
Dealing with Uncertainty: Part 2

Sanjiban Choudhury

1

2

Uncertainty

Epistemic Uncertainty

3

Uncertain about state Uncertain about transitions

Uncertain about the robot pose

4

5

Uncertain about the world

The coverage problem

maximize
{v1,...,vn}

F (v1, . . . , vn)

v1
y1

maximize
{v1,...,vn}

F (v1, . . . , vn)

F (v1) = 3

The coverage problem

v1

v2

y1
y2

maximize
{v1,...,vn}

F (v1, . . . , vn)

F (v1, v2) = 8

The coverage problem

v1

v2

v3

y1
y2

y3

maximize
{v1,...,vn}

F (v1, . . . , vn)

F (v1, v2, v3) = 8

The coverage problem

The budgeted coverage problem
Node Set Utility

v1

v2

v3

y1
y2

y3

World Map
Path

(V)

(�)

(F (⇠,�))

(⇠)

Measurement

Node Set Utility

v1

v2

v3

y1

y2

y3

World Map
Path

(V)

(�)

(F (⇠, �))

(⇠)

Measurement

Fig. 1: The adaptive information gathering problem. Given a
world map �, the robot plans a path ⇠ which visits a node
vi 2 V and receives measurement yi, such that information
gathered (utility) F (⇠, �) is maximized.

B. Problems with Known World Maps
We define four variants of the information gathering prob-

lem. For the first two variants, the world map � is known and
can be evaluated while computing a path ⇠.
Problem 1 (KNOWN-UNC: Known World Map; Uncon-
strained Travel Cost). Given a world map � and a time horizon
T , find a path ⇠ that maximizes utility

arg max
⇠2⌅

F (⇠, �)

s.t. |⇠|  T + 1
(1)

Problem 2 (KNOWN-CON: Known World Map; Constrained
Travel Cost). Problem 1 with a travel cost budget B

arg max
⇠2⌅

F (⇠, �)

s.t. T (⇠, �)  B

|⇠|  T + 1

(2)

Problem 1 is a set function maximization problem which in
general can be NP-Hard (Krause and Golovin [20]). However,
the utility function F is a monotone submodular function.
For such functions, it has been shown that greedy strate-
gies achieve near-optimality (Krause et al. [22], Krause and
Guestrin [21]).

Problem 2 introduces a routing constraint (due to T)
for which greedy approaches can perform arbitrarily poorly.
Chekuri and Pal [2], Singh et al. [30] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Iyer and Bilmes [15] solve a related problem
(submodular knapsack constraints) using an iterative greedy
approach which is generalized by Zhang and Vorobeychik
[35]. Yu et al. [34] propose a mixed integer approach to
solve a related correlated orienteering problem. Hollinger and
Sukhatme [11] propose a sampling based approach.

C. Problems with Hidden World Maps
We now consider the setting where the world map � is

hidden. Given a prior distribution P (�), it can be inferred only
via the measurements yi received as the robot visits nodes vi.

Hence, instead of solving for a fixed path, we compute a policy
that maps history of measurements received and nodes visited
to decide which node to visit.
Problem 3 (HIDDEN-UNC: Hidden World Map; Uncon-
strained Travel Cost). Given a distribution of world maps,
P (�), a time horizon T , find a policy that at time t, maps the
history of nodes visited {vi}t�1

i=1
and measurements received

{yi}t�1

i=1
to compute node vt to visit at time t, such that the

expected utility is maximized.
Problem 4 (HIDDEN-CON: Hidden World Map; Constrained
Travel Cost). Problem 3 with a travel cost budget B

Due to the hidden world map �, it is not straight forward
to apply the approaches discussed in Section II-B - methods
have to reason about how P (� | {vi}t�1

i=1
, {yi}t�1

i=1
) will evolve.

However, the utility function F has an additional property of
adaptive submodularity [7]. Hence, applying greedy strategies
to Problem 3 has near-optimality guarantees (Golovin et al.
[8], Javdani et al. [16, 17], Chen et al. [4, 5]).

Problem 4 does not enjoy the adaptive submodularity
property. Hollinger et al. [13, 12] propose a heuristic based
approach to select a subset of informative nodes and perform
minimum cost tours. Singh et al. [31] replan every step using
a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [9], Lim et al.
[24, 23] propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. [10] make a modular
approximation of the objective function. Isler et al. [14] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.

III. POMDPS AND IMITATION LEARNING

A. Mapping Problems to a POMDP
We now map Problems HIDDEN-UNC and HIDDEN-CON

to a Partially Observable Markov Decision Process (POMDP).
The POMDP is a tuple (S, M, A, ⌦, R, O, Z, T) defined upto
a fixed finite horizon T . It is defined over an augmented state
space comprising of the ego-motion state space S (which we
will refer to as simply the state space) and the space of world
maps M. The first component, S , is fully observable while
the second component, M, is partially observable through
observations received.

