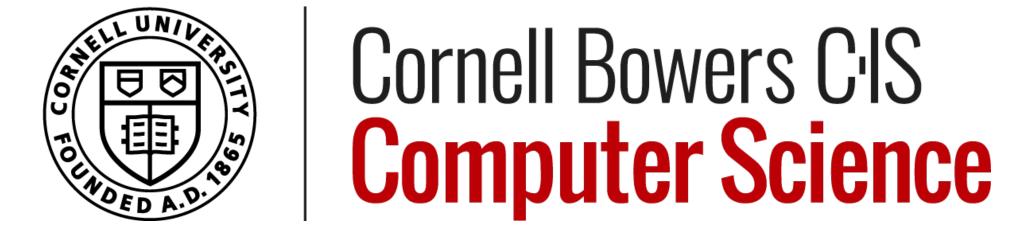
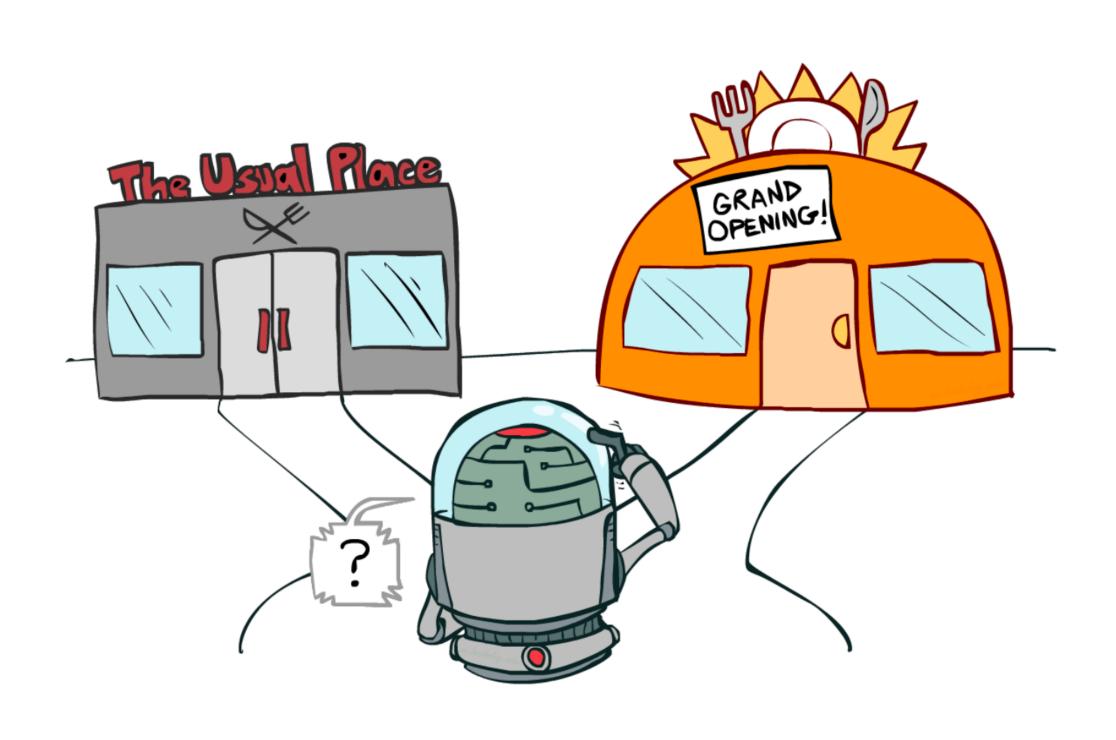
Actor-Critic Methods

Sanjiban Choudhury

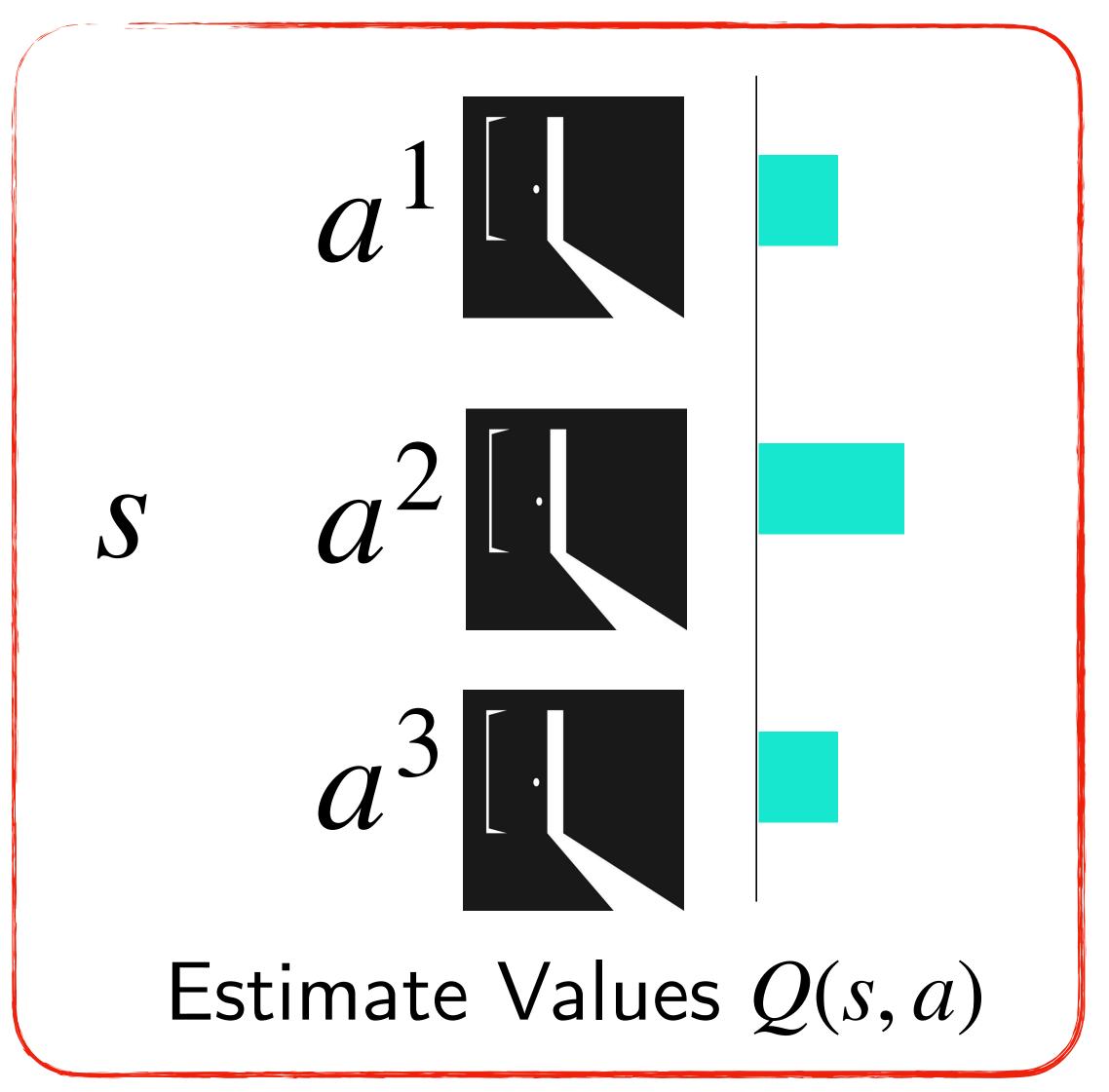


Recap in 60 seconds!

