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“Trying to predict the
future is a mug's game...

... But increasingly it's a game we all have to play because the
world is changing so fast and we need to have some sort of
idea of what the future's actually going to be like because we
are going to have to live there, probably next week."

Douglas Adams
The Salmon on of Doubt
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https://www.youtube.com/watch?v=105LBSnJGPk

How the robot sees the world ...
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Traditional Architecture

Motion
Planning

| Perception l-p| Forecasting |3

Map &
Vehicle State

Raw sensor Control
data actions



Is having cascaded blocks a good idea?’

- -

Motion TRt

_ _ AL
| Perception {-p| Forecasting [ | ™ oD
' | Planning =

2 amera
Map & i>
Vehicle State

Raw sensor Control
data actions
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Lots of recent work on unitying perception and forecasting

Motion
Planning

Map &
Vehicle State

Raw sensor - Control
data actions

11



Maps

Sensors

Voxelized LIDAR

Lots of recent work on unitying perception and forecasting

Perception + Prediction

Long Term 2

Detections Tracks Predictions
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SPAGNN: Spatially-Aware Graph Neural Networks
for Relational Behavior Forecasting from Sensor Data

Sergio Casas':?, Cole Gulino', Renjie Liao':?, Raquel Urtasun':®
Uber Advanced Technologies Group', University of Toronto?
{sergio.casas, cqulino, rijliao, urtasun}@uber.com

Planning

Motion Traectory

Fused features and RRol pooled Spatially-Aware Marginal distribution
object detections features Graph Neural over future
X = Network trajectories
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BN Ground truth bbox and trajectory
B Detected bbox and multimodal predictions

MultiXNet: Multiclass Multistage Multimodal Motion Prediction

Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu, Huahua Wang,
Fang-Chieh Chou, Luisa San Martin, Song Feng, Rui Hu, Yang Xu, Alyssa Dayan,
Sidney Zhang, Brian C. Becker, Gregory P. Meyer, Carlos Vallespi-Gonzalez, Carl K. Wellington
Uber Advanced Technologies Group

{ndjuric, hcul2, suzhaosn, shangxuvan.wu, antesaglewang, fchou, luisas:r.}@uber.com
{sorgf, rui.hu, yang.xu, adz, sidney, bbecker, gmeyer, cvallespi, cwellingten}luber.com
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But what about forecasting and motion planning?

Map &
Vehicle State

Raw sensor

data

~p| Perception |-p.

Motion
Planning

Control
actions
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Shaky foundations of forecasting
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Are we collecting data correctly?

Are we using the right loss?
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Example: Learning forecasts for merging actors

Goal

1. Predict bs future trajectory

2. Plan with bs future trajectory

15






Example: Learning forecasts for merging actors

1. Predict bs future trajectory

Data?’

Model?

[ oss?
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Example: Learning forecasts for merging actors

2. Plan with 5s future trajectory

Cost function?

Planner?
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Think-Pair-Share!

Think (30 sec): Design choices for forecasting and motion planning

1. Predict bs future trajectory

Pair: Find a partner Data? Model? Loss?

2. Plan with 5s future trajectory

Cost Function?

Share (45 sec): Partners exchange
Planner?

ideas

19



Why is current state insufficient to predict future?
Simple latent variables:

Velocity, Acceleration may not be observable

Complex latent variables:

Intent (turning left, making a lane change) are
not observable and must be inferred from past actions

20



Sequence
Model



A very brief history of sequence prediction in robotics

\ '
A/
-
-

Kalman Filter + Prediction

Hand design observation models, infer
latent states, forward predict.

RNN, LSTMs

Learn the filter! Problem - forget long
sequences since only one hidden state
vector passed from one time step to next

Transformers

Retain all hidden state, pay O(H"2)
computation 20



Given sequence of English words, predict sequence of French

23



ENCODER A
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Transformer Architecture
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| am a student
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DECODER

DECODER
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Encoder-Decoder Attention
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Visualizing attentions

"The animal didn't cross the street because it was too tired”

Layer:| S § | Attention:| Input - Input v

H
The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street
because because
it_ Lot
was_ was_
too_ too_
tire tire



Attention as a soft-memory look up

Query #9 50% value #2

30% value #1
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( d) )

Softmax

Softmax
X
Value

Sum

Thinking
X1
g1
K1
Vi
gie ki=112

14

0.88
V1
Z1

Machines

g1 e kx =96

12

0.12
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Back to
forecasting




Transtformers for motion prediction

29



What happens with a typical forecasting approach?

Train Data

—_—

1. Collect lots of driving

— data of actors merging
- "N 2. Train a forecast model
7 to predict actor future

-

e

after before -
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Forecasts have huge variance!

Planner brakes aggressively!

31



Why is the forecast so whacky?’



Why is the forecast so whacky?’

