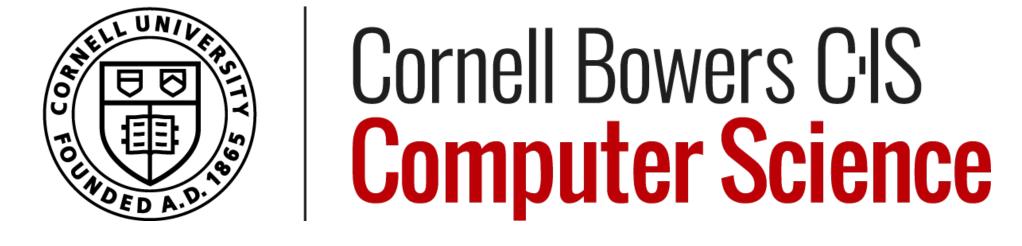
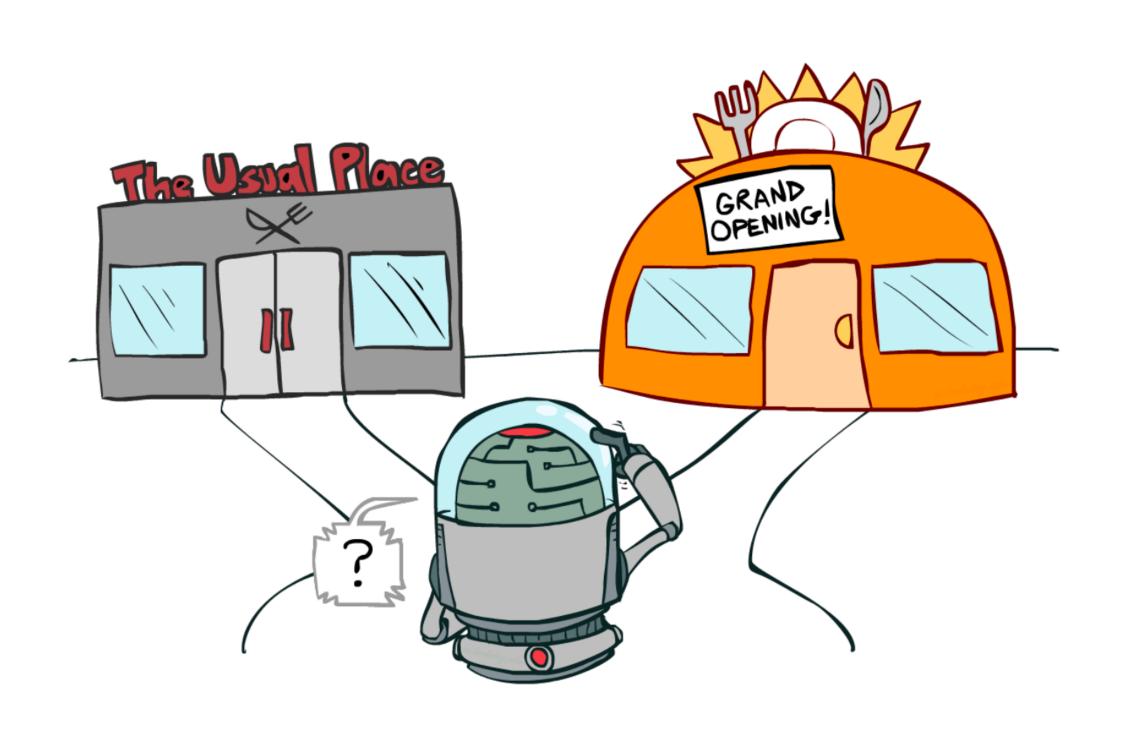
Black-box vs White-box Policy Optimization