Recap: Two Ingredients of RL



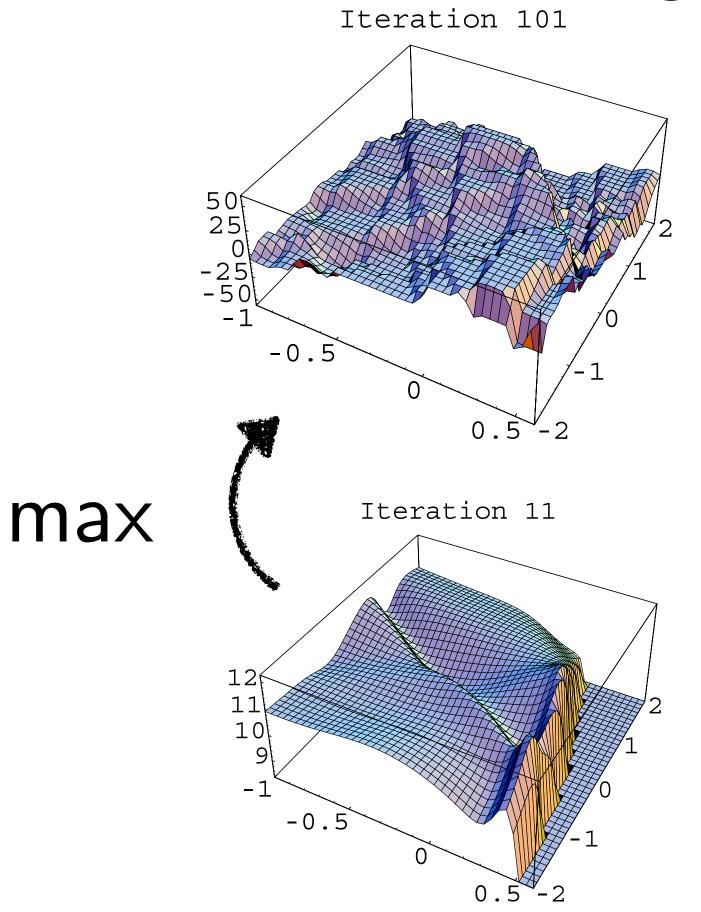
Exploration Exploitation



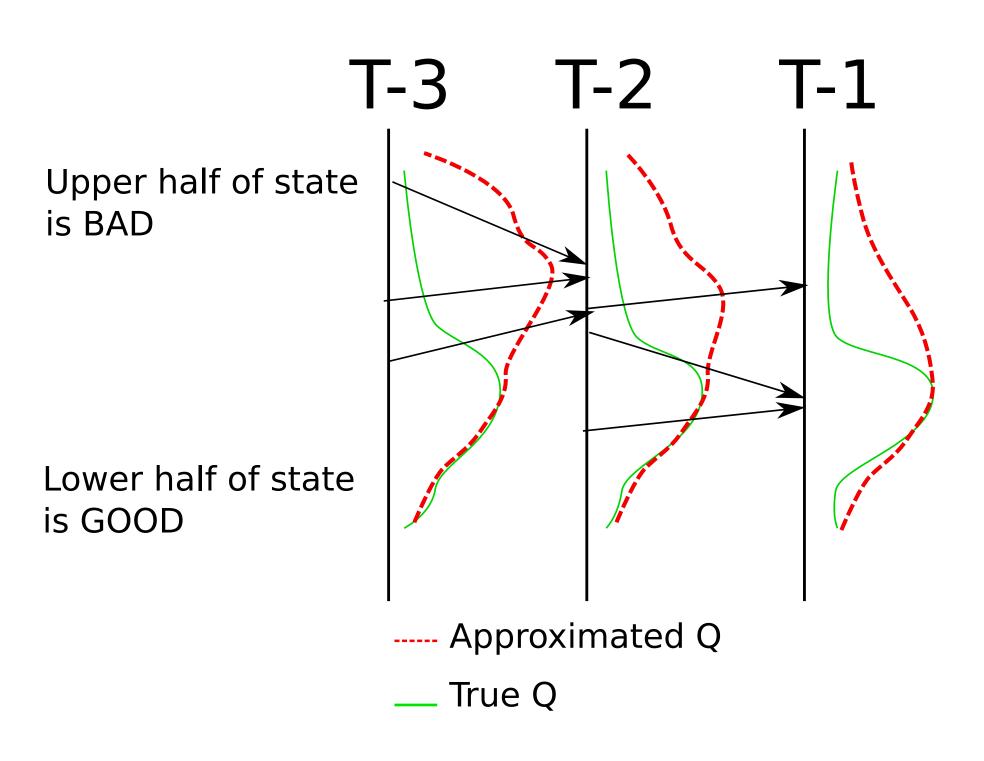
Curses of Function Approximation

Value Iteration:

Bootstrapping



Policy Iteration:
Distribution Shift



The Power of a Policy!

All we need at the end of the day is a good policy.

Black box: Try different policies and pick the best one

Gray box: Be smarter, push probability mass on actions that lead to high rewards

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

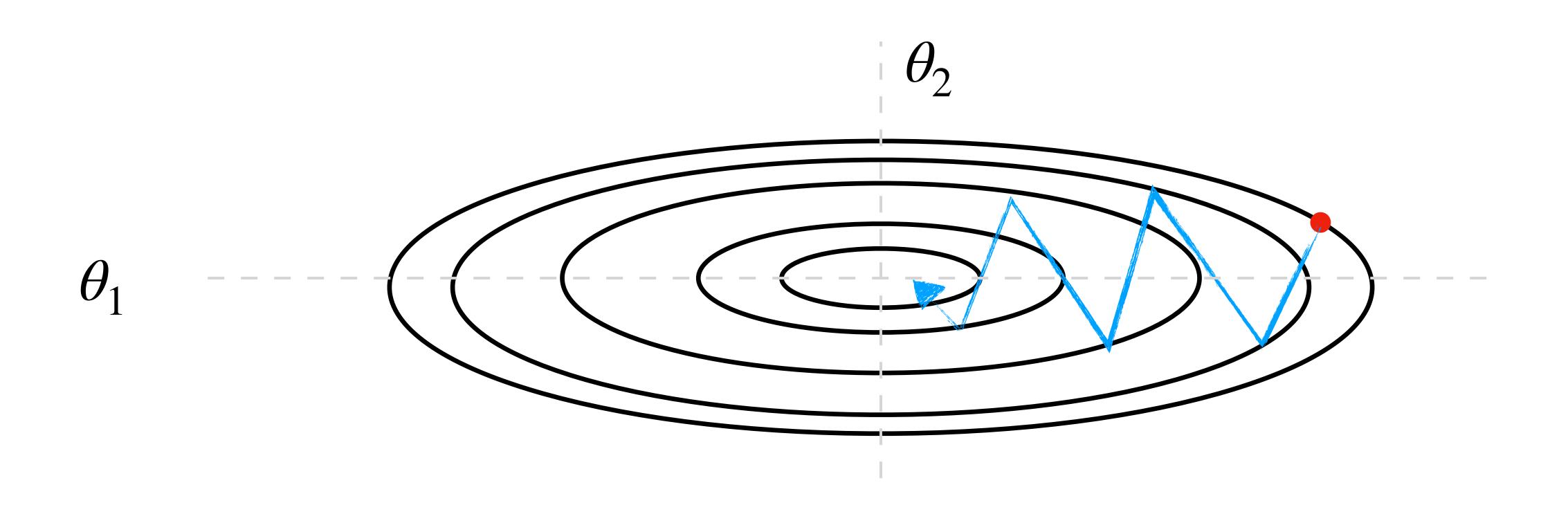
Wait ... how did we get around the distribution shift problems?