Marginalizing over multiple modes!

Mode A: . )
Robot merges
after
Mode B: D )

Robot merges

before &




Okay .. so why can't we
just predict multi-modal
distributions?
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Multi-modal forecasts do not solve the issuel

We are (incorrectly) telling the
planner both modes can happen!

Mode A: D )

Robot merges
after

Mode B: D )
Robot merges

before &
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What robot does depends

on other humans

What other humans do

depends on the robot
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Forecasting-or-planning:
a chicken-or-egg problem
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Why can't we just
forecast the robot
motion?

33



Planning is NOT merely forecasting

Suppose you collected data from this vs data from this

Which data is useful for forecasting? For imitation learning?
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Solving the chicken-or-egg problem

Train a conditional forecasting model Sy

Normal forecasting Conditional forecasting

P (Sz;z+k ‘ St;t—k) r (St:t+k ‘ Stot—ko 5plan)

40
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All actors in a scene influence each other

Robot is simply one actor
among many In a scene

Need to jointly
reason over all actors
to produce forecasts

42



Problem: Space of joint trajectories is massive

Continuous space of trajectories

_|_
Exponentially with in actors

>
X i x i o x ﬁ

Conditional forecasting just
makes this even harder

©2021 | Aurora Proprietary
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Reason In a
space of discrete

‘modes’

44



3 fundamental modes of space-time paths

A Yields to B B Yields to A Not Yield

45



Mode = A single basin of forecast

R Yields to A
B Yields to R
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Mode = A single basin of forecast

|

R Yields to A
R Yields to B

C Yields to R
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

A Infer what modes others
are likely to choose
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

Infer what modes others
are likely to choose

Forecast actors given modes
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

Infer what modes others
are likely to choose

Forecast actors given modes

Plan given forecast

50



Input

Node features /.

state+history of each actor
in different path frames

Edge features |,
source actor state+history
in destination actor frame

Builds on

Geometric XformerNet .o

k=1,-,K
O
Q O
O
Output

Encoder

n Edge output ¢; Node output 7,

K steps of Predict Predict
message passing discrete modes T-step trajectories

51
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ACTUAL ACTUAL
c 5 62.8

PLANNER PLANNER  MPH 70
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ACTUAL ACTUAL
61.6 .wr
< 2 70

PLANNER PLANNER  MPH

R Yields to A

R Yields to B

C Yields to R
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ACTUAL ACTUAL
c 5 61.6 I

PLANNER PLANNER  MPH 70
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ACTUAL ACTUAL -

c 5 39.6
PLANNER PLANNER MPH 45
y 4 )
// . 4
ACTUAL ACTUAL
= IS 64.7 U

PLANNER PLANNER MPH 75
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Shaky foundations of forecasting

Are we using the right model?

Conditional forecasting
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Are we using the right loss?
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What happens when

we deploy model?

“What the heck
does this truck

want to do, go “_7_/@#_/@“

ahead or

Q behind ?2171"
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c

ave seen this problem before!
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Solution: DAGGER for SysID

Current Policy & Exploration Policy State  Action Next State

nd

€= Current Policy

«_Exploration

Policy
A bt A S\
y ggregate
i Dataset
New Model Fit Model

Extends our previous work [1]. Similar to [2,3]



DAGGER for Forecasting!

Collect
Data

| Aggregate

Data
Plan with | Train
forecasts Forecaster

01



Shaky foundations of forecasting

Are we using the right model?

1
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Conditional forecasting
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Are we collecting data correctly? |

Interactively collect data

Are we using the right loss?
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What makes a forecast
good’

63



What makes forecasts good?’

— Harmless —— Harmless
—— Dangerous —— Dangerous
— Ground Truth : —— Ground Truth
H @ Ego-Vehicle H @ Ego-Vehicle
@@ Other Driver @@ Other Driver

Resulting Ego-
Motion Plan

Rethinking Trajectory Forecasting Evaluation

o4



Forecasting is just a model

Models are useful fictions




What makes a ferecast model good?

66



e

.
.

. R .
.

Double

ilat

[olg

Lemma

0 - .



Forecast Model Learnmg It's only a game!
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Shaky foundations of forecasting

Are we using the right model?
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Conditional forecasting
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Are we collecting data correctly? |

Interactively collect data

Are we using the right loss?

Performance Difference

69



t | - d r But what about forecasting and motion planning?
, i

Map &
Vehicle State

._.,[Perce pt |on]_L[Forecast| n g}-{

Motion
Planning

Raw sensor
data

Forecasting-or-planning:
a chicken-or-egg problem

S

m:}.*

J

Control
actions

Shaky foundations of forecasting

Are we using the right model?

Conditional forecasting

Are we collecting data correctly? e

Interactively collect data

Are we using the right loss?

Performance Difference

8¢
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