CS 6756:

Learning for Robot Decision Making

Sanjiban Choudhury

Exciting time for Artificial Intelligence

Deep Q Networks Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou Daan Wierstra Martin Riedmiller

DeepMind Technologies

2013

2016

Today

What about robotics?

Robotics 1.0: Building things brick by brick

Robotics 2.0: Scale and improve with data

Formulate as a learning problem

ML pipelines

Robotics 2.0: Scale and improve with data

Self-driving led the way!

Sanjiban
Choudhury
He / Him

PhD

Postdoc

Startup (that went public!)

How should robots learn to make good decisions?

And traveling with my partner

How should robots learn to make good decisions?

WHY this course?

Formulate as a Markov Decision Problem (MDP)

Solve MDPs using an all-purpose toolkit

(Imitation/Reinforcement learning, Model based/free)

Deploy learners in real-world

(Safety, distribution shift, value alignment)

Belonging

How should robots learn to make good decisions?

Self-driving

Activity!

Activity: What is "good" behavior in a left turn?

Activity: What is "good" behavior in a left turn?

How should robots learn to make good decisions?

Three fundamental questions

Values

Models

How do decisions affect states?

Values

Optimization

How do we efficiently find the optimal sequence of decisions?

Models

How do decisions affect states?

Values

Optimization

How do we efficiently find •the optimal sequence of decisions?

Models

How do decisions affect states?

Values

5 Levels

of

Robot Learning

Values

Question:

How do we program in these values?

Why don't we simply imitate good human driving?

SUPERVISED LEARNING

Get Expert Data

#3 Deploy!

Output (a)

Models

How do decisions affect states?

Activity!

Think-Pair-Share

Think (30 sec): How do we train a model of how pedestrians move? What are some of the challenges?

What makes for a good model?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

"When solving a problem of interest, do not solve a more general problem as an intermediate step."

Vladmir Vapnik

The Nature of Statistical Learning

Lesson #2

Models are useful fictions

Optimization

How do we efficiently find the optimal sequence of decisions?

3 discrete modes of space-time paths

Use learning to recall likely discrete modes

Use optimization to find the precise trajectory

Lesson #3

ML for recall

+

Optimization for precision

Optimization

How do we efficiently find the optimal sequence of decisions?

Models

How do decisions affect states?

Values

What are good / bad states?

The journey ahead!

Logistics

Dhruv Sreenivas

TA Intro!

Second-year CS MS student, advised by Wen Sun.

Generally interested in reinforcement learning, with a focus in

- Imitation learning and offline reinforcement learning, specifically in continuous control
- Deep generative models and connections to model-based
 RL

Would love to discuss research directions with anyone interested in said topics!

Logistics

Website: https://www.cs.cornell.edu/courses/cs6756/2022fa/

Lectures

Assigned pre-reading (focused), lectures for interaction

Assignments [3 assignments * 15% grade = 45%]

Python. HW2, HW3 involve PyTorch. Maybe a little theory. Done individually!

Project [45%]

Final project. Pick a research problem, apply techniques from class. Be creative! Groups of 2. Extended abstract, final presentation, final paper. Best paper award!

Participation [10%]

Interaction during lectures and/or Online discussions. Help everyone engage!

Course tools

<u>Course Website:</u> The ONE true hub for all information. Please check this frequently and surface any errors or sources of confusion.

Ed: The discussion forum where all announcements are sent, where all student-TA and student-student communications occur.

<u>Gradescope:</u> Where all assignments and projects are submitted.

Canvas: Limited to no use.

Books and other resources

Work-in-progress book

Modern Adaptive Control and Reinforcement Learning, James A. Bagnell, Byron Boots, and Sanjiban Choudhury

(Please feel free to send me feedback)

For other resources, keep checking website

Assignment 0

Simple survey

- What are you hoping to get out of this class?
- Familiarity with concepts
- Etc

Released soon (today..), due end of the week

Mandatory!

Questions?

Things that will happen soon:

Waitlist moved over to enrolled

Office hours finalized

tl.dr

Optimization

How do we efficiently find the optimal sequence of decisions?

Models

How do decisions affect states?

Values

What are good / bad states?