The Policy Gradient Theorem

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

Is this gradient the best descent direction?

What would gradient descent do here?



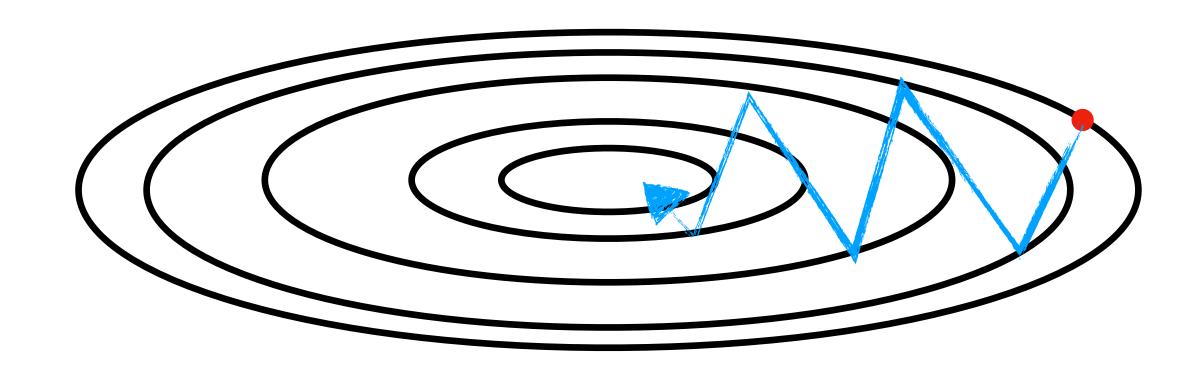
How can we get it to converge better?

Activity!

Think-Pair-Share

Think (30 sec): How can we get gradient descent to converge better in the example below?

Pair: Find a partner



Share (45 sec): Partners exchange ideas

Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

$$\max_{\Delta\theta} J(\theta + \Delta\theta)$$
 s.t. $\|\Delta\theta\| \le \epsilon$ $\Delta\theta = \nabla_{\theta} J(\theta)$

What would update look like for another norm?

$$\max_{\Delta\theta} J(\theta + \Delta\theta) \qquad s.t. \qquad \Delta\theta^{\top} G(\theta) \Delta\theta \leq \epsilon \qquad \longrightarrow \qquad \Delta\theta = \frac{1}{2\lambda} G^{-1}(\theta) \nabla_{\theta} J(\theta)$$

What's a good norm for distributions?

What is a good norm for distributions?

$$\max_{\Delta\theta} J(\theta + \Delta\theta)$$

s.t.
$$KL(P(\theta + \Delta \theta) | P(\theta)) \le \epsilon$$

What is a good norm for distributions?

$$\max_{\Delta\theta} J(\theta + \Delta\theta)$$

$$-\text{s.t. } KL(P(\theta + \Delta \theta) | | P(\theta)) \le \epsilon$$
$$\text{s.t. } \Delta \theta^T G(\theta) \Delta \theta \le \epsilon$$

Fischer Information Matrix

$$G(\theta) = E_{p_{\theta}} \left[\nabla_{\theta} \log(p_{\theta}) \nabla_{\theta} \log(p_{\theta})^{\top} \right]$$

"Natural" Gradient Descent

Start with an arbitrary initial policy π_{θ} while not converged **do**

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{\nabla}_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} | s_{t}^{(i)} \right) \right) R(\xi^{(i)}) \right]$$

$$ilde{G}(heta) = rac{1}{N} \sum_{i=1}^{N} \left[
abla_{ heta} \log \pi_{ heta}(a_i|s_i)
abla_{ heta} \log \pi_{ heta}(a_i|s_i)^{ op}
ight]$$

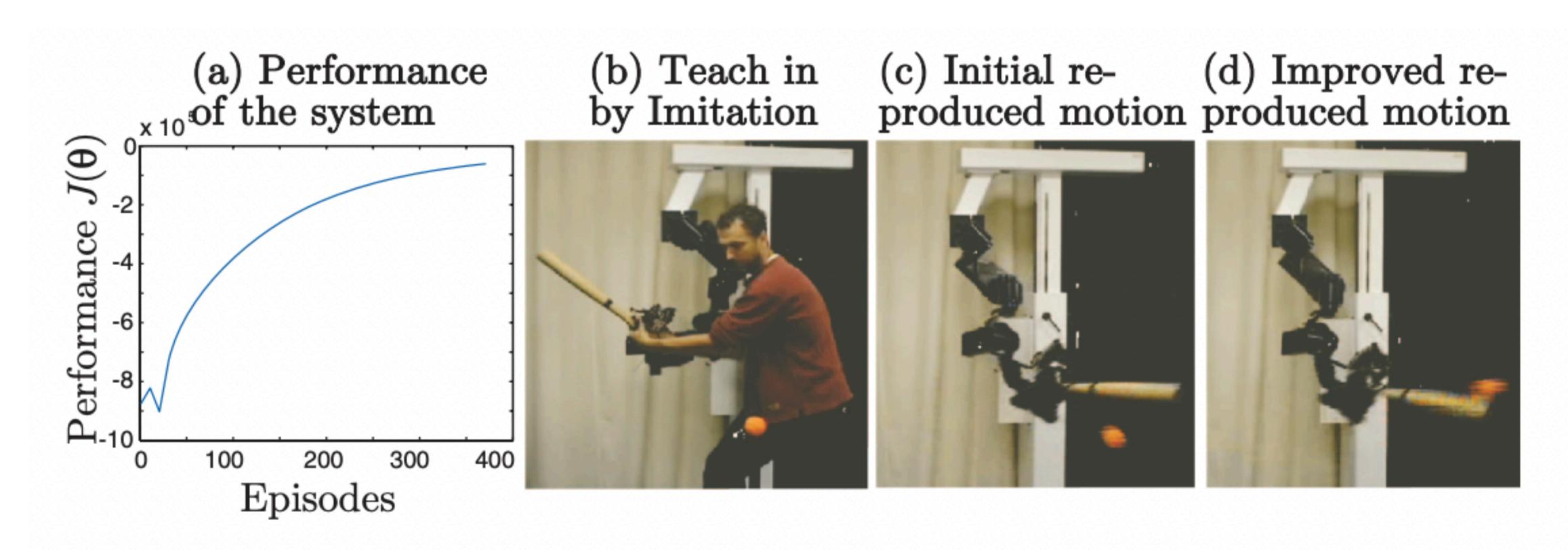
Update parameters $\theta \leftarrow \theta + \alpha \tilde{G}^{-1}(\theta) \tilde{\nabla}_{\theta} J$. return π_{θ}

Modern variants are TRPO, PPO, etc

But does this work on real robots?