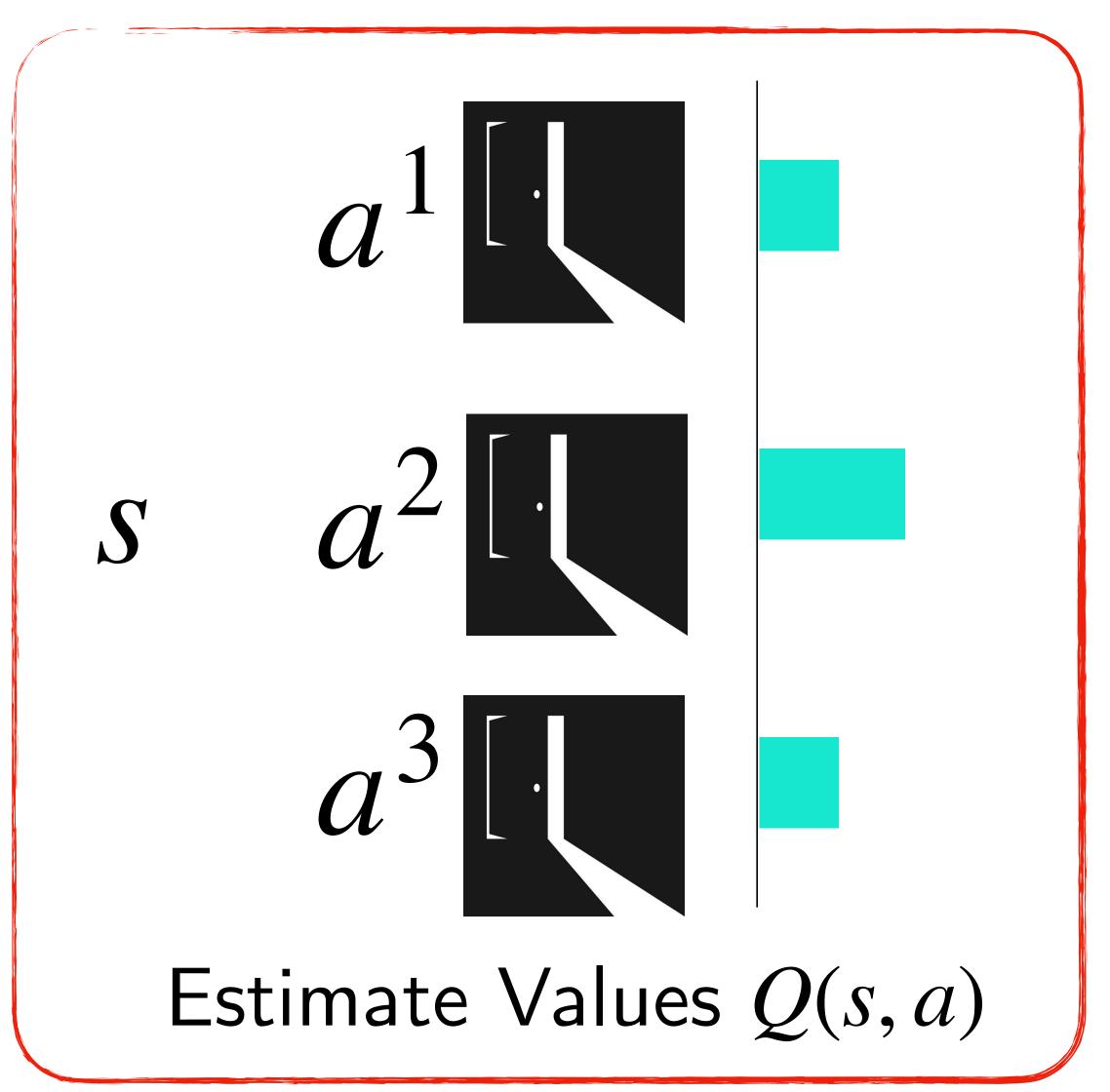
Sanjiban Choudhury



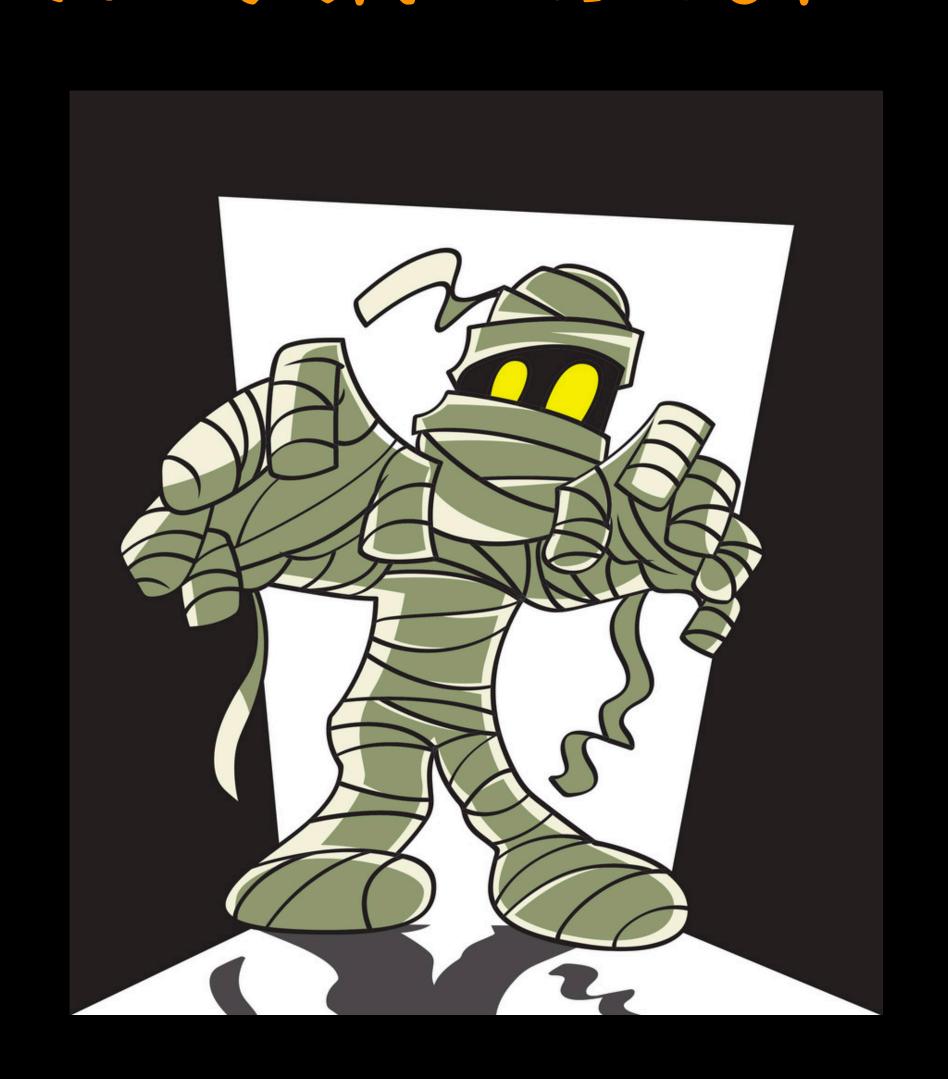
