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Announcements (all on Ed!)

1. Assignment O (survey released)

2. Lecture 1 slides + notes up
on website

3. Office hours available:

Sanjiban (Tue/Thurs 11-12pm, Gates 413B)
Dhruv (Mon/Wed 11-12 pm, Rhodes 400)



Learning

Today!



Reinforcement Learning

Interactive
Online
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How humans learn ...




Can't we collect a
L OT of data and

train robots
offline?
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#1 Get Data

Input (s

Output










Think-Pair-Share!

Think (30 sec): What are different sources of train-test mismatch?

Pair: Find a partner
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Case 1: Data changes over time




Case 2: Data changes with robot behavior




Case 3: Data changes adversarially (game




Challenge:
Don’t know the test distribution upfront
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Interactive Learning

7~
Learner Adversary
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Interactive Learning

_Learner Adversary
JU 1 [policy]

Initialize pOIICy \
ll( : ) [loss]

Chooses loss

Chooses loss



Prediction
with
Expert Advice
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|l et's formalize!




I
Regret = Z () —
=1

(Learner) (Best in
hindsight)



How do we design
algorithms that are
no-regret?




At every round f, choose
FOLLOW THE LEADER the best expert in hindsight

—1
7T, = arg min Z [(m)
=Y

(lowest total loss)
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F1TL appears to be
NO regret ...

Avg. Regret

Time



Let's prove it!




Can you make FTL
have high regret?
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Cover’s Impossibility Result
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“A powerful enough adversary -
can drive the Regret of
any deterministic online algorithm
to O(T)
by anticipating its prediction
and setting maximal loss”

How can we curb the power of the adversary??



—1
T, = arg min Z [(r)
Tzl

Adversary ¥

-

breaks any
determinism



The virtue of hedging

HOW MANY TIMES HAVE |
TOLD YOU NOT TO PUT

ALL THE CHILDREN IN ONE
BASKET?1?
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Choose probability over experts

b= > owi
¢ |
Expert 1 w' = 1.0 .
Expert 2 % w? = 2.0 .

Expert3 = w? = 1.0 -




|l et's formalize!




Let’s apply FTL again (but on the
space of weights)

At every round f, choose
FOLLOW THE LEADER: the best weights in hindsight

—1
w, = arg min Z L(w)
Y=
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Follow the leader
IS too aggressive ...

Both in discrete and continuous settings!

Stability is the key problem!



—1
w, = arg min Z L(w)
Y=l

Unstable predictions!




Be stable

Slowly change
predictions
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Follow the Reqgularized Leader

= arg mm Z (W) +1, R(w)

Strong
regularization!

What are some choices for regularization?



@ENEMMZED WEII@IHI‘FED
~ MAJORNWY

Episode

A Nt W HB\)E




GENERALIZED WEIGHTED MAJORITY

1. At t=1, set weight for expert 1 as w{ =]

2. At time t, choose expert 1 with probability

2 Wi

3. Update weight for expert 1 (Bump down if loss is high)

w,fH = wti exp(—7 )



GENERALIZED WEIGHTED MAJORITY
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Loss = 0.5 Avg. Regret = 0.25
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Choose 7! Choose 7°
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~ Linear

Programming |



Three Challenges

C1l: Derive GWM from
Follow the Regularized Leader

C2: Show that GWM is No-Regret

C3: Show that FTRL is No-Regret

(Share on Ed!)
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—1
w, = arg min Z L(w)
Mz

Regularization Unstable predictions!

=No Regret!