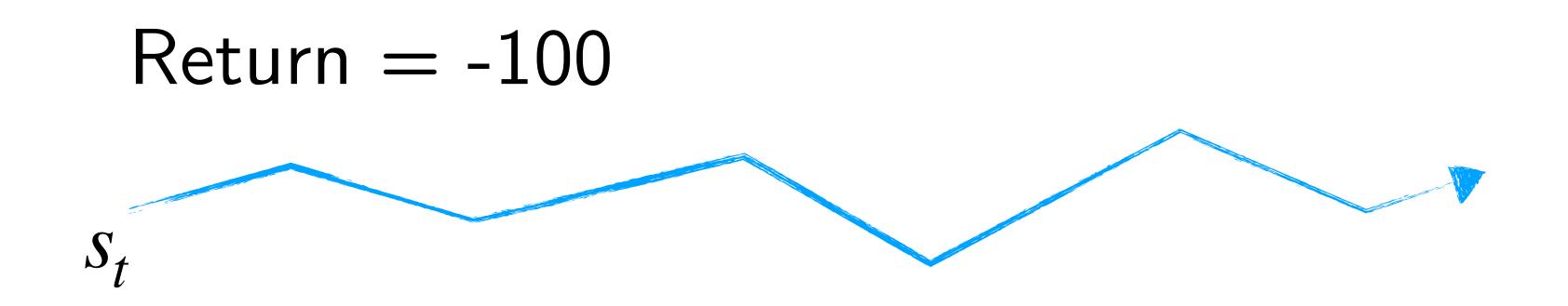
Policy Gradient Methods for Robotics

[Peters and Schaal, 2006]



Initially, we teach a rudimentary stroke by supervised learning as can be seen in Figure 3 (b); however, it fails to reproduce the behavior as shown in (c); subsequently, we improve the performance using the episodic Natural Actor-Critic which yields the performance shown in (a) and the behavior in (d). After approximately 200-300 trials, the ball can be hit properly by the robot.

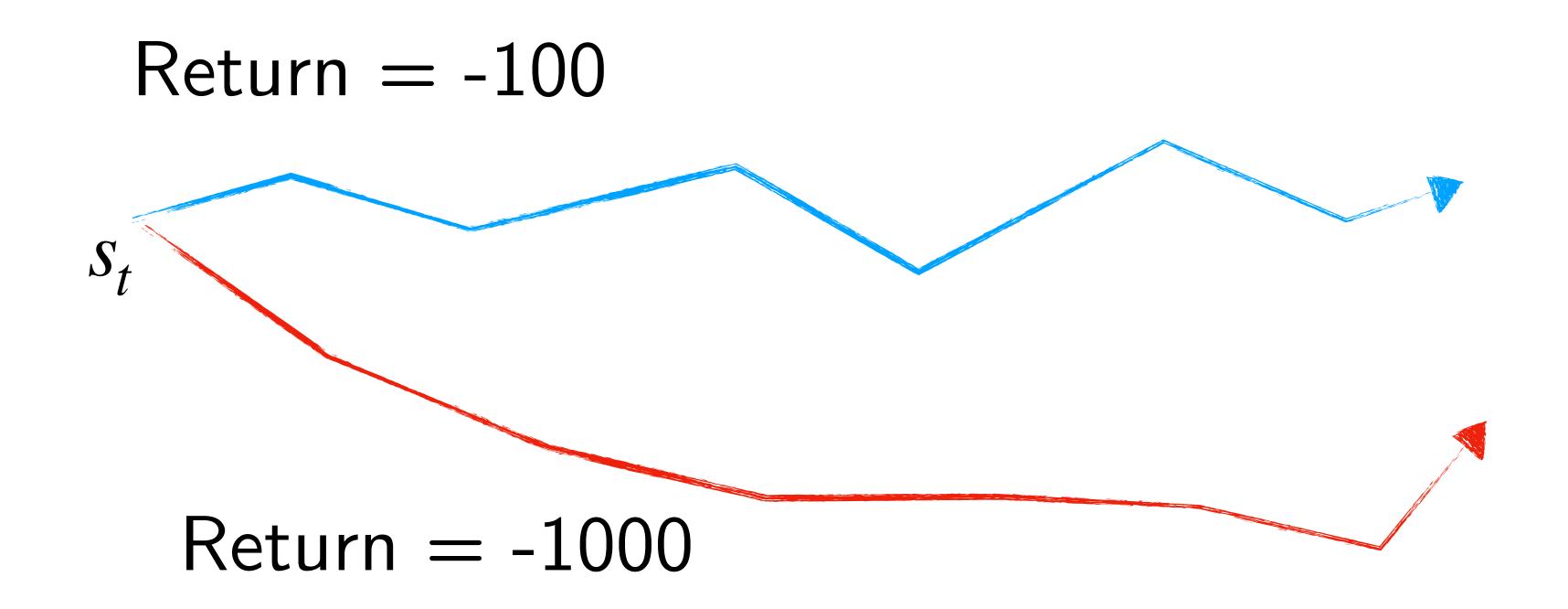
Consider the following single roll-out



What would the gradient at s_t be?

Is this a good roll-out or a bad roll out?

It depends on other trajectories!



How can we incorporate relative information?

Problem: High Variance

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

One of the reasons for the high variance is that the algorithm does not know how well the trajectories perform compared to other trajectories.

Solution: Subtract a baseline!

$$\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} \left[\nabla_{\theta} \log(\pi_{\theta}(a|s)) \left(Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s) \right) \right].$$

Prove this does not change the gradient!

$$= E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} \left[\nabla_{\theta} \log(\pi_{\theta}(a|s) A^{\pi_{\theta}}(s,a)) \right]$$

Recap (again) in 60 seconds!

1. Local Optima: Use Exploration Distribution

2. Distribution Shift: *Natural*Gradient Descent

3. High Variance: Subtract baseline

If we are estimating values ... can we bring back MC and TD?