Let the state, st 2 S , be the set of nodes visited, st =
(v1, v2, . . . , vt). Let the action, at 2 A be the node visited
at = vt+1. Given a world map �, at state s, the utility of a is
F (s [a, �). For Problem HIDDEN-CON, let Afeas (s, �) ⇢ A
be the set of feasible actions defined as

Afeas (s, �) = {a | a 2 A, T (s [a, �)  B} (3)

The state transition function, ⌦ (s, a, s
0) = P (s0|s, a), is

the deterministic function s
0 = s [a. The one-step-reward

function, R (s, �, a) 2 [0, 1], is defined as the normalized
marginal gain of the utility function, R (s, �, a) = �F (a|s,�)

F(A,�)
.

Let the observation, ot 2 O be the measurement ot = yt.
The observation model, Z (s, a, �, o) = P (o|s, a, �) is the
deterministic function o = H (s [a, �).

Cover as many cells

Subject to travel cost!

The budgeted coverage info-gathering problem
Node Set Utility

v1

v2

v3

y1
y2

y3

World Map
Path

(V)

(�)

(F (⇠,�))

(⇠)

Measurement

Node Set Utility

v1

v2

v3

y1

y2

y3

World Map
Path

(V)

(�)

(F (⇠, �))

(⇠)

Measurement

Fig. 1: The adaptive information gathering problem. Given a
world map �, the robot plans a path ⇠ which visits a node
vi 2 V and receives measurement yi, such that information
gathered (utility) F (⇠, �) is maximized.

B. Problems with Known World Maps
We define four variants of the information gathering prob-

lem. For the first two variants, the world map � is known and
can be evaluated while computing a path ⇠.
Problem 1 (KNOWN-UNC: Known World Map; Uncon-
strained Travel Cost). Given a world map � and a time horizon
T , find a path ⇠ that maximizes utility

arg max
⇠2⌅

F (⇠, �)

s.t. |⇠|  T + 1
(1)

Problem 2 (KNOWN-CON: Known World Map; Constrained
Travel Cost). Problem 1 with a travel cost budget B

arg max
⇠2⌅

F (⇠, �)

s.t. T (⇠, �)  B

|⇠|  T + 1

(2)

Problem 1 is a set function maximization problem which in
general can be NP-Hard (Krause and Golovin [20]). However,
the utility function F is a monotone submodular function.
For such functions, it has been shown that greedy strate-
gies achieve near-optimality (Krause et al. [22], Krause and
Guestrin [21]).

Problem 2 introduces a routing constraint (due to T)
for which greedy approaches can perform arbitrarily poorly.
Chekuri and Pal [2], Singh et al. [30] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Iyer and Bilmes [15] solve a related problem
(submodular knapsack constraints) using an iterative greedy
approach which is generalized by Zhang and Vorobeychik
[35]. Yu et al. [34] propose a mixed integer approach to
solve a related correlated orienteering problem. Hollinger and
Sukhatme [11] propose a sampling based approach.

C. Problems with Hidden World Maps
We now consider the setting where the world map � is

hidden. Given a prior distribution P (�), it can be inferred only
via the measurements yi received as the robot visits nodes vi.

Hence, instead of solving for a fixed path, we compute a policy
that maps history of measurements received and nodes visited
to decide which node to visit.
Problem 3 (HIDDEN-UNC: Hidden World Map; Uncon-
strained Travel Cost). Given a distribution of world maps,
P (�), a time horizon T , find a policy that at time t, maps the
history of nodes visited {vi}t�1

i=1
and measurements received

{yi}t�1

i=1
to compute node vt to visit at time t, such that the

expected utility is maximized.
Problem 4 (HIDDEN-CON: Hidden World Map; Constrained
Travel Cost). Problem 3 with a travel cost budget B

Due to the hidden world map �, it is not straight forward
to apply the approaches discussed in Section II-B - methods
have to reason about how P (� | {vi}t�1

i=1
, {yi}t�1

i=1
) will evolve.

However, the utility function F has an additional property of
adaptive submodularity [7]. Hence, applying greedy strategies
to Problem 3 has near-optimality guarantees (Golovin et al.
[8], Javdani et al. [16, 17], Chen et al. [4, 5]).

Problem 4 does not enjoy the adaptive submodularity
property. Hollinger et al. [13, 12] propose a heuristic based
approach to select a subset of informative nodes and perform
minimum cost tours. Singh et al. [31] replan every step using
a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [9], Lim et al.
[24, 23] propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. [10] make a modular
approximation of the objective function. Isler et al. [14] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.

