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WHY ask this question?

Formulate as a Markov
Decision Problem (MDP)

Solve MDPs using an
all-purpose toolkit

(Imitation/Reinforcement learning, Model based /free)

| @ _§ Deploy learners in real-world
.‘-Q (Safety, distribution shift, value alignment)

robot application



HOW can we answer this question?’

Solve Formulate  Application
How do you want to What is the MDP? What is the robot?
represent your policy? Discrete/Stochastic/Time? What is the task?
Model-based? Model-free?  What is known/unknown?  What are the metrics?
Learning: Data? Loss? What is good enough?
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Let's solve the Unprotected Left Tu rn
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L et’'s solve the Unprotected Left Turn

Solve Formulate  Application

How do you want to What is the MDP? What is the robot?
represent your policy? Discrete/Stochastic/ Time? What is the task?
Model-based? Model-free?  What is known/unknown?  What are the metrics?

Learning: Data? Loss? What is good enough?
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we Can Do I,I.' We have worked through many
- %

o o applications in this class ...
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https://www.youtube.com/watch?v=vk_-JqoGGQA

Model-Based OR Model Free?

Model Free Model Based

| Learn a model
Directly learn

P(s’| s,a), plan with
7 or O(s, a) (s"|s,a), plan wi

model to find 7

A 3 \ /7 / \
9 ~ ) : , . | — .
stale 7 . | ection state £ . 1 action
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Model-Based OR Model Free?

Model Free Model Based

There exists a good You need to reason about
enough reactive policy many likely options

State space is too big to Small state space /
search exhaustively compressible state space



Model-Based OR AND Model Free

Model Based Model Free

Use model to
plan

Use model-free
terminal value function
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HOW can we answer this question?’

Solve Formulate  Application
How do you want to What is the MDP? What is the robot?
represent your policy? Discrete/Stochastic/Time? What is the task?
Model-based? Model-free?  What is known/unknown?  What are the metrics?
Learning: Data? Loss? What is good enough?
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Backward
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HOW can we answer this question?’

Forward

Goal PDL A Game

Minimize value Apply Bellman, Q values are not known,
difference between express perf. difference must be estimated from feedback
robot and the human as sum of Q value from human or the world.
differences on states Create a game between
the robot visits robot policy and Q value estimate,

solve via no-regret online learning
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Two Fundamental Approaches

Value lteration
lterate over optimal value
Policy lteration
then improve

Evaluate value of current policy
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min() operator in policy improvement
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7*(s,) = argmin[c(s,), a) + V*(s,,1)]
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Time: 29
Iter: O
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77 (s) = argmin c(s, a) + yE g, V(S

VEi(s) = c(s, 7(5) + YEg g 5.0V (5)]



- p—— g 7
.‘t.’..- )
g . > Bl . -
n
- T

For continuous
MDP (but linear)?

The LQR Algorithm

Initialize V= Q

Fort=T ..1

Compute gain matrix
K,=R+B'V, BBV, A

Update value
V,=0+K'RK,+ (A+BK)"V, (A + BK)

For non-linear MDP?

Strategy: Build up on LQR

. 0
lterative LQR 5X,+$ ou, + f(x*, u)

| Affine LQR Xy = Atxt + Bl‘ut_l_xzoff

P ,
Time-varying LQR X =AX + Bu,

X1 = Ax, + Bu,

S How do we scale these approaches?

Handle constraints?

Dual Game: We control lambdas!

min max f(x)—1’ g(x)

X A
x| Primal x
O - T
[ AA
A— <
‘>
<« BC_2
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... What if your MDP is rea
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ly complex?
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G; ¥ Where all did we see covariate shift?