Recap: Two Ingredients of RL



Exploration Exploitation

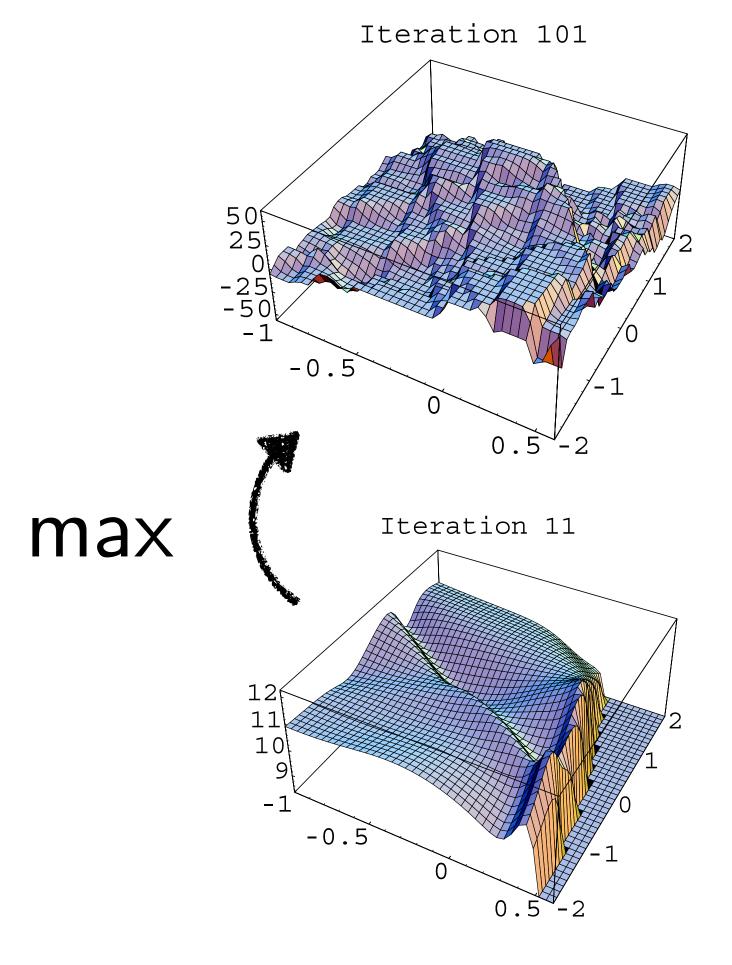


CURSE OF VALUE APPROXIMATION!

