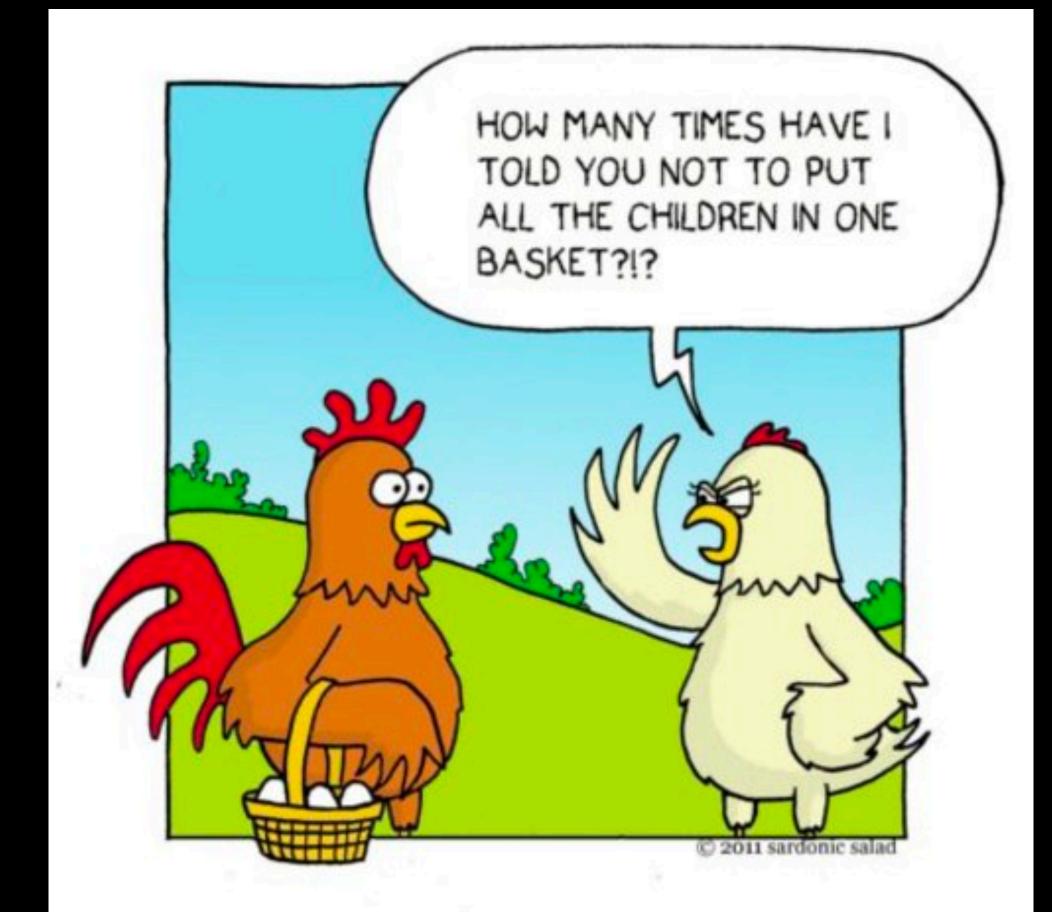


FOLLOW THE LEADER!

$\pi_t = \arg\min_{\pi} \sum_{i=1}^{t-1} l_i(\pi)$

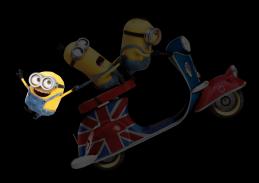
Adversary breaks any determinism

The virtue of hedging



Choose probability over experts

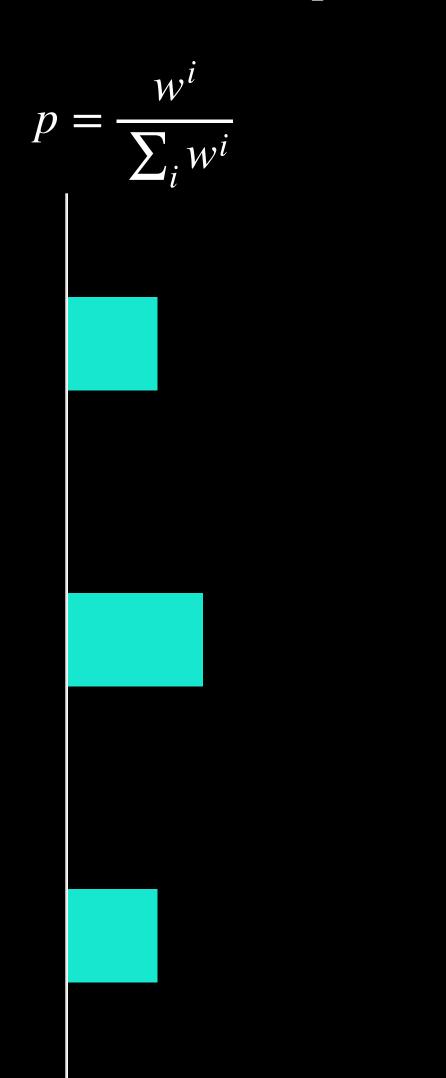
Expert 3



 $w^1 = 1.0$

 $w^2 = 2.0$

 $w^3 = 1.0$



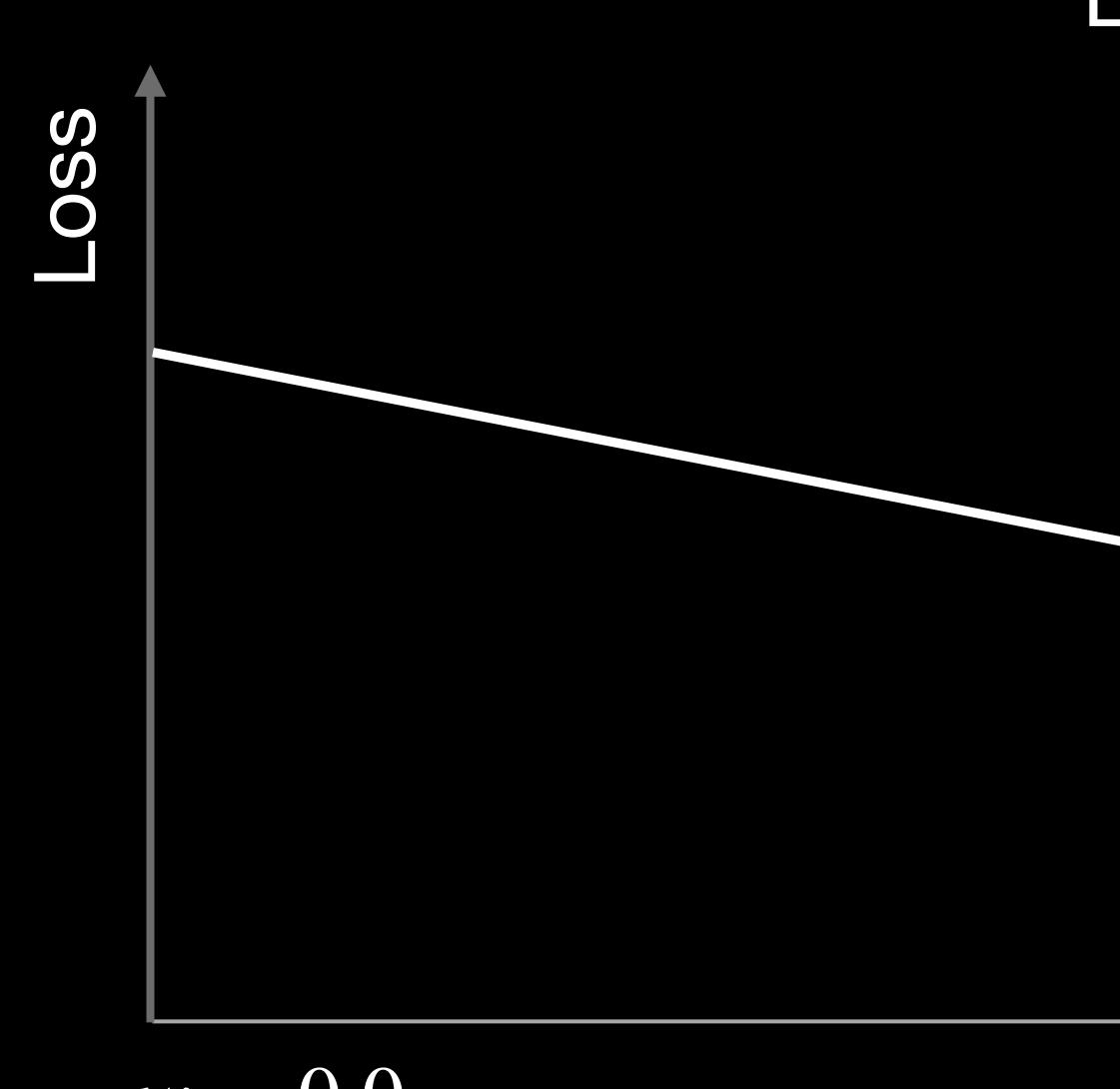
Let's formalize!

