Nightmares of Policy Optimization

Sanjiban Choudhury

Can we just focus on finding a good policy?

Learn a mapping from states to actions

Roll-out policies in the real-world to estimate value

We assumed black-box policies ...

Black-box vs White-box vs Gray-box

$$\begin{array}{c|c}
\hline
\text{Black Box} \\
\hline
\text{So} & \hline
\hline
\\
\hline
\text{So} & \hline
\end{array}$$

$$\begin{array}{c}
\hline
\text{White Box} \\
\hline
\text{So} & \hline
\end{array}$$

$$\begin{array}{c}
\hline
\text{To} & \hline
\end{array}$$

$$\begin{array}{c}
\hline
\text{To} & \rightarrow \begin{bmatrix}
f(\cdot) \\
\hline
\end{array}$$

$$\begin{array}{c}
\hline
\text{To}
\end{array}$$

Black-box vs White-box vs Gray-box

How can we take gradients if we don't know the dynamics?

The Likelihood Ratio Trick!

REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy π_{θ} while not converged do

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{\nabla}_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} | s_{t}^{(i)} \right) \right) R(\xi^{(i)}) \right]$$

Update parameters $\theta \leftarrow \theta + \alpha \widetilde{\nabla}_{\theta} J$

return π_{θ}

Tetris Policy

$$\pi_{\theta}(a|s) = \frac{\exp\left(\theta^{\top}f(s,a)\right)}{\sum\limits_{a'}\exp\left(\theta^{\top}f(s,a')\right)}$$

 $f_1(s,a) = \#$ number of holes

 $f_2(s, a) = \# \max \text{ height}$

Chugging through the gradient ..

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \nabla_{\theta} \left[\theta^{\top} f(s,a) - \log \sum_{a'} \exp \left(\theta^{\top} f(s,a') \right) \right]$$

$$= f(s,a) - \frac{\sum_{a'} f(s,a') \exp \left(\theta^{\top} f(s,a') \right)}{\sum_{a'} \exp \left(\theta^{\top} f(s,a') \right)}$$

$$= f(s,a) - \sum_{a'} f(s,a') \pi_{\theta} \left(a'|s \right)$$

$$= f(s,a) - E_{\pi_{\theta}(a'|s)} \left[f(s,a') \right]$$

Understanding the REINFORCE update

LET
$$f_1(s,a) = \# holes$$
.

$$R = +1$$

$$R = +1$$

$$R = +1$$

$$R = +1$$

$$R = -1$$

$$R$$

REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy π_{θ} while not converged **do**

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{\nabla}_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} | s_{t}^{(i)} \right) \right) R(\xi^{(i)}) \right]$$

Update parameters $\theta \leftarrow \theta + \alpha \widetilde{\nabla}_{\theta} J$

return π_{θ}

Causality: Can actions affect the past?

The Policy Gradient Theorem

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=0}^{t-1} r(s_{t'}, a_{t'}) + \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right) \right]$$

$$= E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right],$$

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

Life is good!

This solves everything ...

The Three Nightmares of Policy Optimization

Nightmare 1:

Local Optima

Activity!

Consider the following MDP

Let's say I picked actions uniformly.

How long would it take me to get to the state with reward=1?

Think-Pair-Share

Think (30 sec): How long would it take me to get to the state with reward = 1? What does this imply if I run policy gradients?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Optimal policy

Optimal policy

Random Policy starting from so

Optimal policy

AFTER MANY ROUNDS OF POLICY ITERATION

Solution: Demand improvement from all states

Key Idea: Use a good "restart" distribution

Choose a restart distribution $\mu(s)$ instead of start state distribution

Try your best to "cover" states the expert will visit

Suffer at most a penalty of
$$\|\frac{d_{\pi^*}}{\mu}\|_{\infty}$$

Nightmare 2:

Distribution Shift

Approximate Policy Iteration

Estimate advantage $A^{\pi}(s, a)$

Greedily improve policy $\pi' = \arg\min_{\pi'} A^{\pi}(s, \pi'(s))$

How does distribution shift manifest?

The true performance difference

$$V^{\pi'}(s) - V^{\pi}(s) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\pi'}^t} A^{\pi}(s, \pi'(s))$$
(New) (Old)

What our estimator currently approximates

$$\frac{1}{1-\gamma}\mathbb{E}_{s\sim d_{\pi}^{t}}A^{\pi}(s,\pi'(s))$$

Be stable

Slowly change policies

Keep d_{π}^t close to $d_{\pi'}^t$

Idea 1: Conservative Policy Iteration (CPI)

$$\pi' = (1 - \alpha)\pi + \alpha\pi_{greedy}$$

Mix in old policy and greedy policy

Can prove that performance difference is bounded by

$$V^{\pi'}(s) - V^{\pi}(s) \ge \alpha A_{greedy} - 2\alpha^2 \frac{\gamma}{1 - \gamma}$$

How much greedy policy improves based on estimate

How much distribution shift hurts!

