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Can we just focus on finding a good policy?
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πθ : st → at

Learn a mapping from 

states to actions

Roll-out policies in the real-world

to estimate value 



We assumed black-box policies …
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Have we redacted too much?



Black-box vs White-box vs Gray-box
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Black-box vs White-box vs Gray-box
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How can we take 
gradients if we don’t 
know the dynamics?

7



The Likelihood  
Ratio Trick!



REINFORCE
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Tetris Policy

f1(s, a) = # number of holes

f2(s, a) = # max height



Chugging through the gradient ..
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Understanding the REINFORCE update
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REINFORCE
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Causality: Can actions affect the past?
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The Policy Gradient Theorem
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Life is good! 


This solves 
everything …
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The Three Nightmares of Policy Optimization
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Nightmare 1:


Local Optima



Activity!



Consider the following MDP

20From Kakade and Langford

Let’s say I picked actions uniformly. 

How long would it take me to get to the state with reward=1?



Think-Pair-Share 
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Think (30 sec): How long would it take me to get to the state with 
reward = 1? What does this imply if I run policy gradients? 

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 



Problem: Lack of exploration
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Problem: Lack of exploration

23



Problem: Lack of exploration
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Problem: Lack of exploration
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Solution: Demand improvement from all states
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Key Idea: Use a good “restart” distribution
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Try your best to “cover” states the expert will visit

Suffer at most a penalty of ∥
dπ*

μ
∥∞

Choose a restart distribution  instead of start state distributionμ(s)
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Nightmare 2:


Distribution Shift



Approximate Policy Iteration

29

Estimate advantage

 Aπ(s, a)

Greedily improve policy

π′￼ = arg min

π′￼

Aπ(s, π′￼(s))



The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift
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The problem of distribution shift
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How does distribution shift manifest?
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Vπ′￼(s) − Vπ(s) =
1

1 − γ
𝔼s∼dt

π′￼

Aπ(s, π′￼(s))

The true performance difference

(New) (Old)

What our estimator currently approximates

1
1 − γ

𝔼s∼dt
π
Aπ(s, π′￼(s))
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Be stable


Slowly change 
policies

Keep   close to dt
π dt

π′￼



Idea 1: Conservative Policy Iteration (CPI)
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π′￼ = (1 − α)π + απgreedy

Mix in old policy and greedy policy

Can prove that performance difference is bounded by

Vπ′￼(s) − Vπ(s) ≥ αAgreedy − 2α2 γ
1 − γ

How much greedy policy 
improves based on 

estimate

How much distribution 
shift hurts!



Idea 2: Update distributions slowly
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CPI requires keeping around all the policies you have seen thus far,

which is not scalable …

Instead can we change policies slowly? 

Does this simply mean do gradient descent with a small step size?
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Nightmare 2:


Distribution Shift

Correlated Features



Activity!



What happens if we have correlated features?
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Think-Pair-Share 
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Think (30 sec): What would happen if we ran policy gradient with 
Feature Set 1 vs Feature Set 2? How can we fix it?

Pair: Find a partner 

Share (45 sec): Partners exchange ideas 



Gradient Descent as Steepest Descent
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Gradient Descent is simply Steepest Descent with L2 norm

An alternative norm: KL Divergence! Gives rise to Fisher Information 
Matrix



Natural Gradient Descent
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Estimate Fisher Information Matrix 

Parameter update:

Modern variants known as TRPO, PPO
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Nightmare 3:


Variance



What happens when Q values for all rollouts are similar?
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Recall that one of the reasons for the high variance is that the 
algorithm does not know how well the trajectories perform compared 
to other trajectories. Therefore, by introducing a baseline for the total 
reward (or reward to go), we can update the policy based on how well 

the policy performs compared to a baseline 



Solution: Subtract a baseline!
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We can prove that this does not change the gradient

But turns Q values into advantage (which is lower magnitude)
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tl;dr

1. Local Optima: Use Exploration 
Distribution


2. Distribution Shift: Natural Gradient 
Descent


3. High Variance: Subtract baseline