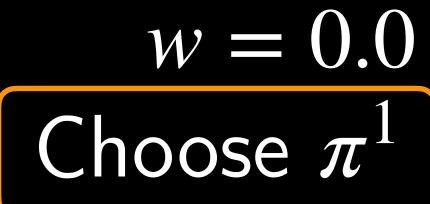
Let's apply FTL again (but on the space of weights)

FOLLOW THE LEADER!

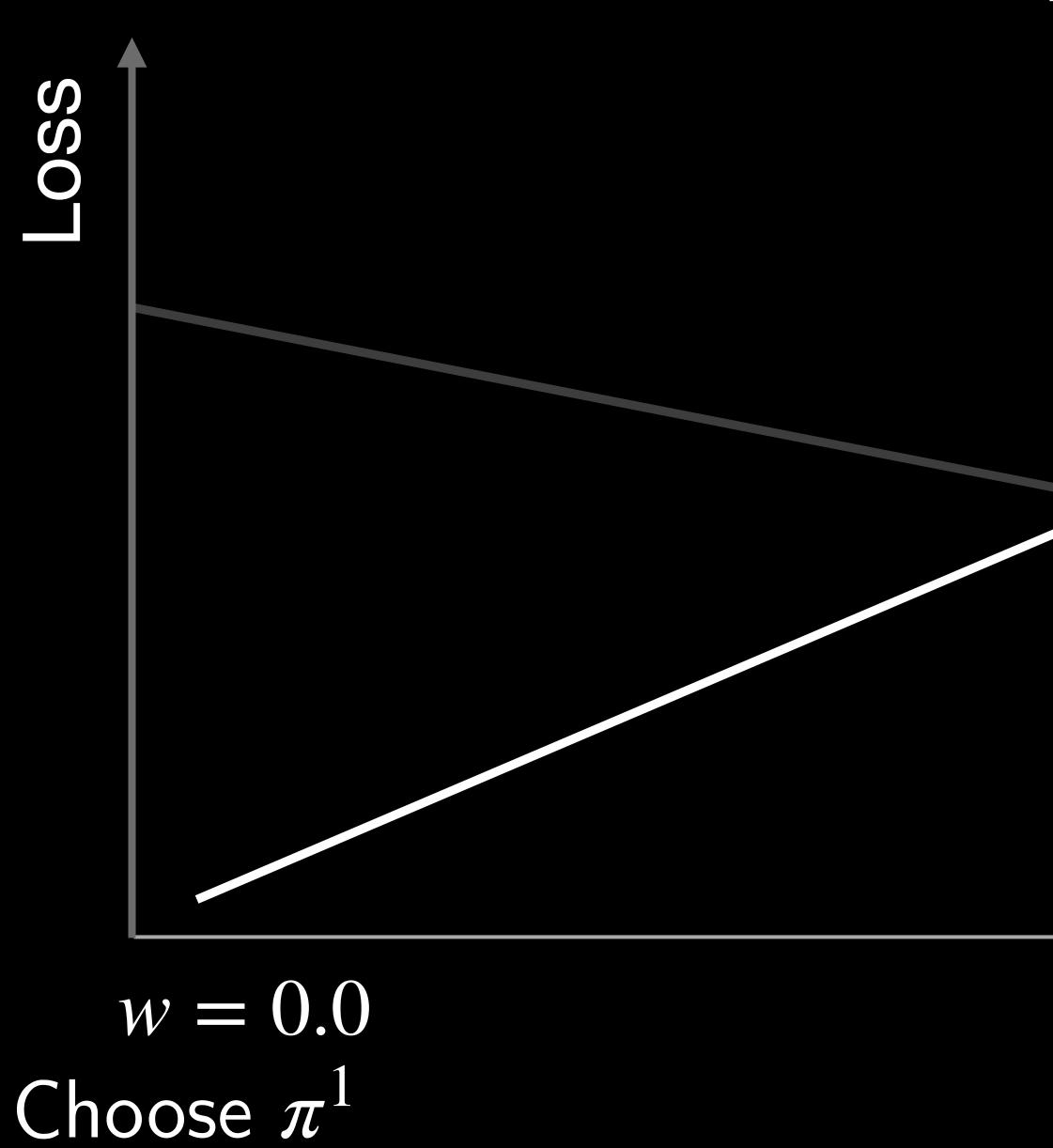
At every round t, choose the best weights in hindsight