SHAM@GATSBY.UCL.AC.UK

Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK

Sham Kakade

John Langford JCL@CS.CMU.EDU Computer Science Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15217

Approximately Optimal Approximate Reinforcement Learning

Idea 2: Update distributions slowly

CPI requires keeping around *all* the policies you have seen thus far, which is not scalable ...

Instead can we change policies slowly?

Does this simply mean do gradient descent with a small step size?

Nightmare 2:

Distribution Shift Correlated Features

Activity!

What happens if we have correlated features?

Parameterization 1: $f_1 = \#$ of Holes after the placement, $f_2 = \text{Height}$ after the placement. We use θ to denote the parameter for this parameterization.

Parameterization 2: $g_1 = ... = g_{100} = \#$ of Holes after the placement, $g_{101} = \text{Height after the placement}$. We use ϕ to denote the parameter for this parameterization

Then, for Parameterization 1, we have,

$$\theta^{\top} f(x, a) = \theta_1 \times \# \text{ of Holes}(x, a) + \theta_2 \times \text{Height}(x, a).$$

While for Parameterization 2, we have,

$$\phi^{\top}g = \left(\sum_{i=1}^{100} \phi_i\right) \times \text{# of Holes}(x, a) + \phi_{101} \times \text{Height}(x, a).$$

Think-Pair-Share

Think (30 sec): What would happen if we ran policy gradient with Feature Set 1 vs Feature Set 2? How can we fix it?

Pair: Find a partner

Then, for Parameterization 1, we have,

$$\theta^{\top} f(x, a) = \theta_1 \times \# \text{ of Holes}(x, a) + \theta_2 \times \text{Height}(x, a).$$

While for Parameterization 2, we have,

$$\phi^{\top} g = \left(\sum_{i=1}^{100} \phi_i\right) \times \text{\# of Holes}(x, a) + \phi_{101} \times \text{Height}(x, a).$$

Share (45 sec): Partners exchange ideas

Gradient Descent as Steepest Descent

Gradient Descent is simply Steepest Descent with L2 norm

$$\max_{\Delta\theta} J(\theta + \Delta\theta)$$
 s.t. $\|\Delta\theta\| \leq \epsilon$

An alternative norm: KL Divergence! Gives rise to Fisher Information Matrix

$$G(\theta) = E_{p_{\theta}} \left[\nabla_{\theta} \log(p_{\theta}) \nabla_{\theta} \log(p_{\theta})^{\top} \right] \qquad \Delta \theta = \frac{1}{2\lambda} \, \tilde{G}^{-1}(\theta) \, \widetilde{\nabla}_{\theta} J.$$

Natural Gradient Descent

Estimate Fisher Information Matrix

$$ilde{G}(heta) = rac{1}{N} \sum_{i=1}^{N} \left[
abla_{ heta} \log \pi_{ heta}(a_i|s_i)
abla_{ heta} \log \pi_{ heta}(a_i|s_i)^{ op}
ight]$$

Parameter update:

$$\Delta \theta = \frac{1}{2\lambda} \, \tilde{G}^{-1}(\theta) \, \widetilde{\nabla}_{\theta} J.$$

Modern variants known as TRPO, PPO

Nightmare 3:

Variance

What happens when Q values for all rollouts are similar?

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

Recall that one of the reasons for the high variance is that the algorithm does not know how well the trajectories perform compared to other trajectories. Therefore, by introducing a baseline for the total reward (or reward to go), we can update the policy based on how well the policy performs compared to a baseline

Solution: Subtract a baseline!

$$\nabla_{\theta} J = E_{d^{\pi_{\theta}}(s)} E_{\pi_{\theta}(a|s)} \left[\nabla_{\theta} \log(\pi_{\theta}(a|s)) \left(Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s) \right) \right].$$

We can prove that this does not change the gradient

But turns Q values into advantage (which is lower magnitude)

tl,dr

The Policy Gradient Theorem

$$\nabla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=0}^{t-1} r(s_{t'}, a_{t'}) + \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right) \right] \\
= E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) \right],$$

$$abla_{\theta} J = E_{p(\xi|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q^{\pi_{\theta}}(s_t, a_t) \right]$$

15

- Local Optima: Use Exploration Distribution
- 2. Distribution Shift: *Natural* Gradient Descent
- 3. High Variance: Subtract baseline