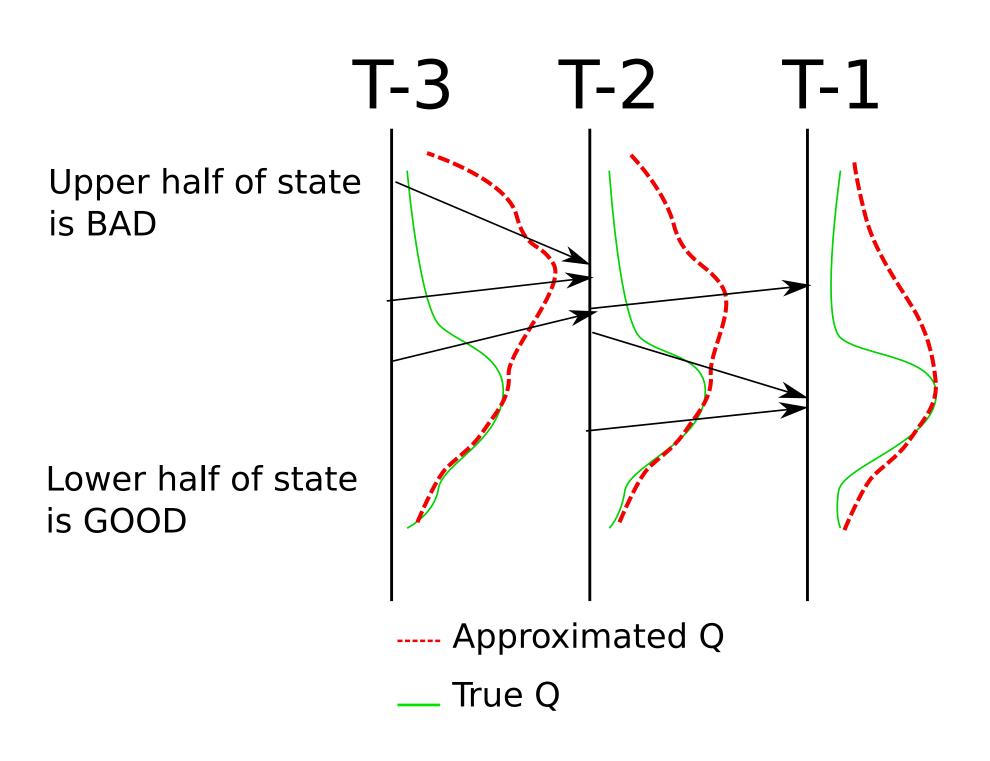


Two sides of the same coin

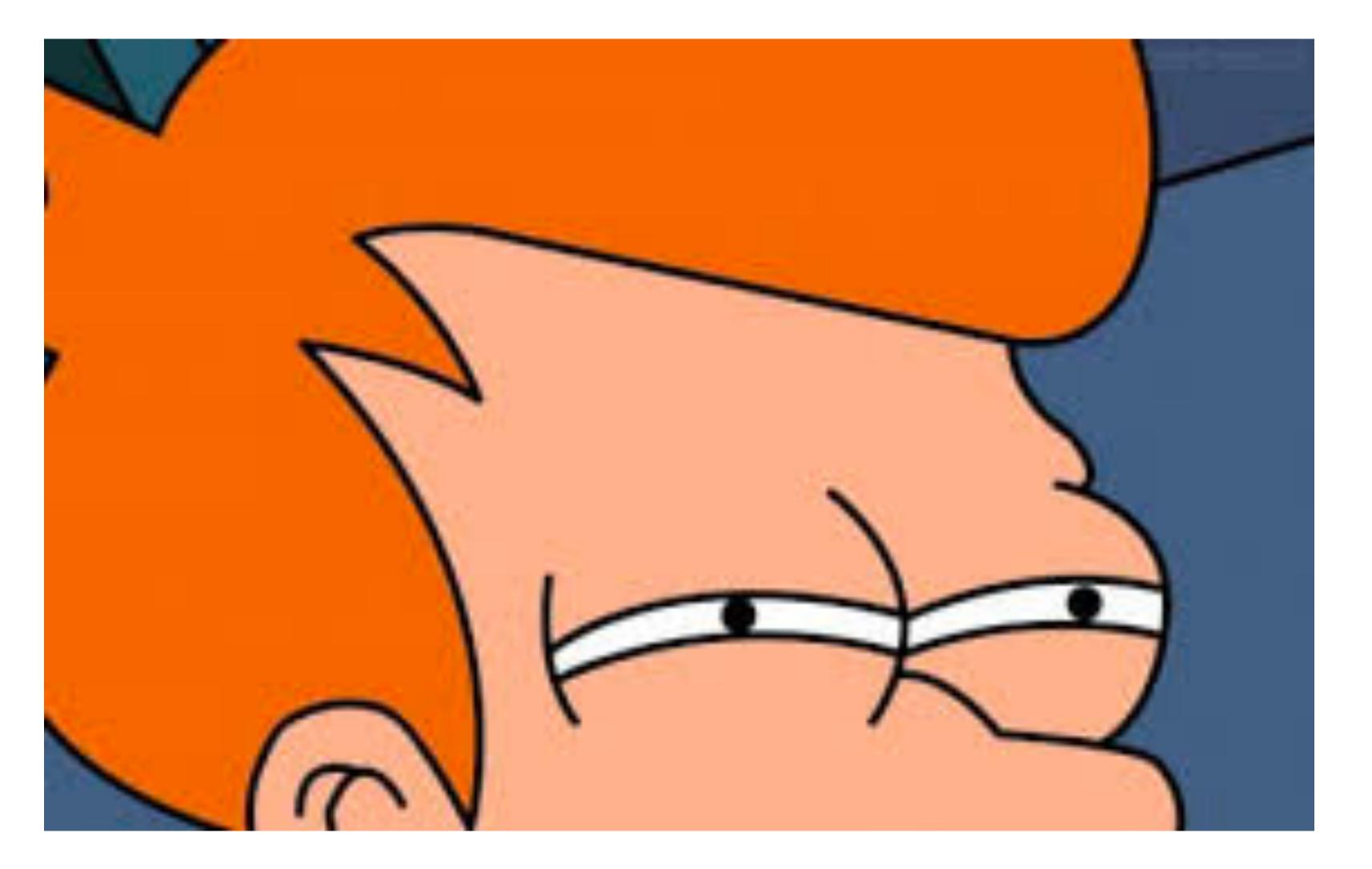
Bootstrapping