$$w_t = \underset{w}{\operatorname{arg\,min}} \sum_{i=1}^{W} l_i(w)$$

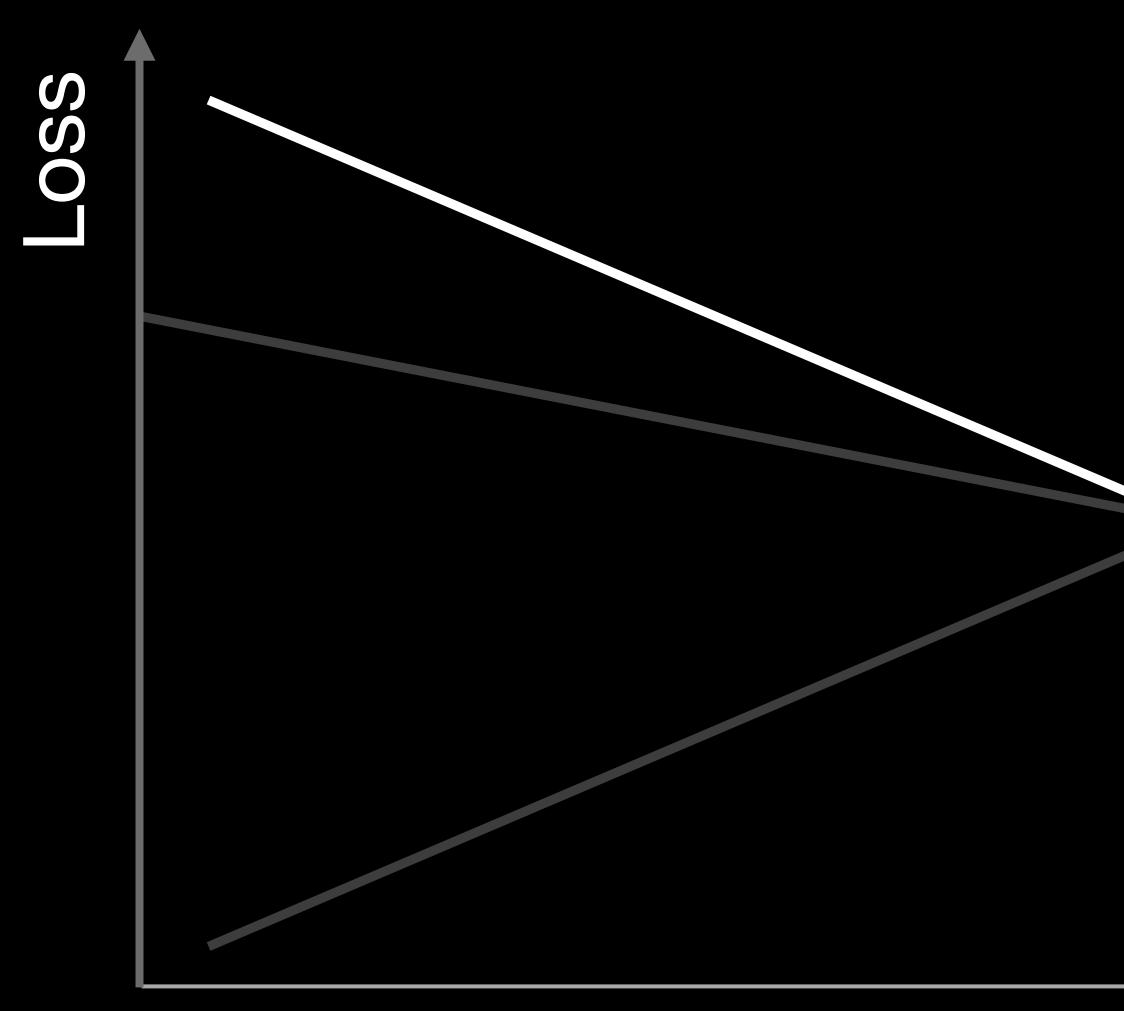




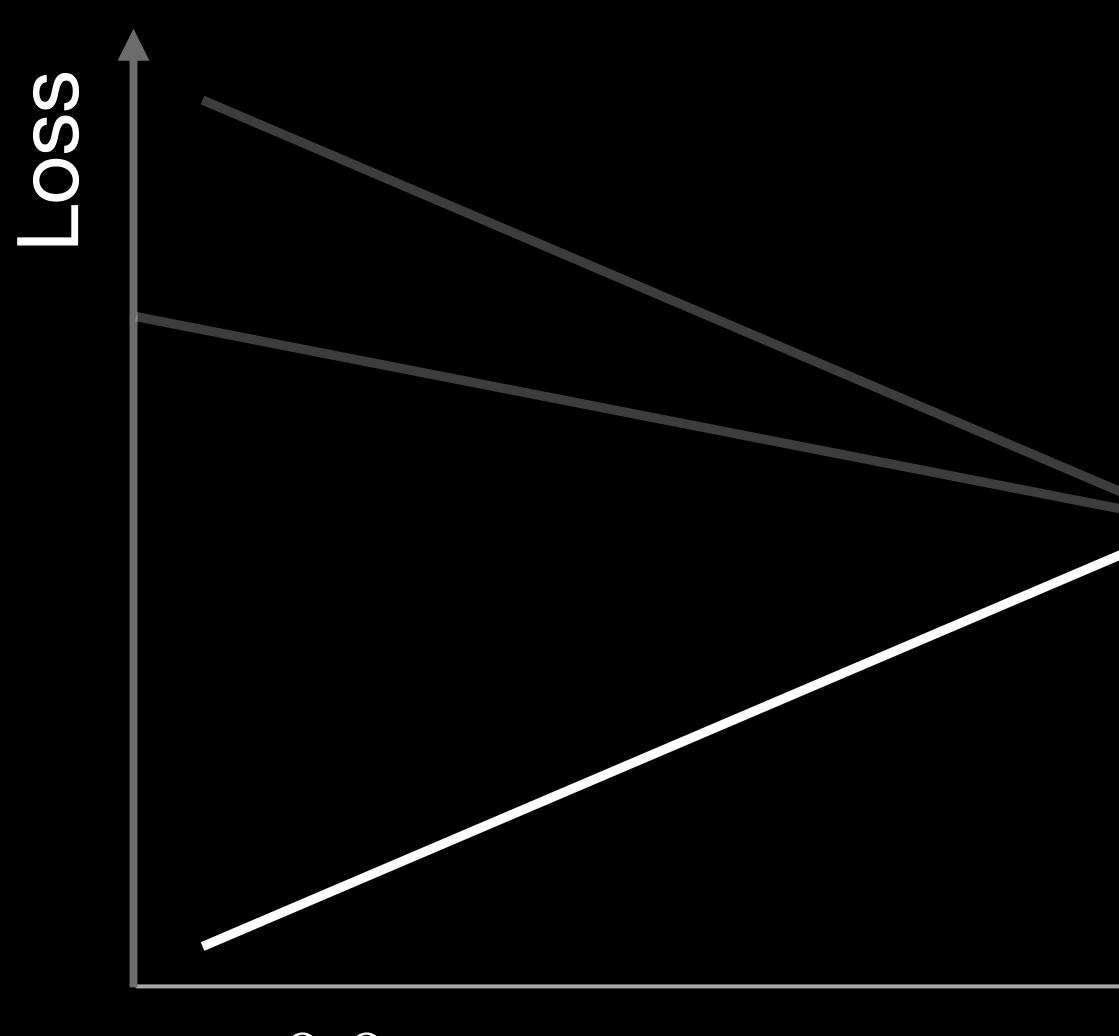
Loss = 0.75 Avg. Regret = 0.5



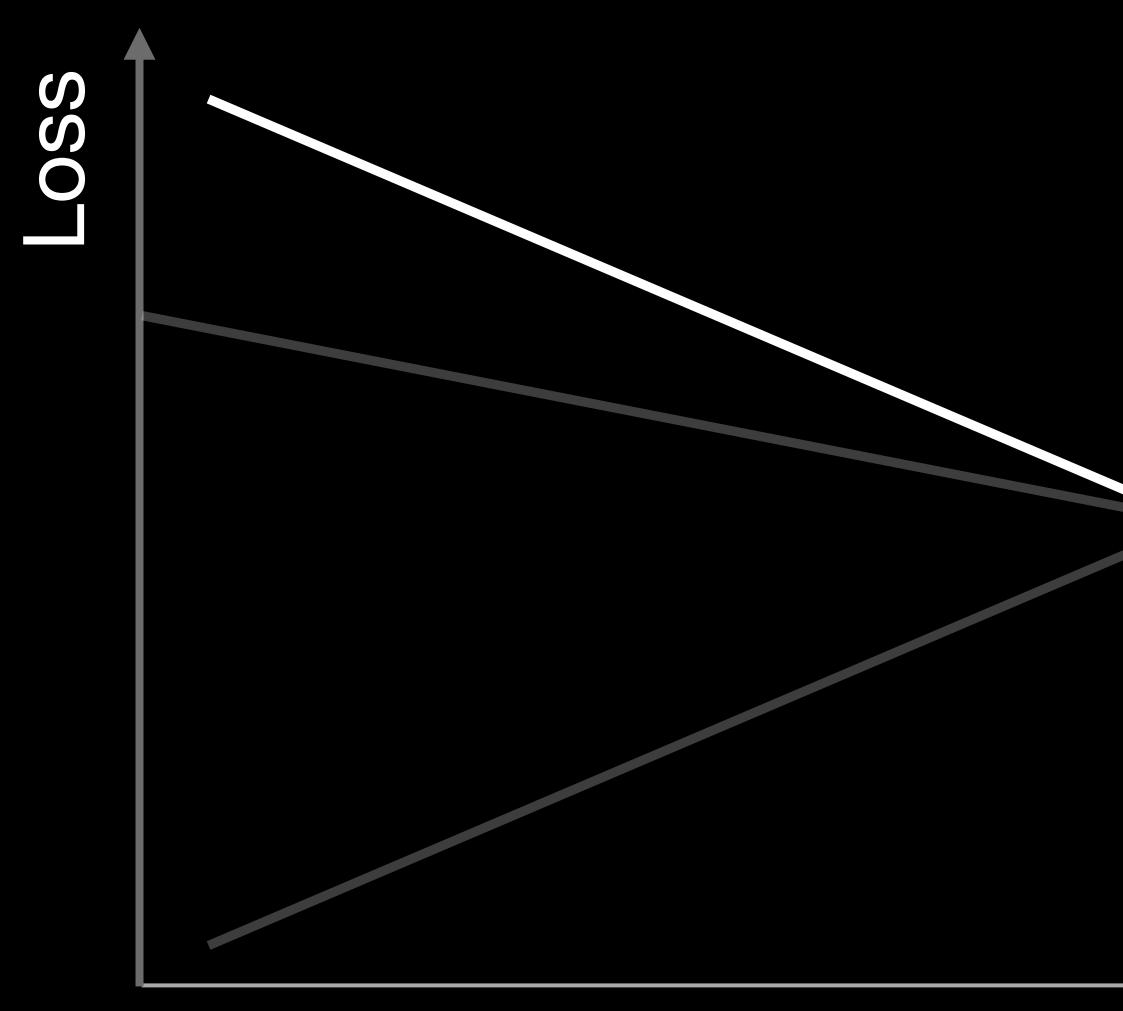
Loss = 1.0 Avg. Regret = 0.5



Loss = 1.0 Avg. Regret = 0.5



Loss = 1.0 Avg. Regret = 0.5

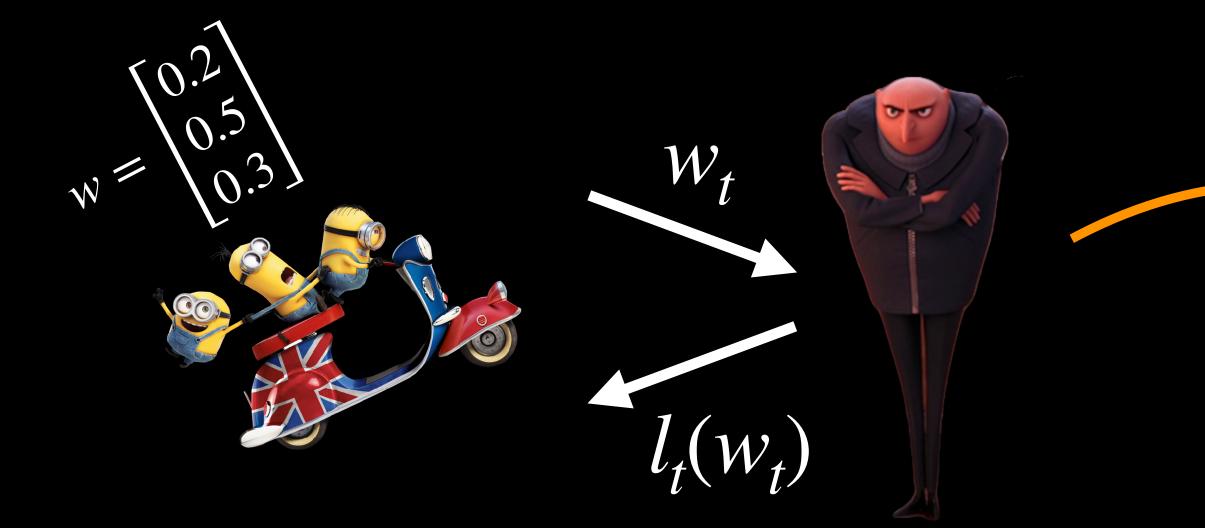


Loss = 1.0 Avg. Regret = 0.5

Both in discrete and continuous settings!

Follow the leader is too aggressive ...

Stability is the key problem!



FOLLOW THE LEADER!