Monte-Carlo

 $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$

Zero Bias

High Variance

Always convergence

Temporal Difference

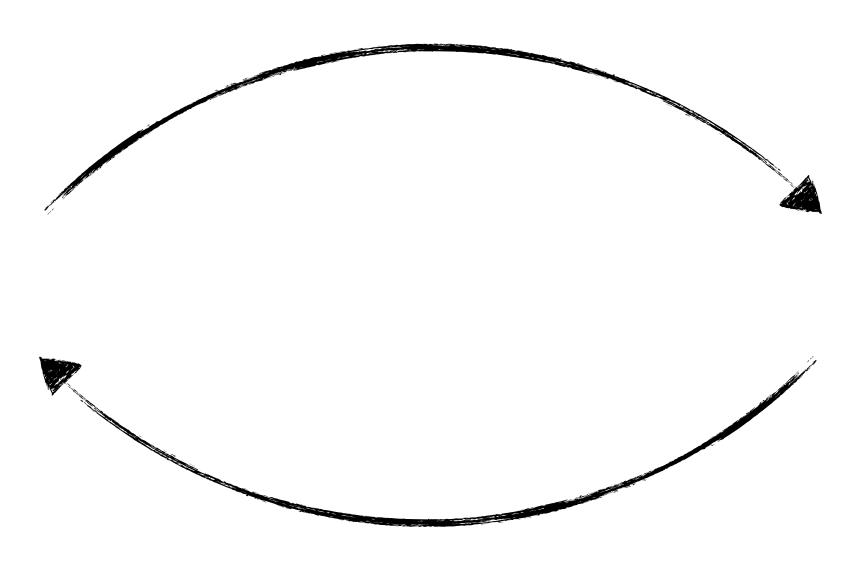
 $V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s))$

Can have bias

Low Variance May not converge if using function approximation

Actor-Critic Algorithms

Actor



Policy improvement of π

Estimates value functions $Q_{\phi}^{\pi}/V_{\phi}^{\pi}/A_{\phi}^{\pi}$

Natural Gradient Descent

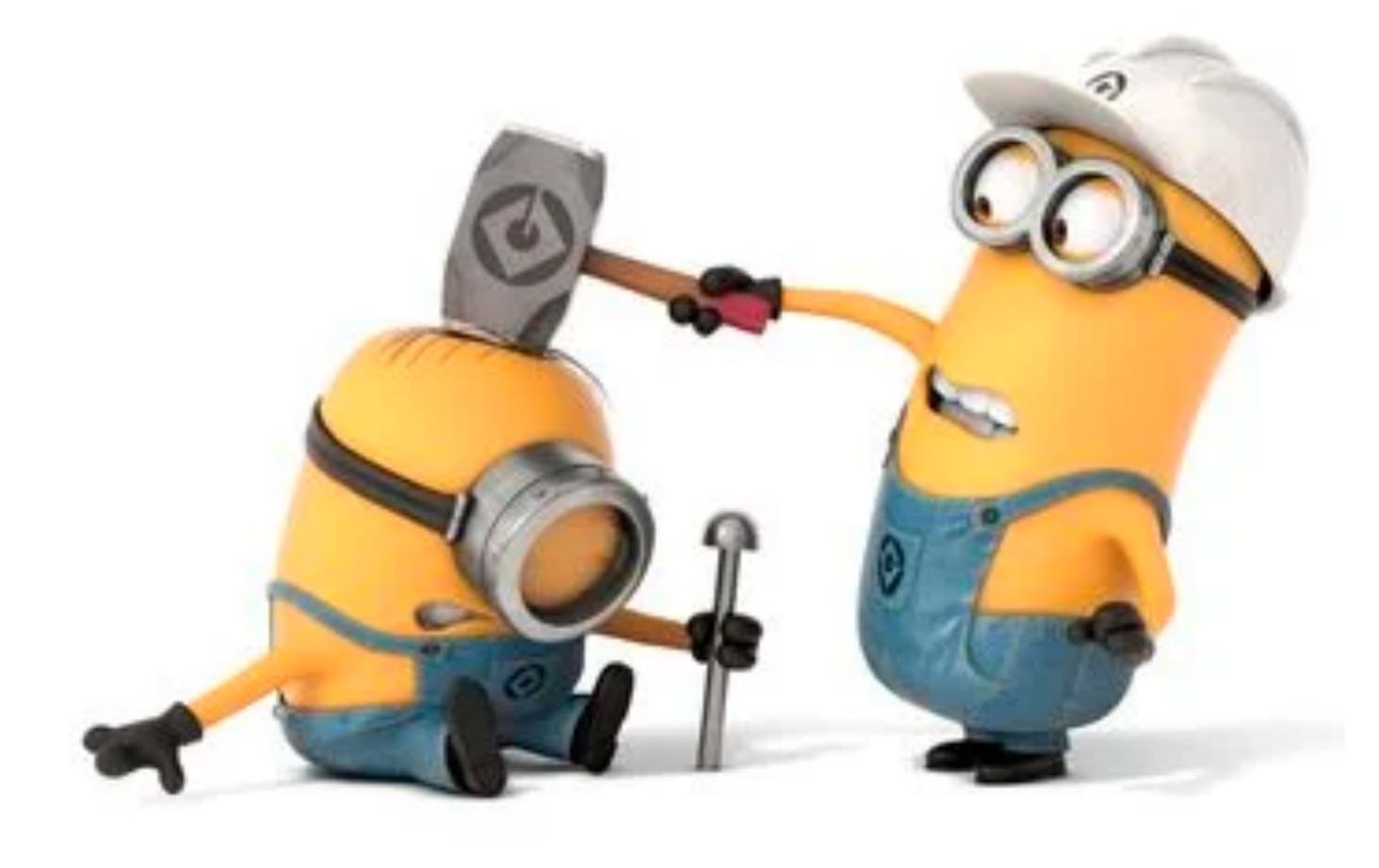
TD, MC

The General Actor Critic Framework

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums (TD, MC) 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Practical Issues and Fixes