Distribution shift



To hell with Value Estimates!



Trust ONLY actual Returns

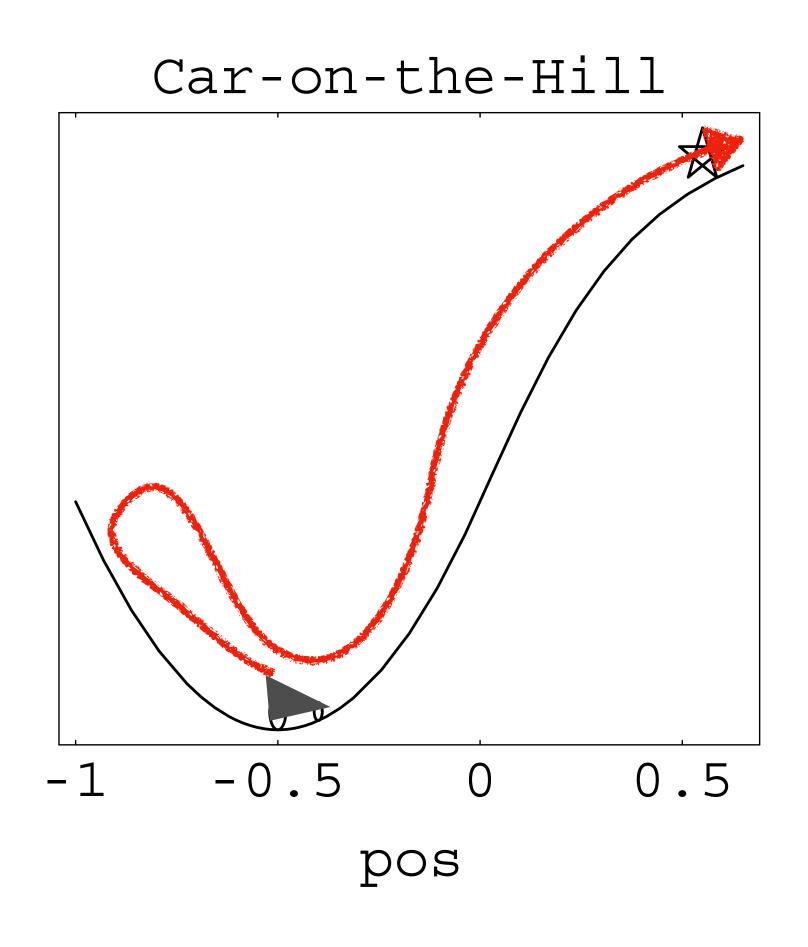
Bye Bye Bellman ...