$w_t = \arg\min_{w} \sum_{i=1}^{t-1} l_i(w)$

Unstable predictions!

Be stable

Slowly change predictions

Follow the Regularized Leader

t $w_t = \arg\min \left(l_i(w) + \eta_t R(w) \right)$ W i=1Strong regularization!

What are some choices for regularization?

GENERALIZED WEIGHTED

A NEW HOPE

MAJORITY

Episode IV

1. At t=1, set weight for expert *i* as $w_1^i = 1$

2. At time t, choose expert *i* with probability

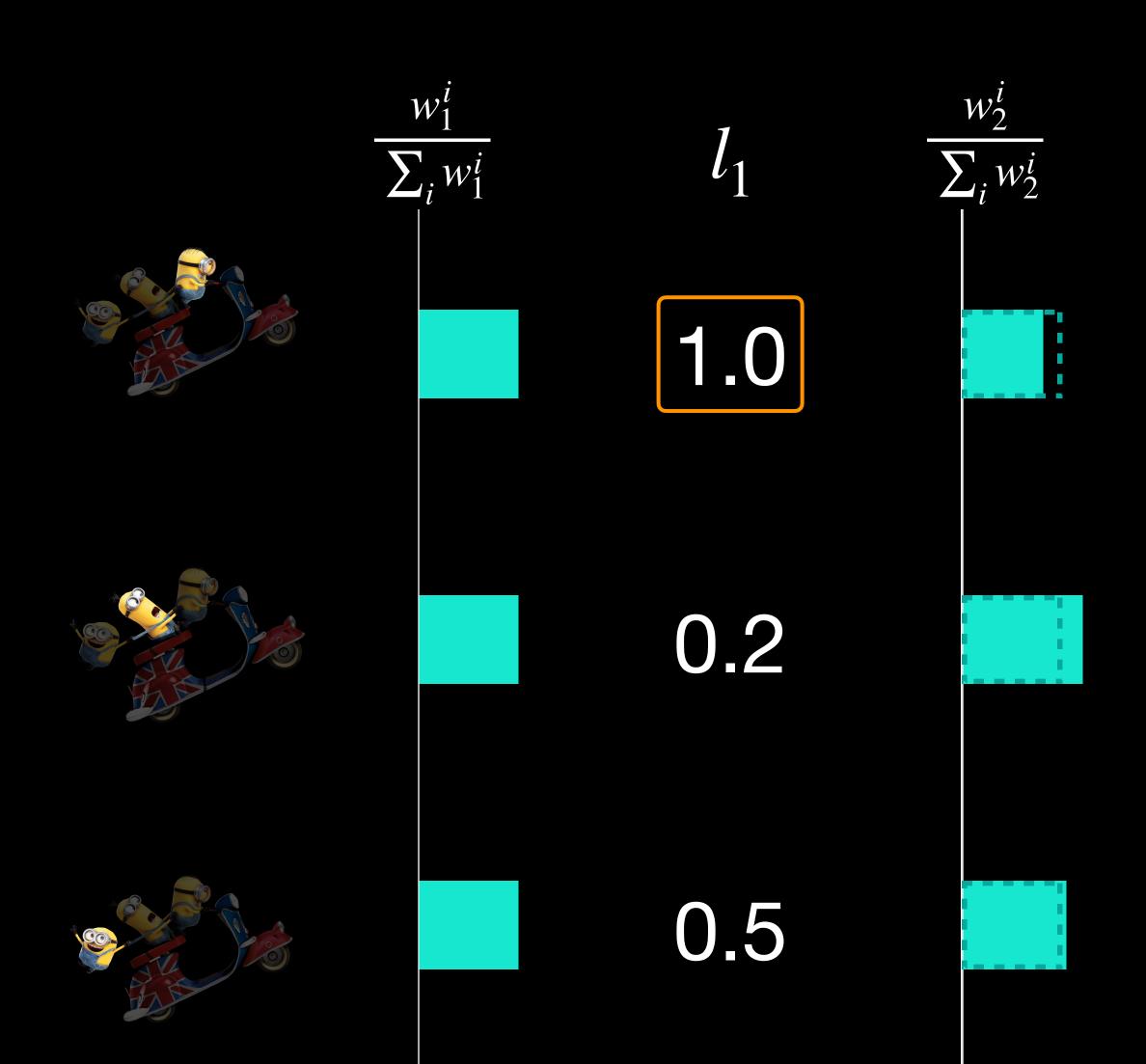
3. Update weight for expert *i* (Bump down if loss is high)