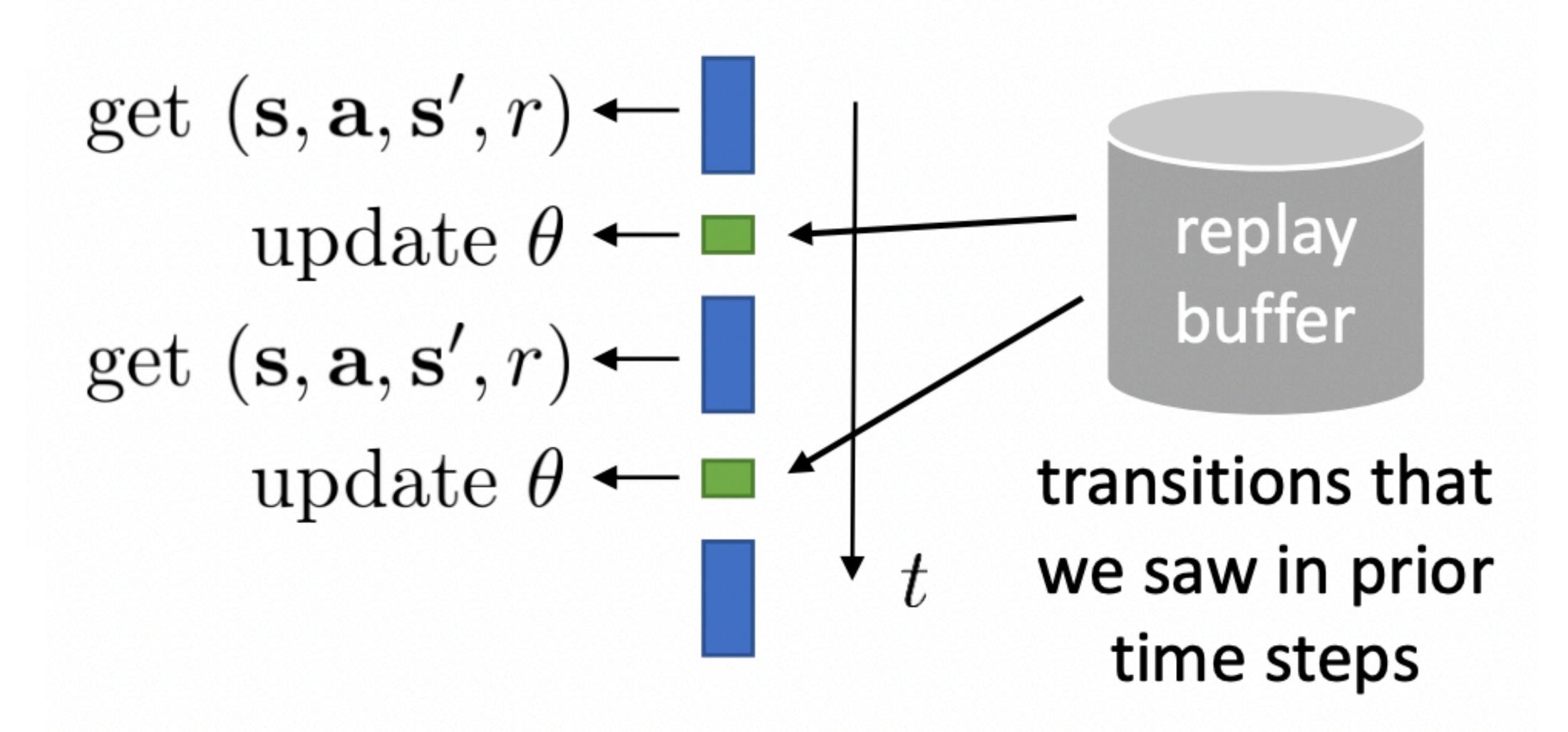


Problem 1: How do we make Actor Critic off-policy?

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

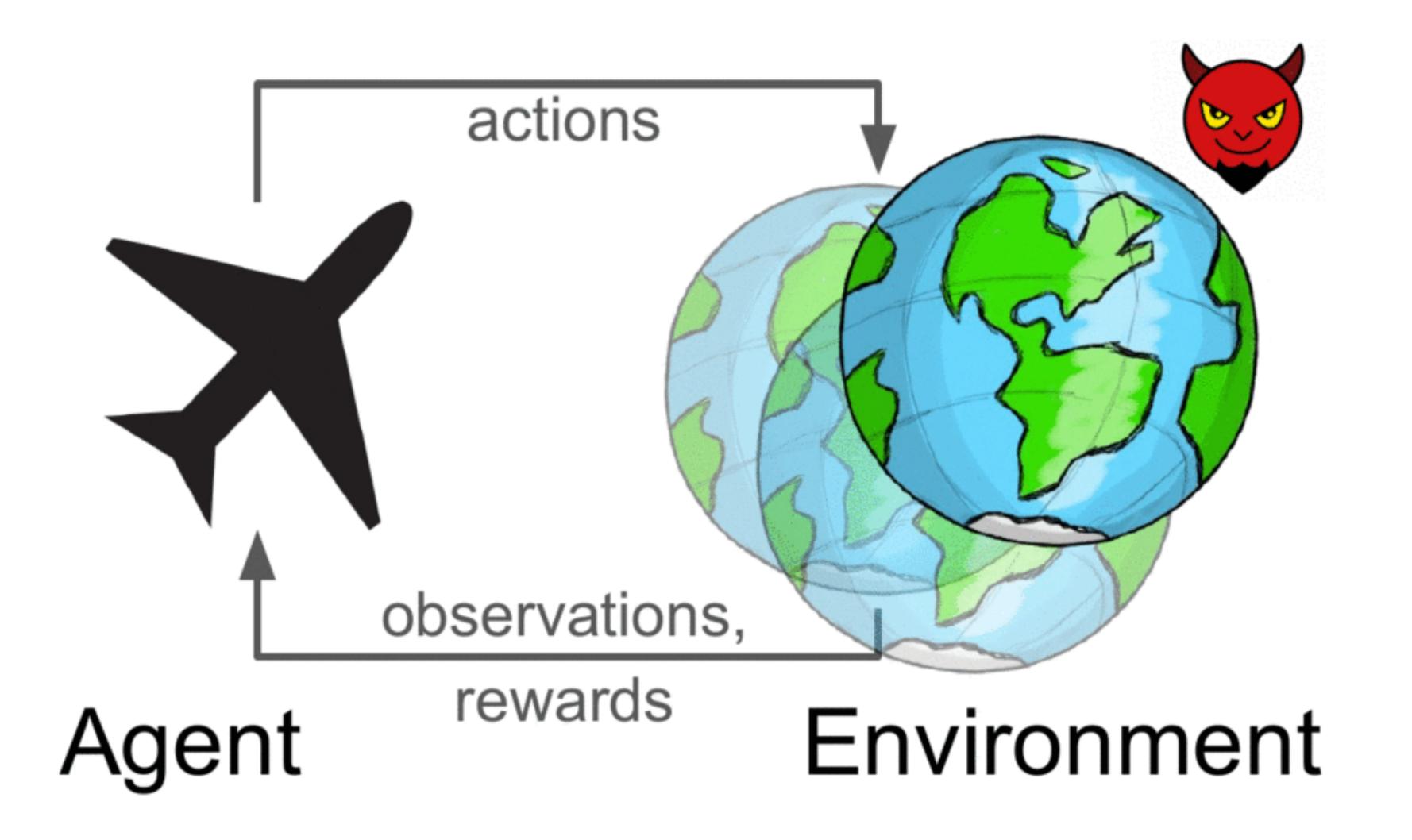
Problem 1: How do we make Actor Critic off-policy?



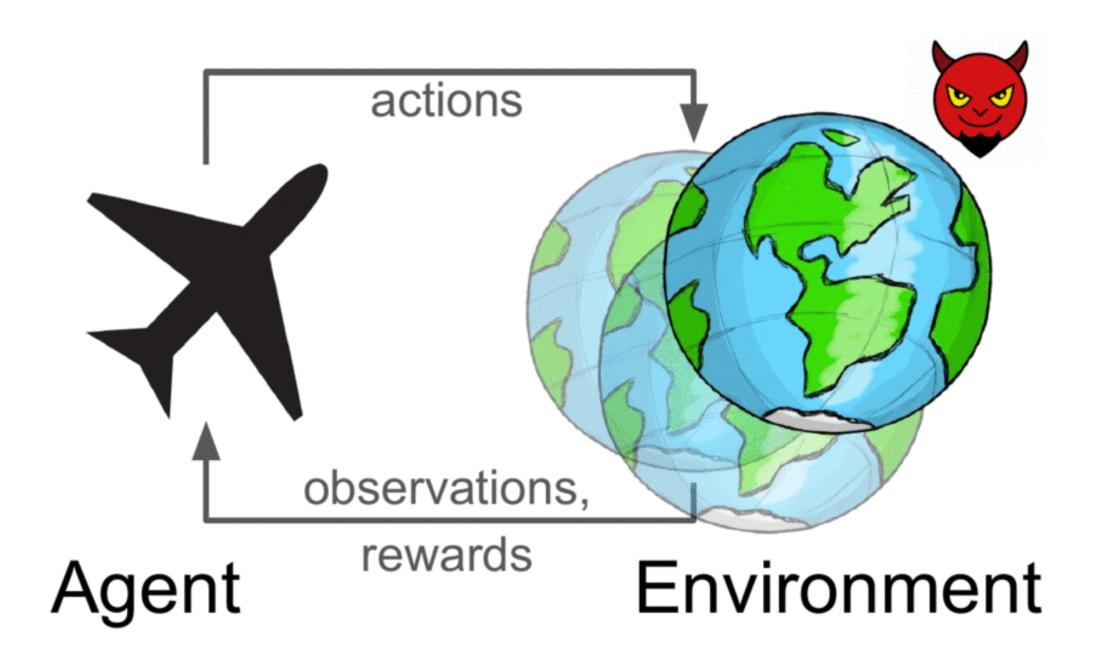
Solution: Carefully assign credit to correct actions!