III. POMDPS AND IMITATION LEARNING

A. Mapping Problems to a POMDP
We now map Problems HIDDEN-UNC and HIDDEN-CON

to a Partially Observable Markov Decision Process (POMDP).
The POMDP is a tuple (S, M, A, ⌦, R, O, Z, T) defined upto
a fixed finite horizon T . It is defined over an augmented state
space comprising of the ego-motion state space S (which we
will refer to as simply the state space) and the space of world
maps M. The first component, S , is fully observable while
the second component, M, is partially observable through
observations received.

Let the state, st 2 S , be the set of nodes visited, st =
(v1, v2, . . . , vt). Let the action, at 2 A be the node visited
at = vt+1. Given a world map �, at state s, the utility of a is
F (s [a, �). For Problem HIDDEN-CON, let Afeas (s, �) ⇢ A
be the set of feasible actions defined as

Afeas (s, �) = {a | a 2 A, T (s [a, �)  B} (3)

The state transition function, ⌦ (s, a, s
0) = P (s0|s, a), is

the deterministic function s
0 = s [a. The one-step-reward

function, R (s, �, a) 2 [0, 1], is defined as the normalized
marginal gain of the utility function, R (s, �, a) = �F (a|s,�)

F(A,�)
.

Let the observation, ot 2 O be the measurement ot = yt.
The observation model, Z (s, a, �, o) = P (o|s, a, �) is the
deterministic function o = H (s [a, �).

Hidden

Activity!

Think-Pair-Share

13

Think (30 sec): Can you think of some heuristics for solving the
budgeted information gathering problem?

Pair: Find a partner

Share (45 sec): Partners exchange

 ideas

Belief Space Planning is NP-Hard
at best, undecidable at worst

Need to relax our problem!

What if we wanted to
explore as optimally as

possible using prior
information?

15

16

Information

Gain

20 Questions

17

Let’s say you have a set of hypotheses

and a set of tests

Given a prior over hypotheses P(θ)

Find the minimal number of tests to identify hypothesis

{θ1, θ2, …, θn}

{t1, t2, …, tn}

20 Questions

18

Let’s say you have a set of hypotheses

and a set of tests

Given a prior over hypotheses P(θ)

Find the minimal number of tests to identify hypothesis

{θ1, θ2, …, θn}

NP-HARD
{t1, t2, …, tn}

A simple algorithm

19

Greedily pick the test that

maximizes information gain

Entropy is adaptive sub modular => Greedy is near-optimal

max
t

H(θ) − 𝔼oH(θ | t, o)
Entropy Posterior entropy

So does information gain work for this problem?
Node Set Utility

v1

v2

v3

y1
y2

y3

World Map
Path

(V)

(�)

(F (⇠,�))

(⇠)

Measurement

Node Set Utility

v1

v2

v3

y1

y2

y3

World Map
Path

(V)

(�)

(F (⇠, �))

(⇠)

Measurement

Fig. 1: The adaptive information gathering problem. Given a
world map �, the robot plans a path ⇠ which visits a node
vi 2 V and receives measurement yi, such that information
gathered (utility) F (⇠, �) is maximized.

B. Problems with Known World Maps
We define four variants of the information gathering prob-

lem. For the first two variants, the world map � is known and
can be evaluated while computing a path ⇠.
Problem 1 (KNOWN-UNC: Known World Map; Uncon-
strained Travel Cost). Given a world map � and a time horizon
T , find a path ⇠ that maximizes utility

arg max
⇠2⌅

F (⇠, �)

s.t. |⇠|  T + 1
(1)

Problem 2 (KNOWN-CON: Known World Map; Constrained
Travel Cost). Problem 1 with a travel cost budget B

arg max
⇠2⌅

F (⇠, �)

s.t. T (⇠, �)  B

|⇠|  T + 1

(2)

Problem 1 is a set function maximization problem which in
general can be NP-Hard (Krause and Golovin [20]). However,
the utility function F is a monotone submodular function.
For such functions, it has been shown that greedy strate-
gies achieve near-optimality (Krause et al. [22], Krause and
Guestrin [21]).

Problem 2 introduces a routing constraint (due to T)
for which greedy approaches can perform arbitrarily poorly.
Chekuri and Pal [2], Singh et al. [30] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Iyer and Bilmes [15] solve a related problem
(submodular knapsack constraints) using an iterative greedy
approach which is generalized by Zhang and Vorobeychik
[35]. Yu et al. [34] propose a mixed integer approach to
solve a related correlated orienteering problem. Hollinger and
Sukhatme [11] propose a sampling based approach.

C. Problems with Hidden World Maps
We now consider the setting where the world map � is

hidden. Given a prior distribution P (�), it can be inferred only
via the measurements yi received as the robot visits nodes vi.

