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Recap in 

60 seconds!



Recap: Two Ingredients of RL
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Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3



Curses of Function Approximation
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Value Iteration: 

Bootstrapping

Policy Iteration: 

Distribution Shift
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)
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Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201
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Figure 8.1.5: Training with
neural network.
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Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line



The Power of a Policy!
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All we need at the end of the day is a good policy.

Black box: Try different policies and pick the best one

Gray box: Be smarter, push probability mass on actions

that lead to high rewards  



Wait … how did we get 
around the distribution 

shift problems?
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The Policy Gradient Theorem
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Is this gradient the best descent direction?



What would gradient descent do here?
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How can we get it to converge better?

θ1

θ2



Activity!



Think-Pair-Share 
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Think (30 sec): How can we get gradient descent to converge better 
in the example below?

Pair: Find a partner 

Share (45 sec): Partners exchange ideas 



Gradient Descent as Steepest Descent
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Gradient Descent is simply Steepest Descent with L2 norm

What would update look like for another norm?

Δθ = ∇θJ(θ)

Δθ =
1
2λ

G−1(θ)∇θJ(θ)



What’s a good norm for 
distributions?
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What is a good norm for distributions?
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max
Δθ

J(θ + Δθ)

s.t. KL(P(θ + Δθ) | |P(θ)) ≤ ϵ



What is a good norm for distributions?
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max
Δθ

J(θ + Δθ)

s.t. KL(P(θ + Δθ) | |P(θ)) ≤ ϵ
s.t. ΔθTG(θ)Δθ ≤ ϵ

Fischer Information Matrix



“Natural” Gradient Descent
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Modern variants are TRPO, PPO, etc



But does this work on 
real robots?
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Policy Gradient Methods for Robotics
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[Peters and Schaal, 2006]

Initially, we teach a rudimentary stroke by supervised learning as can be seen in Figure 3 (b); however, it fails to reproduce the behavior as 
shown in (c); subsequently, we improve the performance using the episodic Natural Actor-Critic which yields the performance shown in (a) 

and the behavior in (d). After approximately 200-300 trials, the ball can be hit properly by the robot.
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Consider the following single roll-out
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Return = -100

What would the gradient at  be? st

st

Is this a good roll-out or a bad roll out?



It depends on other trajectories!
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Return = -100

st

Return = -1000

How can we incorporate relative information? 



Problem: High Variance
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One of the reasons for the high variance is that the algorithm does not 
know how well the trajectories perform compared to other trajectories.



Solution: Subtract a baseline!
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Prove this does not change the gradient!
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Recap (again) in 60 seconds!

1. Local Optima: Use Exploration 
Distribution 

2. Distribution Shift: Natural 
Gradient Descent 

3. High Variance: Subtract 
baseline



If we are estimating 
values … can we bring 

back MC and TD?
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Actor-Critic Algorithms
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Actor Critic

Policy improvement

of  π

Estimates value

functions  Qπ

ϕ /Vπ
ϕ /Aπ

ϕ

Natural Gradient Descent TD, MC



The General Actor Critic Framework
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(TD, MC)

Credit: Sergey Levine
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Practical

Issues and


Fixes



Problem 1: How do we make Actor Critic off-policy?

28Credit: Sergey Levine



Problem 1: How do we make Actor Critic off-policy?

29Credit: Sergey Levine



Solution: Carefully assign credit to correct actions!
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Problem 2: How can we be robust to changes in the 
environment?

31Credit: Ben Eyesenbach



Problem 2: How can we be robust to changes in the 
environment?

32Credit: Ben Eyesenbach



Solution: Use Maximum Entropy RL!
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Intuition: There are many policies that can achieve the same 
cumulative rewards. MaxEntRL keeps alive all of those policies. 


Learns many different ways to solve the same task.
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Solution: Use Maximum Entropy RL!



“Soft” Actor Critic
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Actor Critic

Haarnoja 2018

“Soft” Value Evaluation“Soft” Policy Improvement
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“Soft” Actor Critic
Haarnoja 2018

https://www.youtube.com/watch?v=FmMPHL3TcrE


From Policy Gradient to Policy Search 
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Peng et al, 2019

Supervised

Learning!

Supervised

Learning!
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tl;dr