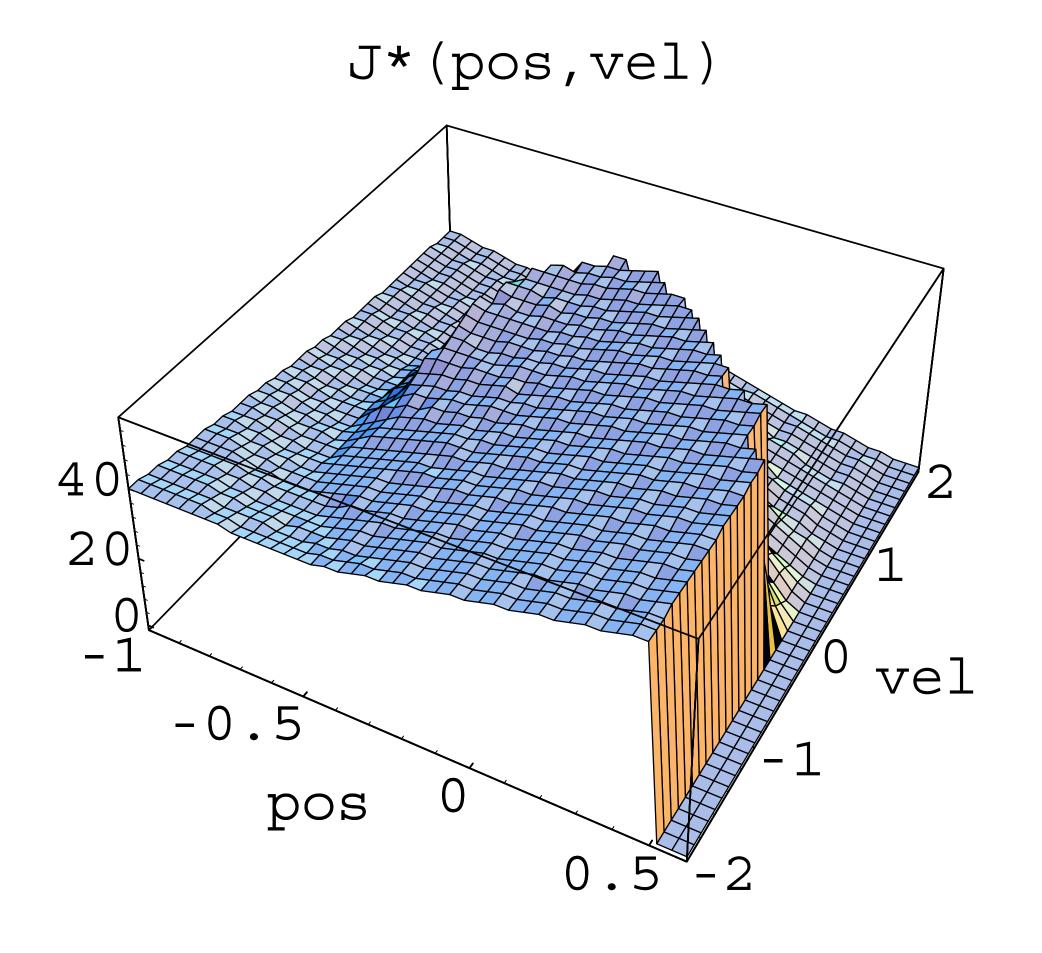
"not to be blinded by the beauty of the Bellman equation"

- Andrew Moore

What if we focused on finding good policies ...?