Hence, instead of solving for a fixed path, we compute a policy
that maps history of measurements received and nodes visited
to decide which node to visit.
Problem 3 (HIDDEN-UNC: Hidden World Map; Uncon-
strained Travel Cost). Given a distribution of world maps,
P (�), a time horizon T , find a policy that at time t, maps the
history of nodes visited {vi}t�1

i=1
and measurements received

{yi}t�1

i=1
to compute node vt to visit at time t, such that the

expected utility is maximized.
Problem 4 (HIDDEN-CON: Hidden World Map; Constrained
Travel Cost). Problem 3 with a travel cost budget B

Due to the hidden world map �, it is not straight forward
to apply the approaches discussed in Section II-B - methods
have to reason about how P (� | {vi}t�1

i=1
, {yi}t�1

i=1
) will evolve.

However, the utility function F has an additional property of
adaptive submodularity [7]. Hence, applying greedy strategies
to Problem 3 has near-optimality guarantees (Golovin et al.
[8], Javdani et al. [16, 17], Chen et al. [4, 5]).

Problem 4 does not enjoy the adaptive submodularity
property. Hollinger et al. [13, 12] propose a heuristic based
approach to select a subset of informative nodes and perform
minimum cost tours. Singh et al. [31] replan every step using
a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [9], Lim et al.
[24, 23] propose recursive coverage algorithms to learn policy
trees. However such methods cannot scale well to large state
and observation spaces. Heng et al. [10] make a modular
approximation of the objective function. Isler et al. [14] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.

III. POMDPS AND IMITATION LEARNING

A. Mapping Problems to a POMDP
We now map Problems HIDDEN-UNC and HIDDEN-CON

to a Partially Observable Markov Decision Process (POMDP).
The POMDP is a tuple (S, M, A, ⌦, R, O, Z, T) defined upto
a fixed finite horizon T . It is defined over an augmented state
space comprising of the ego-motion state space S (which we
will refer to as simply the state space) and the space of world
maps M. The first component, S , is fully observable while
the second component, M, is partially observable through
observations received.

Let the state, st 2 S , be the set of nodes visited, st =
(v1, v2, . . . , vt). Let the action, at 2 A be the node visited
at = vt+1. Given a world map �, at state s, the utility of a is
F (s [a, �). For Problem HIDDEN-CON, let Afeas (s, �) ⇢ A
be the set of feasible actions defined as

Afeas (s, �) = {a | a 2 A, T (s [a, �)  B} (3)

The state transition function, ⌦ (s, a, s
0) = P (s0|s, a), is

the deterministic function s
0 = s [a. The one-step-reward

function, R (s, �, a) 2 [0, 1], is defined as the normalized
marginal gain of the utility function, R (s, �, a) = �F (a|s,�)

F(A,�)
.

Let the observation, ot 2 O be the measurement ot = yt.
The observation model, Z (s, a, �, o) = P (o|s, a, �) is the
deterministic function o = H (s [a, �).

Hidden

21

Information Gain

overexplores!

Why does this happen?

22

1. Information Gain does not take
into account travel cost!

  
2. Uniform Bernoulli prior may not be
the best prior!

Can we find a better
exploration / exploitation

algorithm?

23

24

Posterior

Sampling

The Online Shortest Path Problem

25

You just moved to Cornell and are
traveling from office to home.

You would like to get home quickly
but you are uncertain about travel

times along each edge

Suppose we had a prior

on travel time for each edge

(Mean , Var)μe σe

(Mean , Var)μe σe

What if …

… we just sampled travel
times from our prior and
solved the shortest path?

A suspiciously simple algorithm

27

Repeat forever:

Sample edge times from posterior

Compute shortest path

Travel along path, and update

posterior

A suspiciously simple algorithm

28

Repeat forever:

Sample model from posterior

Compute optimal policy

Execute policy, observe s,a,s’,

Update model

Posterior Sampling for Motion Planning

29

Real Robot Problems!

30

The Blindfolded Robot:

Bayesian Planning with Contact Feedback

[ISRR’19]

Posterior Sampling for Reinforcement Learning

31

Q1 Q2 QK

Bootstrapped Q Network

Posterior Sampling for Reinforcement Learning

32

Why does work better than taking random actions?

Atari

33

tl;dr

What is my prior is
intractable to represent

and sample from?

34

What if …

… we trained a learner to
imitate a clairvoyant oracle?

Imitate

Learner

w/ limited sensing

Expert

can see further

Imitating Experts with Privileged Information

Solution: Interactively query expert

ht

a*t

Solution: Interactively query expert

e.g DAGGER

1. Roll out learner

2. Query Expert

3. Aggregate Data
and repeat!

Privileged Information: Motion Planning

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

Learned

Search Heuristic

Optimal

Value Function

[Choudhury et al. ‘2018]

Imitate

Example: Training search heuristics
Why / When does

this work?

[Choudhury 2018]

On-policy (Aggrevate) Behavior Cloning

Proved that this
approximates

Hindsight Optimization /
QMDP

Fails when you need to
explicitly explore (i.e.

asymptotic realizability not
hold)