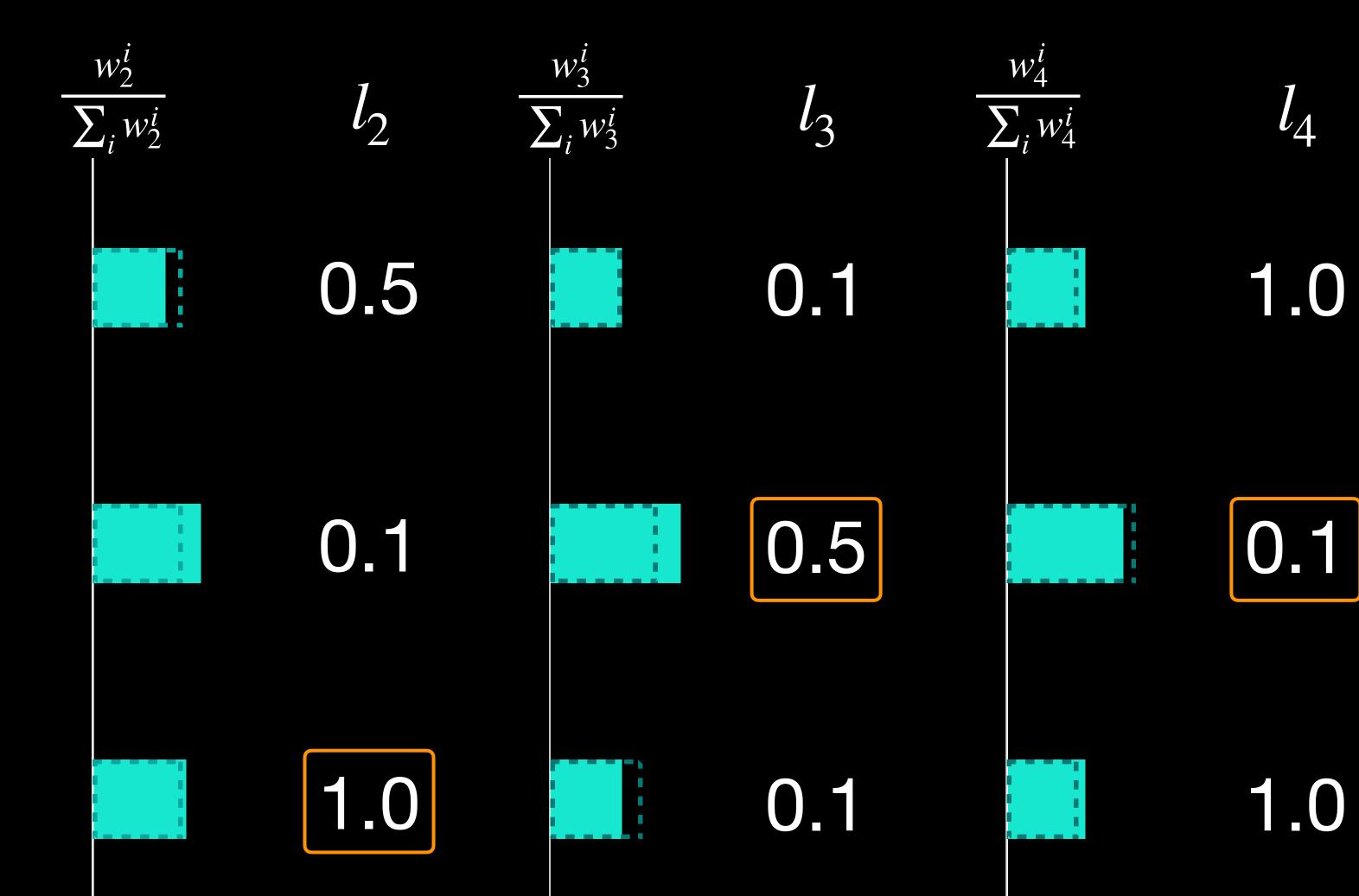
GENERALIZED WEIGHTED MAJORITY

$$\frac{w_t^i}{\sum_i w_t^i}$$

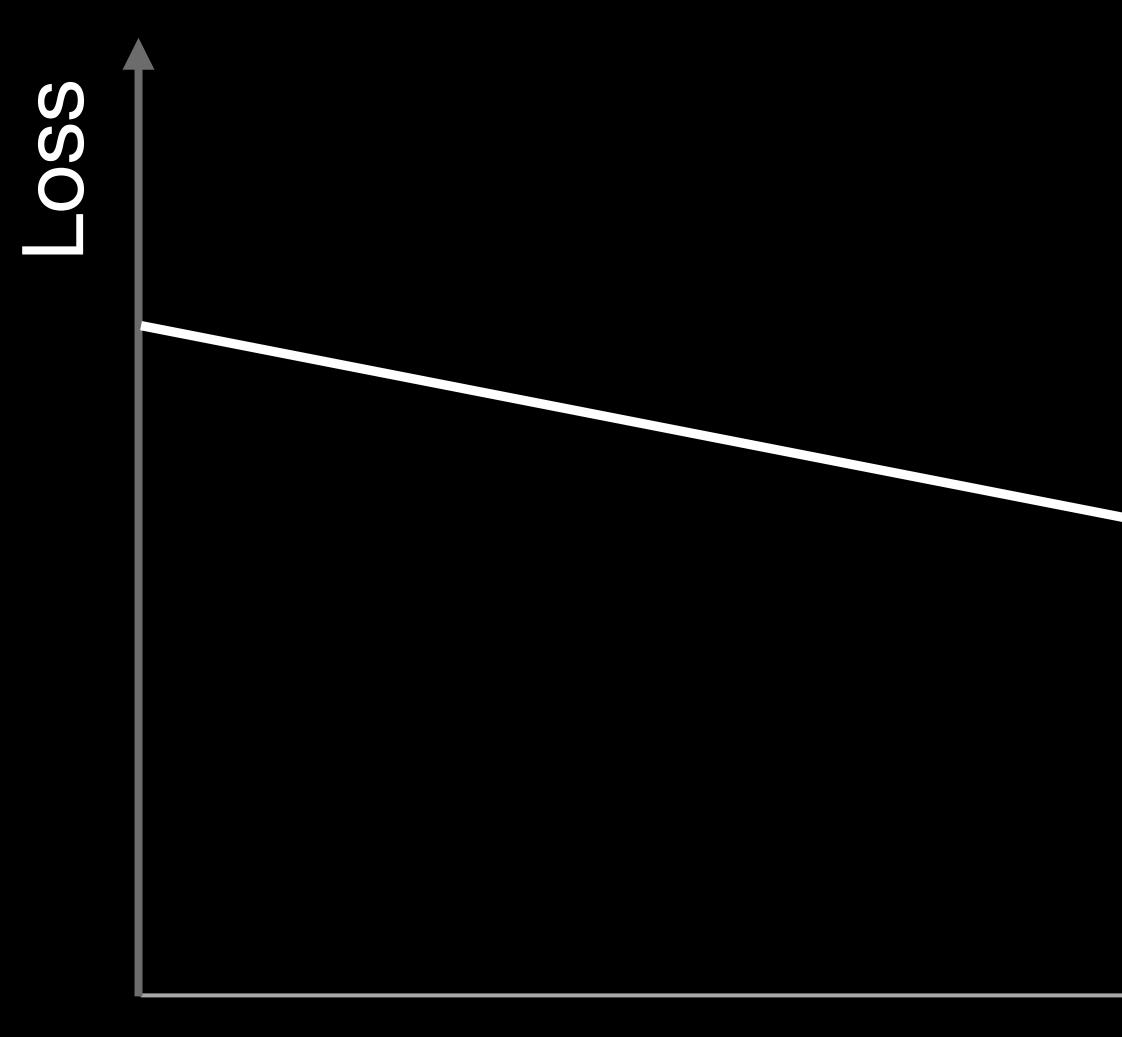
 $w_{t+1}^{i} = w_{t}^{i} \exp(-\eta l_{t}(\pi^{i}))$