Sometimes a policy is waaaaay simpler than the value

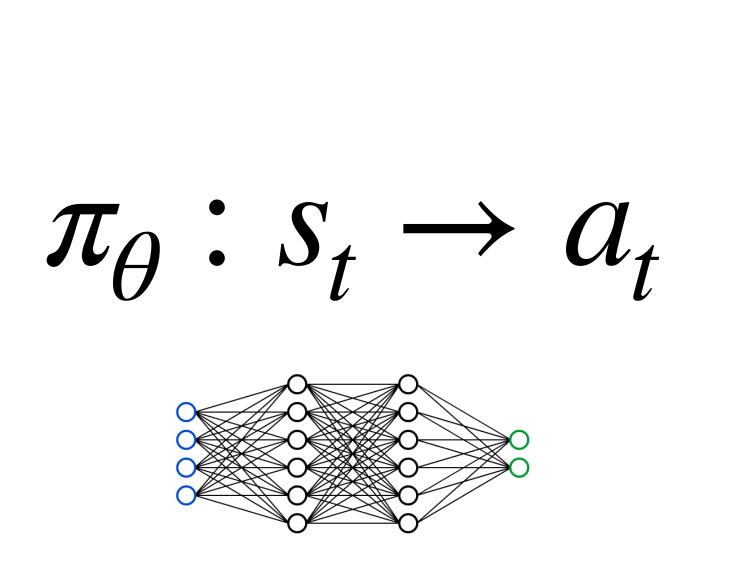


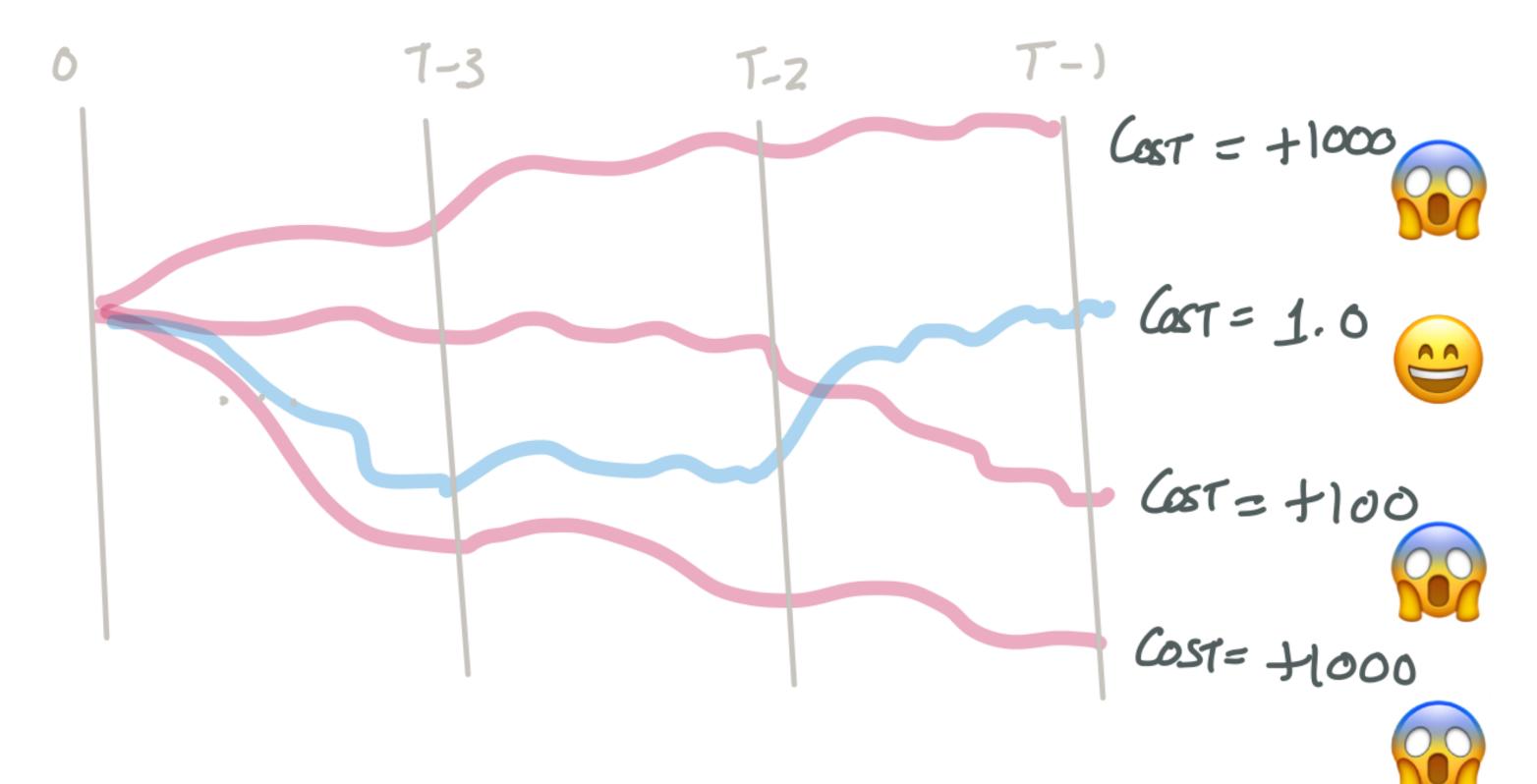


The Policy!

The Value!

Can we just focus on finding a good policy?