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Problem 2: How can we be robust to changes in the environment?



Problem 2: How can we be robust to changes in the environment?



$$\max_{\pi} \min_{\tilde{p} \in \tilde{\mathcal{P}}, \tilde{r} \in \tilde{\mathcal{R}}} \mathbb{E}_{\tilde{p}(\mathbf{s_{t+1}}|\mathbf{s_{t}}, \mathbf{a_{t}}), \pi(\mathbf{a_{t}}|\mathbf{s_{t}})} \left[\sum_{t=1}^{T} \tilde{r}(\mathbf{s_{t}}, \mathbf{a_{t}}) \right]$$

Credit: Ben Eyesenbach

Solution: Use Maximum Entropy RL!

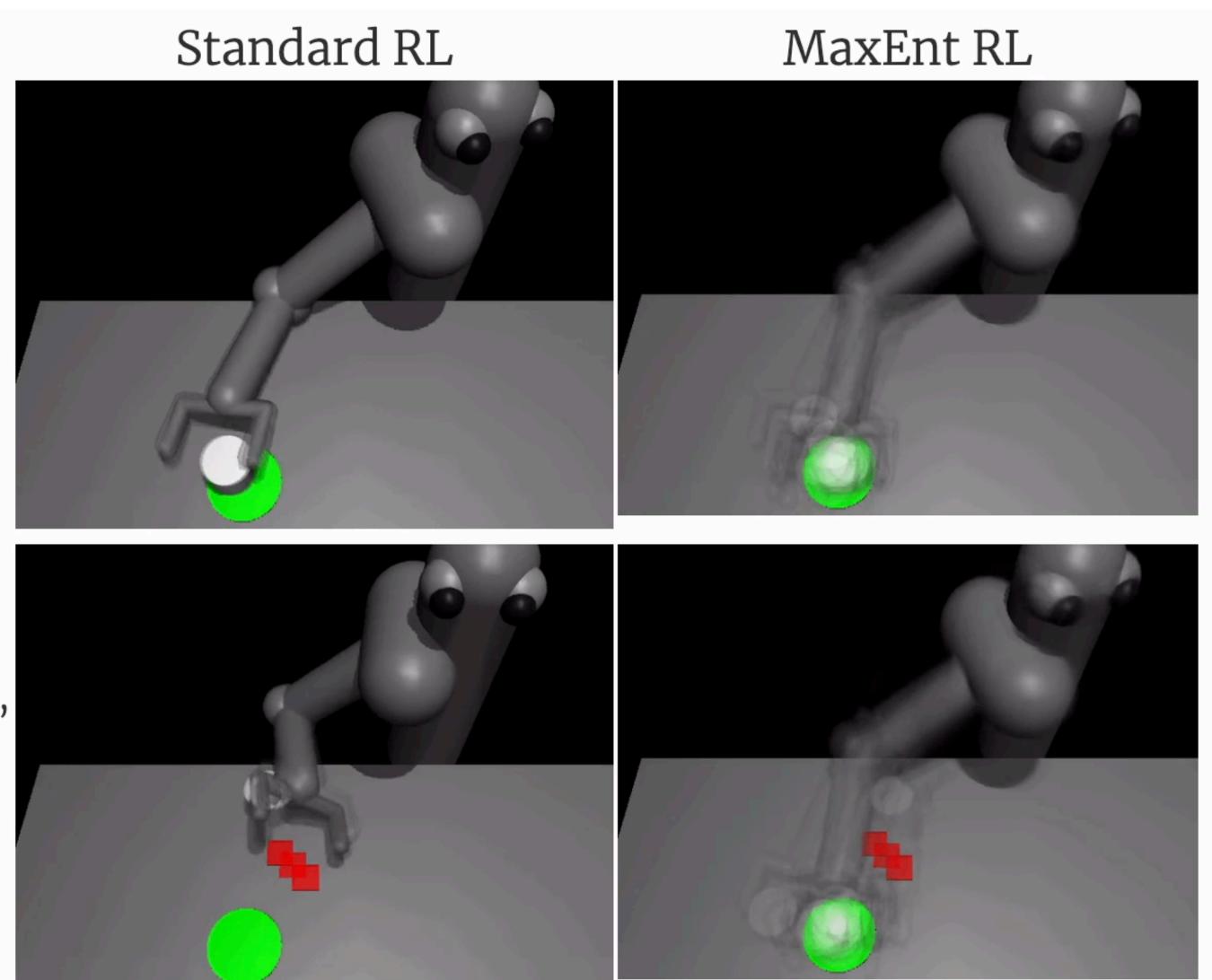
$$J_{\text{MaxEnt}}(\pi; p, r) \triangleq \mathbb{E}_{\mathbf{a_t} \sim \pi(\mathbf{a_t} | \mathbf{s_t}), \mathbf{s_{t+1}} \sim p(\mathbf{s_{t+1}} | \mathbf{s_t}, \mathbf{a_t})} \left[\sum_{t=1}^{T} r(\mathbf{s_t}, \mathbf{a_t}) + \alpha \mathcal{H}_{\pi}[\mathbf{a_t} \mid \mathbf{s_t}] \right]$$

Intuition: There are many policies that can achieve the same cumulative rewards. MaxEntRL keeps alive all of those policies. Learns many different ways to solve the same task.

Solution: Use Maximum Entropy RL!