GENERALIZED WEIGHTED MAJORITY

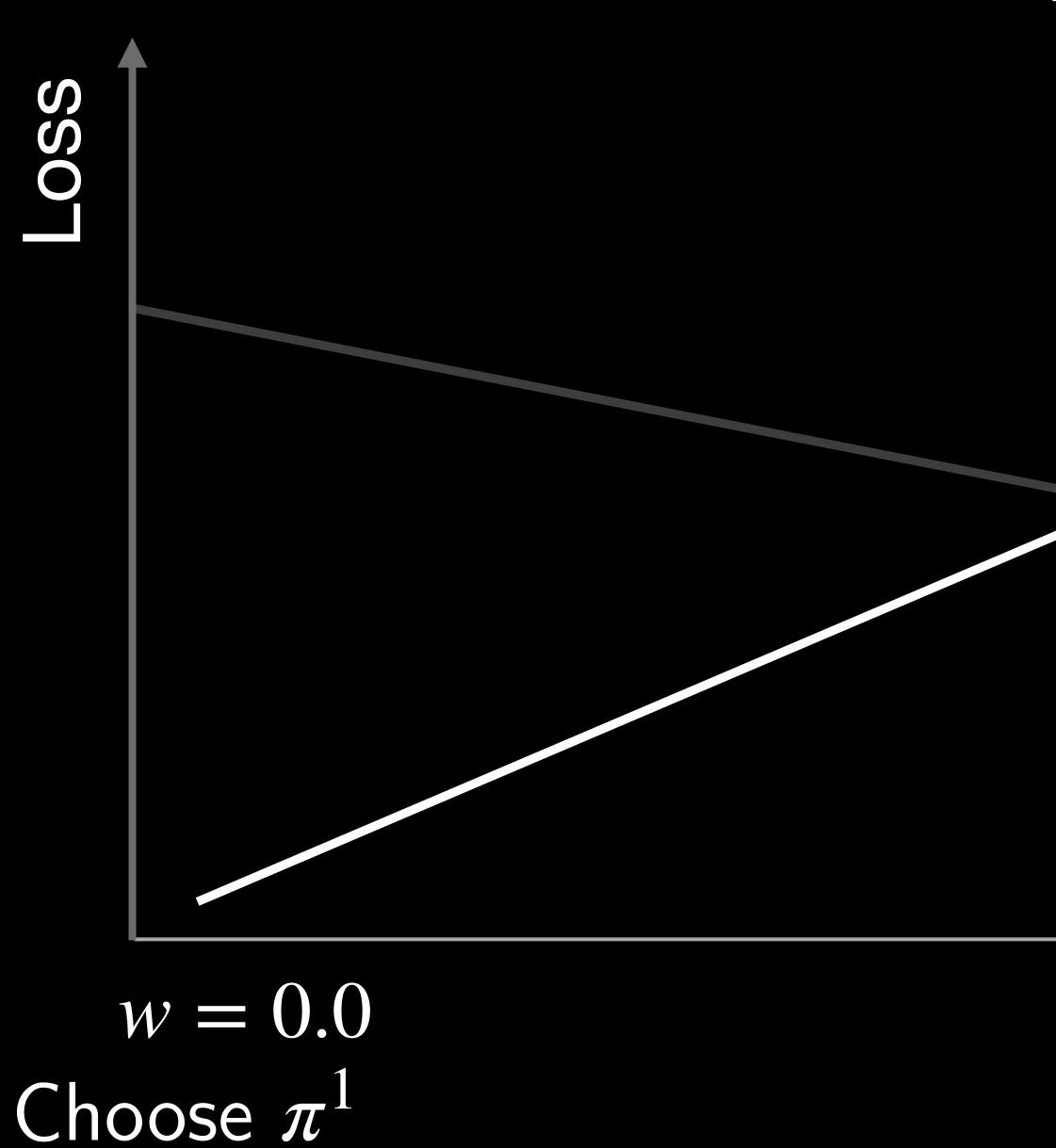




 l_{Δ}

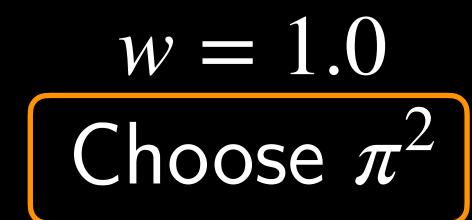


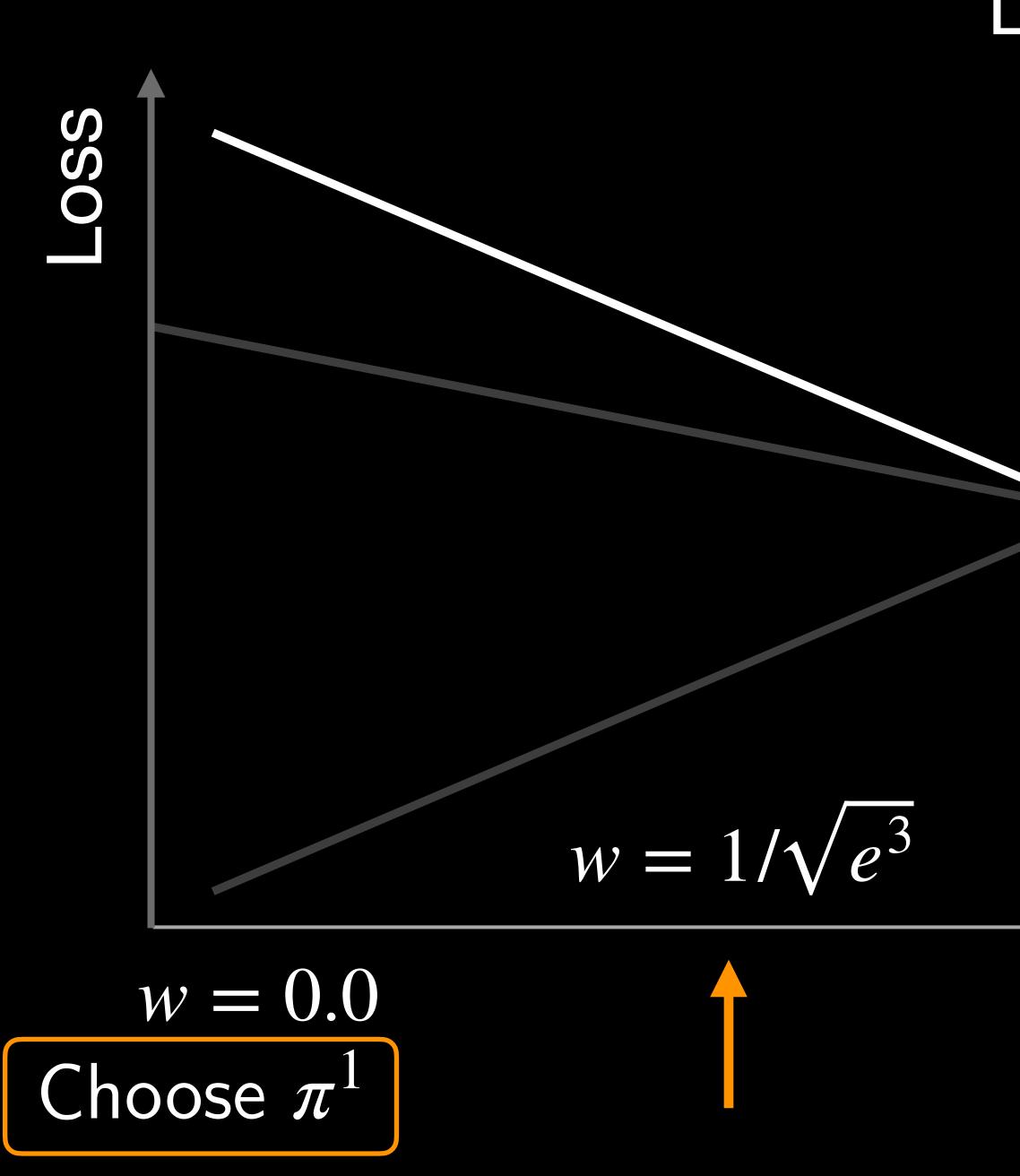
Loss = 0.5 Avg. Regret = 0.25



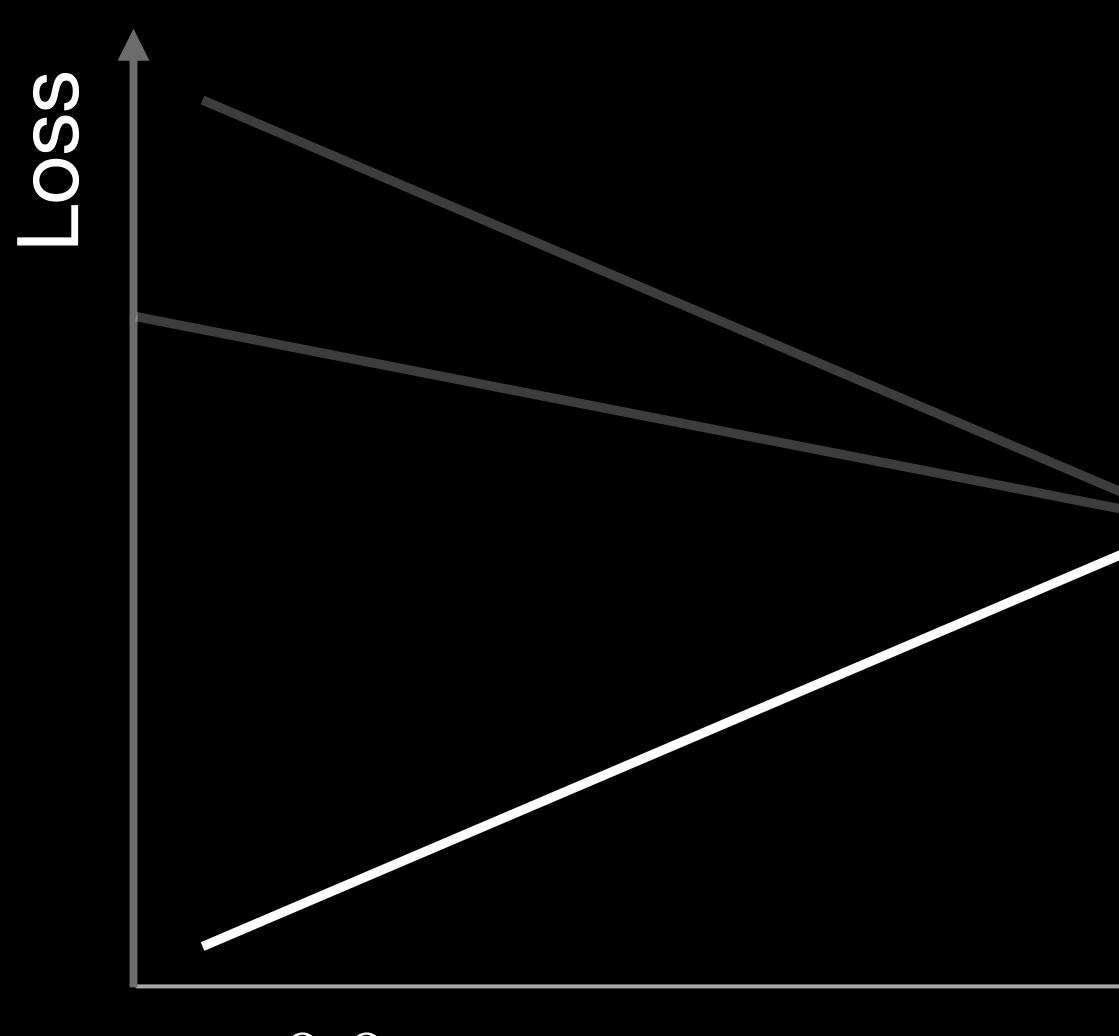
Loss = 0.6 Avg. Regret = 0.17

 $w = 1/\sqrt{e}$



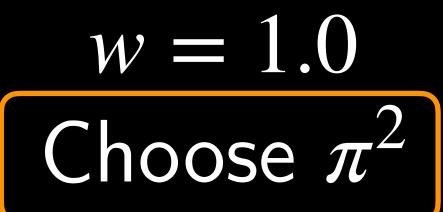