Approximate
Imitation Learning? Model Based RI ? Dynaml.c
- Programming?
T9
// h -3 T2 T1

Upper half of state
is BAD

Lower half of state K4
Is GOOD

- Approximated Q
—_True Q
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Interactive Learning

Learner Adversary a v
itialize polic TZ) lpolicy] : . .
meepee l Chooses loss | I—earnlng IS
Tt - |
Update policy % N a G a M e -
—0
Follow the leader Slowly change predictions,

IS aggressive achieve no-regret




DAgger

DAgger: lteration 1

Data \

[Ross et al’11]

No regret solves all

DAgger tfor SysID

Callect Trajectories with

Current Policy & Exploration Policy
» \\ '

'Ncw Palicy

Naw Model
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Fit Model

€ Current Policy

New Transitions
State  Action Next State

/ N /‘L \
- - ¥
-~ + ~N
All previous transitions
Aggregate / ',
Dataset x — ?X/\
@ -
| E \ P

Extends our previous work [1]. Similar to [2,3]

Conservative
policy iteration

ldea 1: Conservative Policy Iteration (CPI)

= (1 —-a)m+ an,.,., =

Mix in old policy and greedy policy

Can prove that performance difference is bounded by

' 2 /4
VEi(s) = V() 2 aAgy,ppqy — 20 =,
How much greed lic C o
impfovesgbase(yi z Y How ns\:;:\ :l:sr::buuon

estimate
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Reinforcement Learning: Brass Tacks

We don't know the MDP, all we see are traces (s,a,s’)

Model Based:
| earn a model. Plan with the model.

Model Free:
Forget about models. Learn the policy.
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Model Free RL: Actor Critic

Policy improvement Estimates value
of & functions Q(’;/V;/Ag
(Natural) Policy Gradient TD, MC
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Imitation Learning: Brass Tacks

We don't know the MDP, all we see are human actions (a*)

Learn Cost:
Learn a cost that makes human look cheap, learner look expensive

Learn Values:
Learn Q* that makes human look cheap, learner look expensive
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Inverse Optimal Control (Learn Cost)

Make human look cheap, learner look expensive

max min E; . [C (s, a)] —Ep e [C)(8)]

9 - 1P .J

o 'me
l ]
e =
A A
\ |
\ Nt 4

Cost of Cost of
L earner Expert
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L earn Values

Estimate Q* from demonstrations, interventions, preferences, ..

and even E-stops!

Demonstrations _

Interventions

Preferences — 7

E-stops
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The Imitation Game

We have an interactive expert.
Apply PDL in forward direction: roll-in learner, roll-out expert

min max Z E, [0*(s,, 7(s)) — Q*(s,, 7(s,))]

P —
[AA )
\ 4

Use no-regret learning to solve the game! 0(6 T)



The RL Game

We don't have interactive expert.
Apply PDL in reverse direction: roll-in expert, roll-out learner

min Tor Z Ey xQ%(s, 7(s)) — Q%(s, 7(5))
T
—>
Use no-regret learning to solve the game! 0(6‘ Z 2)
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A grand unification of IL / RL Games?



A simple question:
Can learning help us build better planners?




A prospective grad student:
“Is planning just A*?"




Motion Planning: Dealing with expensive collision checking

Trivial Medium Expensive

(LaValle’06, Bialkowski’11,
Hauser’15, ...... )
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General framework for motion planning

Search the graph

Create a graph

Interleave



General framework for motion planning

Any plannin

P . 5 Create graph  Search graph Interleave
algorithm
x YN L

RRT*D
e.g. fancy e.g. fancy e.g. fancy
— random X heuristic X way of
sampler densifying
Learn Learn

sampler! heuristic!



LEGO: Leveraging Experience in Road .
s Learning a Sampler

Rahul Kumart!, Aditva Mandalika*®, Sanjiban C':lcxudl'lury“2 and Siddhartha S. Srinivasa*®

Conditional Variational Distribution

Target

A\ Auto-encoder
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| earn a Heuristic

1mitate true

train heuristic

search tree

cost-to-go
Ours Baseline Learning Baseline Handcratted
SAIL SL CEM QL heuc AMAN A* MHA*
alternating gap ! I i 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000
single gap M -:| M 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286
shifting gap i i ! 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804
forest 7 Lo 0.036 0.043 0.048 0.121 0.041 0.043 1.000 0.075
bugtrap forest I o “j- 0.147 0.384 0.182 1.000 0.410 0.337 1.000 0.467
gaps_forest E E[E Eﬂj 0.221 1.000 1.000 1.000 1.000 1.000 1.000 1.000
maze | | | —:1]7 0.103 0.238 0.479 0.399 0.185 0.171 1.000 0.279
multiple bugtrap ] —Il_ E[ _|]—| 0.479 0.480 1.000 0.835 0.648 0.617 1.000 ().87643
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