Trained and evaluated without the obstacle:

Trained without the obstacle, but evaluated with the obstacle:



"Soft" Actor Critic

Actor

$$\pi_{ ext{new}} = \arg\min_{\pi' \in \Pi} D_{ ext{KL}} \left(\pi'(\,\cdot\,|\mathbf{s}_t) \, \middle\| \, \, \frac{\exp\left(Q^{\pi_{ ext{old}}}(\mathbf{s}_t,\,\cdot\,)
ight)}{Z^{\pi_{ ext{old}}}(\mathbf{s}_t)}
ight)$$

$$\mathcal{T}^{\pi}Q(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right],$$

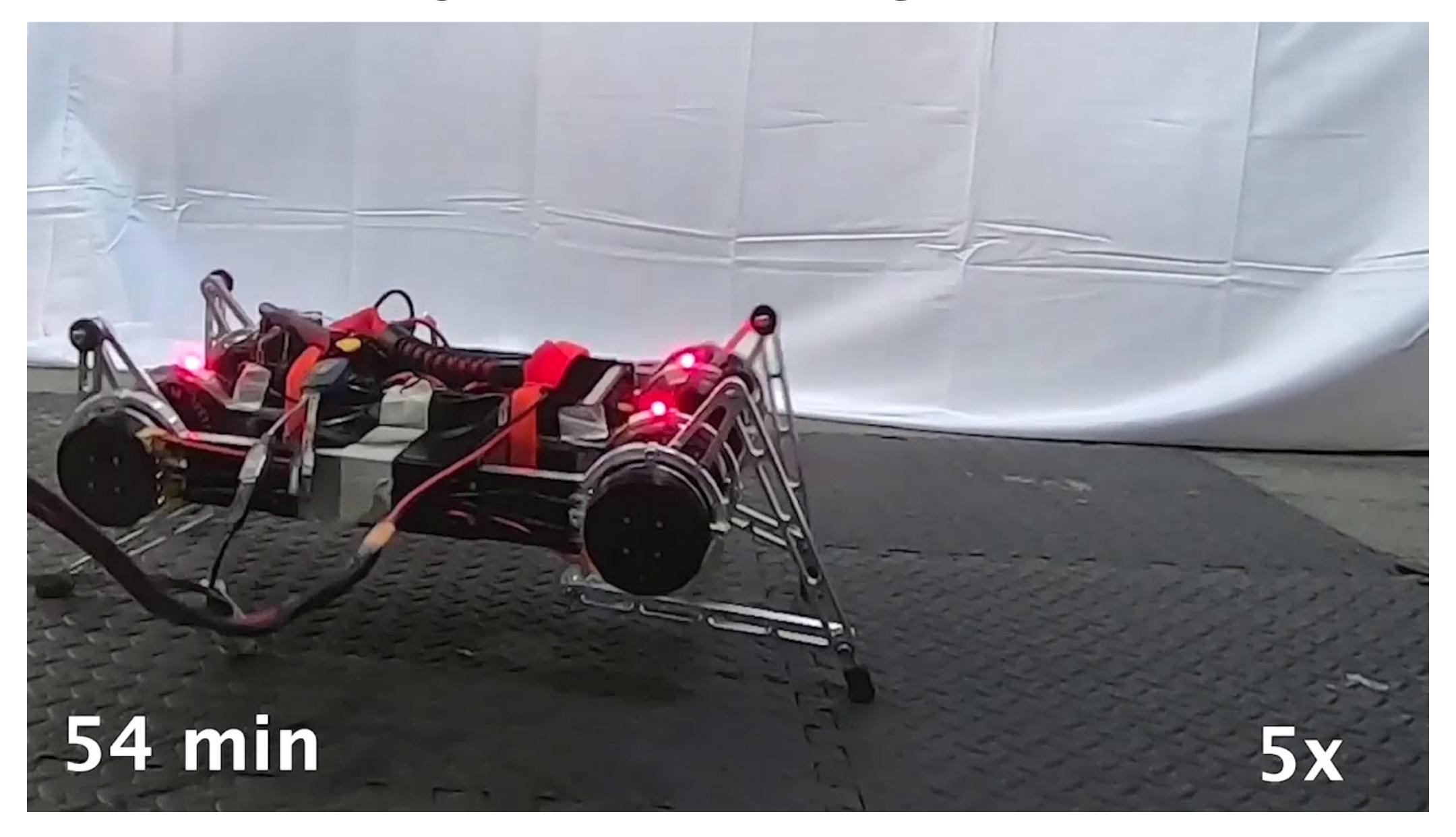
where

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

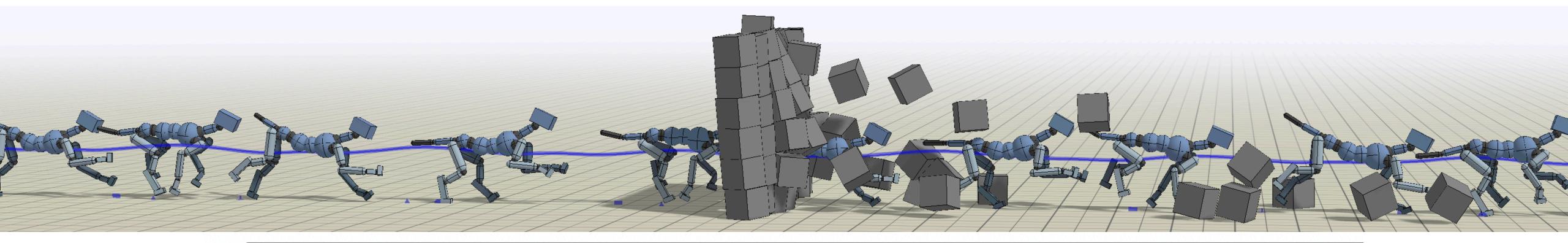
"Soft" Policy Improvement

"Soft" Value Evaluation

"Soft" Actor Critic



From Policy Gradient to Policy Search



Algorithm 1 Advantage-Weighted Regression

```
1: \pi_1 \leftarrow \text{random policy}
```

2:
$$\mathcal{D} \leftarrow \emptyset$$

3: for iteration
$$k = 1, ..., k_{\text{max}}$$
 do

4: add trajectories $\{\tau_i\}$ sampled via π_k to \mathcal{D}

5:
$$V_k^{\mathcal{D}} \leftarrow \arg\min_{V} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left| \left| \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V(\mathbf{s}) \right| \right|^2 \right]$$
 Supervised Learning!

6:
$$\pi_{k+1} \leftarrow \arg \max_{\pi} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\log \pi(\mathbf{a}|\mathbf{s}) \exp \left(\frac{1}{\beta} \left(\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V_k^{\mathcal{D}}(\mathbf{s}) \right) \right) \right]$$
 Supervised Learning!

7: end for

Peng et al, 2019

tl,dr

"Natural" Gradient Descent

Start with an arbitrary initial policy π_{θ} while not converged do

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{
abla}_{ heta} J = rac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta} \left(a_{t}^{(i)} | s_{t}^{(i)}
ight)
ight) R(\xi^{(i)})
ight]$$

$$ilde{G}(heta) = rac{1}{N} \sum_{i=1}^{N} \left[
abla_{ heta} \log \pi_{ heta}(a_i|s_i)
abla_{ heta} \log \pi_{ heta}(a_i|s_i)^{ op}
ight]$$

Update parameters $\theta \leftarrow \theta + \alpha \tilde{G}^{-1}(\theta) \tilde{\nabla}_{\theta} J$. return π_{θ}

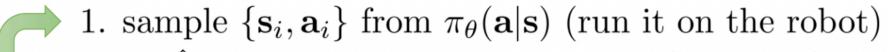
Modern variants are TRPO, PPO, etc

Recap (again) in 60 seconds!

- 1. Local Optima: Use Exploration Distribution
- 2. Distribution Shift: Natural Gradient Descent
- High Variance: Subtract baseline

The General Actor Critic Framework

batch actor-critic algorithm:



2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums (TD, MC)

3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$

4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$

5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Credit: Sergey Levine