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Recap In
60 seconds!




Recap: Two Ingredients of RL
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Curses of Function Approximation

Value lteration: Policy lteration:
Bootstrapping Distribution Shift

Iteration 101
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Upper half of state
iIs BAD

Lower half of state
Is GOOD
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The Power of a Policy!

All we need at the end of the day is a good policy.

Black box: Try different policies and pick the best one

Gray box: Be smarter, push probability mass on actions
that lead to high rewards
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Wait ... how did we get
around the distribution
shift problems?
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The Policy Gradient Theorem

Vg] E n(&6) Z Vg log 7P (atlst) Qﬂg (St, at)

Is this gradient the best descent direction?



What would gradient descent do here?

How can we get it to converge better?






Think-Pair-Share

Think (30 sec): How can we get gradient descent to converge better
in the example below?

Pair: Find a partner

Share (45 sec): Partners exchange ideas
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Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

maxpg/(0 + Af)  s.t. |Af|| <€ AO =V ,J(0)

What would update look like for another norm?

AQ = iG—l(e) V. J(0)

maxpgJ(0 +A0) st AO'G(B)AG < e —
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What's a good norm for
distributions?
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What is a good norm for distributions?

max J(6 + A6G)
AO

s.t. KL(P(O+ AO)||P(O)) < ¢



What is a good norm for distributions?

max J(6 + AG)
Y,
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s.t. AQ'G(O)AG < ¢

Fischer Information Matrix

G(0) = Ep, [Ve log(pe) Vo 108(P9)T]



"Natural Gradient Descent

Start with an arbitrary initial policy 7g

while not converged do

Run simulator with 77, to collect {&() f\i ,
Compute estimated gradient

N 1 N [/T=1 N i ]
Vo] = N ; (Z Vg log 71y (a§)|s§))) R(g())

L Update parameters 6 < 6 + «, ;
return 7ty N

Modern variants are TRPO, PPO, etc
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But does this work on
real robots?’
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Policy Gradient Methods for Robotics

[Peters and Schaal, 2006}
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Initially, we teach a rudimentary stroke by supervised learning as can be seen in Figure 3 (b); however, it fails to reproduce the behavior as
shown in (c); subsequently, we improve the performance using the episodic Natural Actor-Critic which yields the performance shown in (a)
and the behavior in (d). After approximately 200-300 trials, the ball can be hit properly by the robot.
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Consider the following single roll-out

Return = -100

What would the gradient at s, be?

Is this a good roll-out or a bad roll out?
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It depends on other trajectories!

Return = -100

S

Return = -100

How can we incorporate relative information?
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Problem: High Variance

One of the reasons for the high variance is that the algorithm does not
know how well the trajectories perform compared to other trajectories.
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Solution: Subtract a baselinel
Vo] = Egmo(s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))|

Prove this does not change the gradient!

= Eyro (s)Ery(als) | Vo log (g (als) A™ (s, a)]



Recap (again) in 60 seconds!

Local Optima: Use Exploration
Distribution

Distribution Shift: Natural
Gradient Descent

High Variance: Subtract
baseline
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If we are estimating

values ... can we bring
back MC and TD?

Monte-Carlo

V(s) < V(s) + a(G, — V(s))

Zero Bias

High Variance

Always convergence

(Just have to wait till heat death of the universe)

Temporal Difference

V(s) « V(s) + a(c + yV(s") — V(s))

Can have bias

| ow Variance

May not converge if
using function approximation
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Actor-Critic Algorithms

Actor CrltIC

Policy improvement Estimates value
of & functions QZ;/V;;/A
Natural Gradient Descent D, MC

T

¢
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The General Actor Critic Framework

batch actor-critic algorithm:
=> 1. sample {s;,a;} from my(a|s) (run it on the robot)
2 Ot ‘A/;;T(S) to sampled reward sumsA(TD, I\/IE:)
3. evaluate A™(s;,a;) = r(s;,a;) + ”YVQZF(S;) - Vg(si)
4. Vo J(0) = ) ., Vologmg(a;|s;)A™ (s;,a;)
mm 5. 0+ 04+ aVeJ(0)

Credit: Sergey Levine 26
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Problem 1: How do we make Actor Critic off-policy?

batch actor crltlc algomthm .

