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Can we just focus on finding a good policy?
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Learn a mapping from Roll-out policies in the real-world
states to actions to estimate value



We assumed black-box policies ...
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Black-box vs White-box vs Gray-box
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Black-box vs White-box vs Gray-box
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How can we take
gradients it we don't
know the dynamics?

- : 3
g : ‘\\\'
»
' - 1/
¥ Ik
. ,‘[ ,;
= é-..:;.‘.__“ —_— &W
= —— A



The Likelihood
Ratio Trick!




REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 7ty to collect {¢ (7) fi |
Compute estimated gradient

N 1 N T—1 ; ; ;
Vol== Y || ) Vglogmy (at()|5§)) R(¢W)
N = | =

~ Update parameters 6 < 0 + « Vo]
return 7ty




Tetris Policy

exp (GTf(s, a))
yexp (0'f(s,a'))

a

7tp(als) =

f;(s,a) = # number ot holes
f-(s,a) = # max height




Chugging through the gradient ..

Vo log mp(als) = Vg |0 f(s,a) —logZexp (OTf(s, a’))]

oy Do S) o2 (07 f ()
I Yo exp (07 f(s,a))

— f(s,a) — Z, f(S/a,) 7ty (a'|s)
= f(s,a) = Exy(as) [f(s,4)




Understanding the REINFORCE update

LET 7£1 [S‘)a) = #}')b(ﬂ-&.
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REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 7ty to collect {¢ (7) fi |
Compute estimated gradient

N 1 N T—1 ; ; ;
Vol== Y || ) Vglogmy (at()|5§)) R(¢W)
N = | =

~ Update parameters 6 < 0 + « Vo]
return 7ty
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Causality: Can actions affect the past?

Time t-1 t t+l t+2




The Policy Gradient Theorem

I T—1

T—1 ]
Vol = Epgo) Z (Ve log 7tg(at|st) (Z r(sy, ap) Z (s, ay )))

L t=0 tl:t

[ T—1 -

= Epgo) | (Ve log 7tg(at|st) Zj r(stf,atr)) ,
t' =t 1

| +=0

Vol = Epze) [ ) Vg log mg(az|st) Q”f’(St,at)]
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Life is good!

This solves
everything ...




The Three Nightmares of Policg Optimization
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Nightmare I

| ocal OPtima







Consider the following MDP

aYa
% 1

n states

Let's say | picked actions uniformly.
How long would it take me to get to the state with reward=17

From Kakade and Langford



Think-Pair-Share

Think (30 sec): How long would it take me to get to the state with
reward = 1?7 What does this imply it | run policy gradients?

Pair: Find a partner

TAVE

% 1

Share (45 sec): Partners exchange — 2 staics —
ideas



Problem: Lack of exploration
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Problem: Lack of exploration
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Problem: Lack of exploration
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Problem: Lack of exploration

O?\i\ml ?o\iug
| X;%\OO
GEEONNCY
% it L =
A’i—raa WANL  RouwsS oF  PoLiCy )TERA T8/
| 2-+100
& & &)
1O
—

C

l

25



Solution: Demand improvement from all states
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Key ldea: Use a good restart distribution

Choose a restart distribution u(s) instead of start state distribution

Try your best to "cover states the expert will visit

7z->I<
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Suffer at most a penalty of ||
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Nightmare 2

Distribution Shitt




Approximate Policy lteration

Estimate advantage ~ Greedily improve policy

A”(s,a) ' = argmin A”(s, 7'(s))
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The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift

LY
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How does distribution shift manifest?

The true performance difference

, 1
V(s) = VA(5) = T Bt (s ()

(New) (Old)

What our estimator currently approximates

1
s tﬂS,ﬂ'/S
[, (s, 7(5))
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Be stable

Slowly change
policies

Keep d.. close to d’,
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ldea 1: Conservative Policy Iteration (CPI)

Approximately Optimal Approximate Reinforcemen t Learning
7T, :l Q)T+ AT
|
|

I/'eed Sham Kakade SHAM@GATSBY.UCL.AC.UK
Gatsby Computational Neuroscience Unit, UCL, London WCIN 3AR, UK
John Langford JCLQCS.CMU.EDU
Computer Science Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pitts

Mix in old policy and greedy policy

Can prove that performance difference is bounded by

14
1=y

How much distribution
shift hurts!

VZ(s) — V*(s) > aA — 2a?

greedy

How much greedy policy
improves based on
estimate
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ldea 2: Update distributions slowly

CPI requires keeping around all the policies you have seen thus far,
which is not scalable ...

Instead can we change policies slowly?

Does this simply mean do gradient descent with a small step size?
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What happens if we have correlated features?

Parameterization 1: f{ = # of Holes after the placement, f, = Height after
the placement. We use 6 to denote the parameter for this parameterization.

Parameterization 2: g1 = ... = g100 = # of Holes after the placement,
g101 = Height after the placement. We use ¢ to denote the parameter for this
parameterization

Then, for Parameterization 1, we have,
0' f(x,a) = 6; x # of Holes(x,a) + 6, x Height(x, a).

While for Parameterization 2, we have,

100
cpTg — (Z 4),-) x # of Holes(x,a) + ¢101 X Height(x, a).
1=1
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Think-Pair-Share

Think (30 sec): What would happen if we ran policy gradient with
Feature Set 1 vs Feature Set 2?7 How can we fix it?

Then, for Parameterization 1, we have,

Pair: Find a ors rtner ' f(x,a) = 61 x # of Holes(x,a) + 6, x Height(x, a).

While for Parameterization 2, we have,

100
([)Tg — (Z cp,-) x # of Holes(x, a) + ¢191 X Height(x, a).
1=1

Share (45 sec): Partners exchange ideas
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Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

maxpgJ (0 + AH) s.t. |AB|| <€

An alternative norm: KL Divergence! Gives rise to Fisher Information
Matrix

G(0) = Ep, | Vglog(pe) Vi 108(P9)T_ AD = — GL(0) Ty,
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Natural Gradient Descent

Estimate Fisher Information Matrix

_ 1 IN - -
G(0) = N Y |Velogmy(ai|s;)Velogme(ails;) '
i—1 * :

Parameter update:
A0 = — G 1(0) V.

Modern variants known as TRPO, PPO
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htmare 5:

Variance
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What happens when Q values for all rollouts are similar?

Vg] E §|9 Z V@ lOg ng(at|st) Qne (St, at)

Recall that one of the reasons for the high variance is that the
algorithm does not know how well the trajectories perform compared
to other trajectories. Therefore, by introducing a baseline for the total
reward (or reward to go), we can update the policy based on how well

the policy performs compared to a baseline
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Solution: Subtract a baselinel

Vo] = Egmg (s)Ey(als) | Vo log(mg(als) (Q™ (s,a) — V™ (s))]

We can prove that this does not change the gradient

But turns Q values into advantage (which is lower magnitude)
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The Policy Gradient Theorem

= (-1 T-1
Vg] = EP(C|9) (V@ log ne(at|st) r(st,,at/) + Z r(st/,at/)))]
| t=0 t'=0 t =t
[ T—1 T-1
= Eple) | L (Ve log 7t (a¢|st) r(St',at')) ,
t=0 t =t

[ T—1

VQ] = EP(§|9) Z VQ lOg ne(at|st) ng (St, at)
=0 .

1. Local Optima: Use Exploration
Distribution

2. Distribution Shitt: Natural Gradient
Descent

3. High Variance: Subtract baseline
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