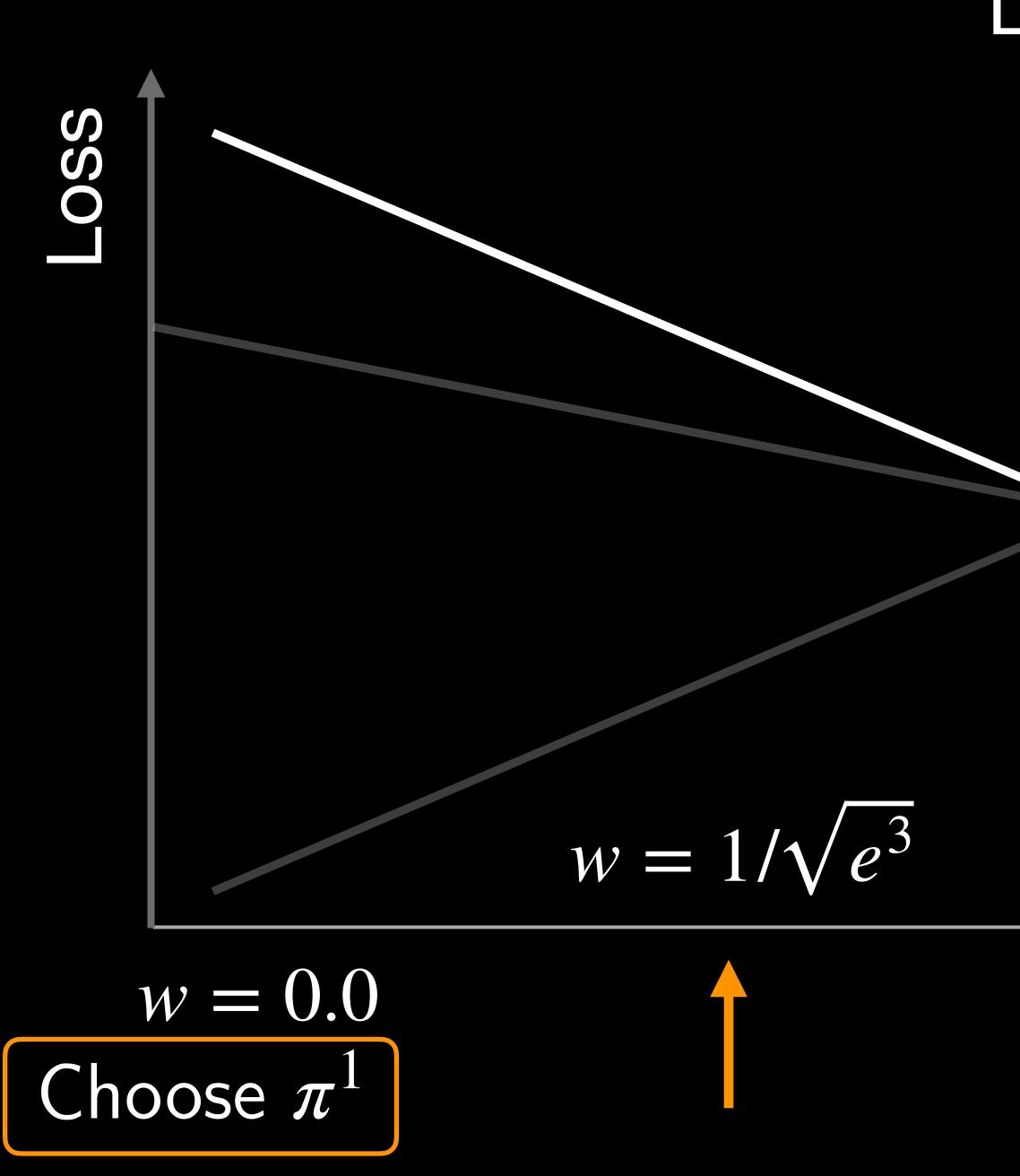
Loss = 0.78 Avg. Regret = 0.21



Loss = 0.6 Avg. Regret = 0.18

 $w = 1/\sqrt{e}$





Loss = 0.78 Avg. Regret = 0.2

Linear Programming

Boosting

Soft-RL

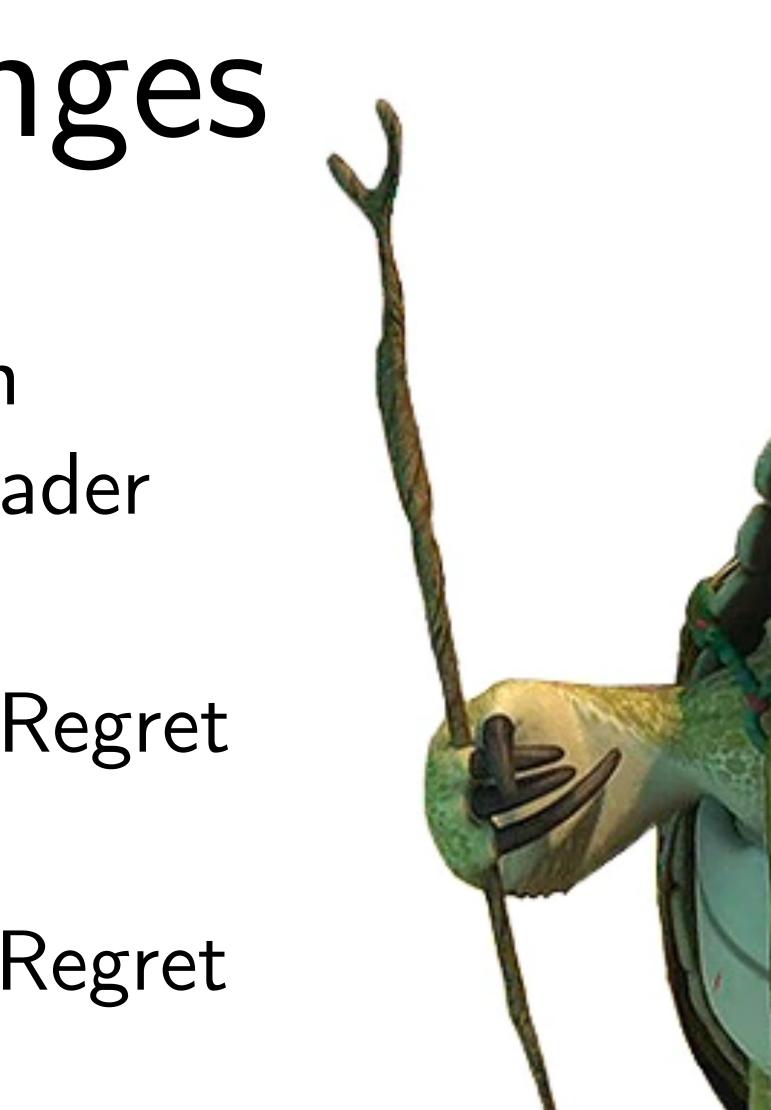
Three Challenges

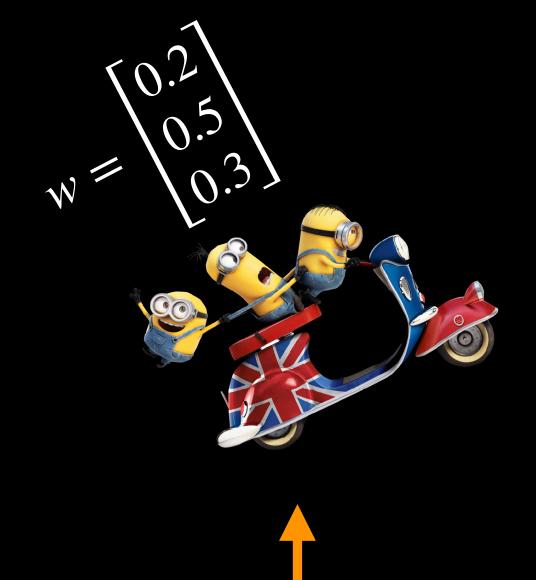
C1: Derive GWM from Follow the Regularized Leader

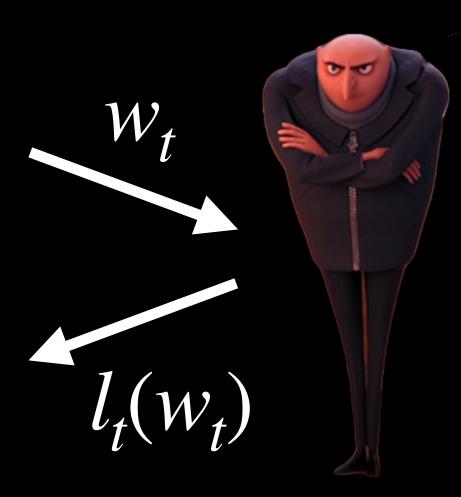
C2: Show that GWM is No-Regret

C3: Show that FTRL is No-Regret

(Share on Ed!)







Regularization $\Rightarrow \text{No Regret!}$ $w_{t} = \arg \min_{w} \sum_{i=1}^{t-1} l_{i}(w) + \eta_{t}R(w)$

FOLLOW THE LEADER!

$w_t = \arg\min_{w} \sum_{i=1}^{t-1} l_i(w)$

Unstable predictions!