s)| (run it on the robot)

2. fit V“( ;) to sa,ld rrd SUMS

3. evaluate A™(s;,a;) = r(s;,a;) + VVW( s) — ‘A/;;T(Si)
4. VoJ(0) = 3, Vologma(as|s;) A" (s;, a;)

- 5 0+ 0+aVyJ(0)

Credit: Sergey Levine 28



Problem 1: How do we make Actor Critic off-policy?

get (s,a,s’,r) <—I
update ¢ «— =

get (s,a,s’,r) 4—.
update 0 «—— =

transitions that
{  We Ssaw In prior
time steps

Credit: Sergey Levine 29



Solution: Carefully assign credit to correct actions!

. take action a ~ my(als), get (s,a,s’,r), store in R

. sample a batch {s;,a;,r;,s;} from buffer R

. update Q7 using targets y; = r; + ng(sg, a’) for each s;, a;

. VoJ(0) =~ % .. Vglog ﬂg(aﬂsi)é}”(si,a?) where al ~ mg(als;)
.00+ aVyJ(0)

Ol = O DN =
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Problem 2: How can we be robust to changes in the
environment?’

observations,
rewards

Agent Environment

Credit: Ben Eyesenbach 31



Problem 2: How can we be robust to changes in the
environment?’

rewards

Agent Environment

T

max min [K E (st, a

p(St+1|St at) 7r(at|st) |: ty At :|
T  pEP,FER P

Credit: Ben Eyesenbach 32



Solution: Use Maximum Entropy RL!

J (m;p, 1) = E
MaxEnt\ 7"y P, — Mag~m(ag|st),St+1~P(St+1|St,a¢)

Intuition: There are many policies that can achieve the same
cumulative rewards. MaxEntRL keeps alive all of those policies.
Learns many different ways to solve the same task.



Solution: Use Maximum Entropy RL!

Standard RL MaxEnt RL

Trained and evaluated
without the obstacle:

Trained without the obstacle,
but evaluated with the
obstacle:
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y ,, o Haarnoja 20183
Soft’" Actor Critic

Actor Critic

T™Q(st,a) = (s, ar) +VEs, ynp [V(5e41)],

Thew — aI'g gé%DKL (7‘-/( ) ‘St)

V(st) = Ea,~nr [Q(S¢,a;) — log m(a|sy)]

“Soft” Policy Improvement “Soft” Value Evaluation
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“Soft’ Actor Critic

Haarnoja 2018
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https://www.youtube.com/watch?v=FmMPHL3TcrE

From Policy Gradient to Policy Search

Algorlthm 1 Advantage-Welghted Regressmn

1: m; < random policy

2: D1

3: for iteration k = 1, ..., kpax dO

4:  add trajectories {’Tz} sampled via 7y to D
5

Supervised
Ve ¢ arg miny, Egaup ‘RS — V{(s) || Learning!
N\ T S - d
6 s arg max, Ex anp [log 7(als) exp (3 (RD, — VP(5)) )] 20
7: end for

Peng et al, 2019



tl:dr

Recap (again) in 60 seconds!

1. Local Optima: Use Exploration
Distribution

2. Distribution Shift: Natural
Gradient Descent

3. High Variance: Subtract
baseline

“Natural’ Gradient Descent

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 774 to collect {#() A
Compute estimated gradient

T-1

= 1 i), (i i
Vol== ), || Y Veglogm (a§)|5§)) R(&®)
N = [\ =

‘ 7 ~ 7 1 N | |

“ G(@) = N E [V@ log 7t9(al-|s,-)V9 log ne(a,-|s,-)T] }
ik i i=1 |

L Update parameters 6 < 6 + a@‘l(e)i% J.

return 7ty

Modern variants are TRPO, PPO, etc
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General Actor Critic Framework

batch actor-critic algorithm:

sample {s;,a;} from my(als) (run it on the robot)

il ‘A/d)”(s) to sampled reward sums (TD, MC)

evaluate A7 (s;,a;) = r(s;,a;) + ”quZr(s;) — Vi (s:)
VoJ(0) = > .Vglog Wg(az-|sz-)fl”(sz-,ai)

.0+ 0+ aVeJ(0)

Credit: Sergey Levine
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