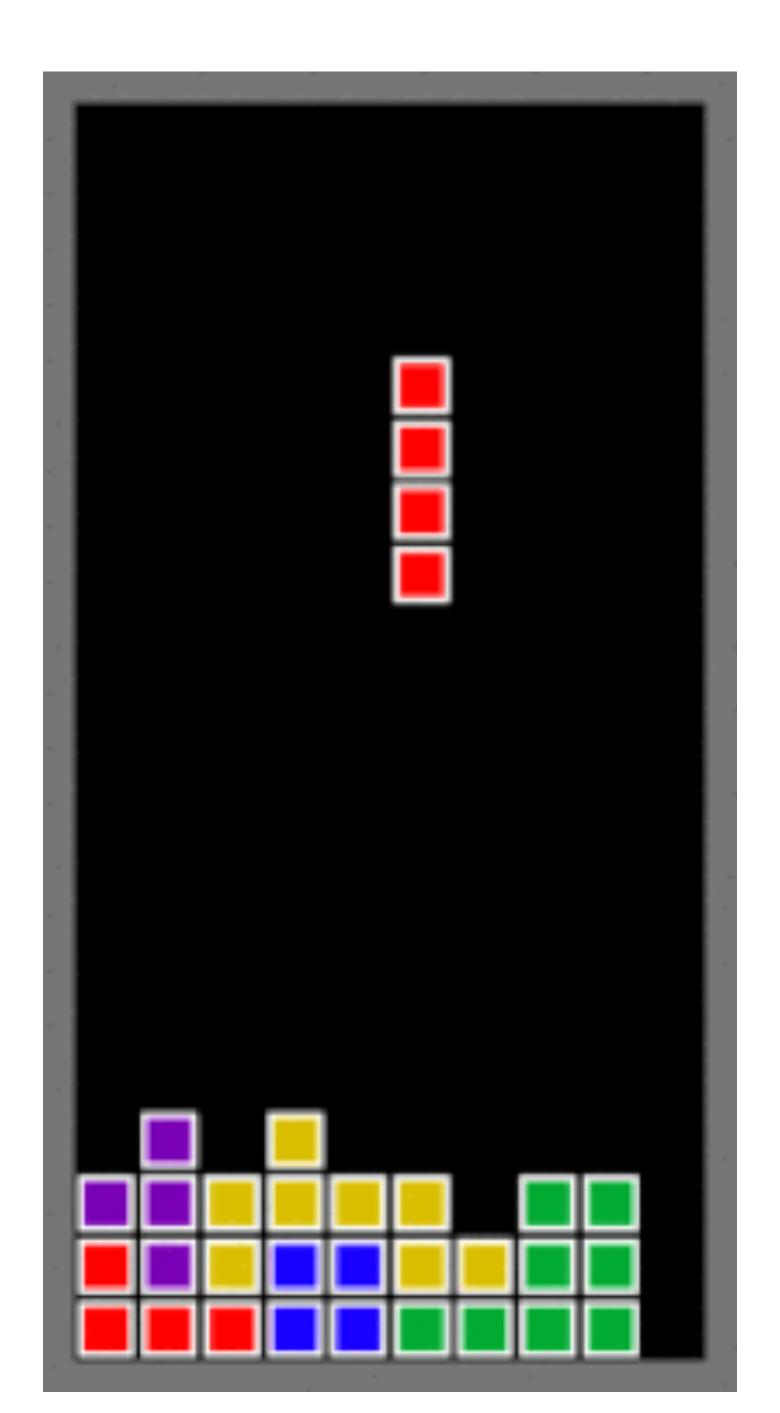




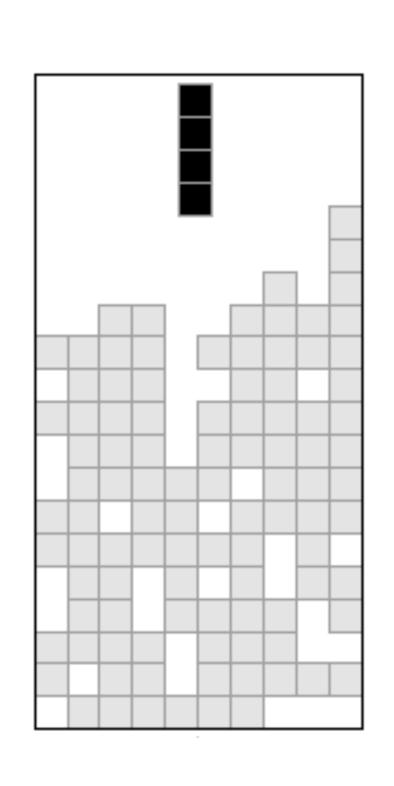
Learn a mapping from states to actions

Roll-out policies in the real-world to estimate value

The Game of Tetris



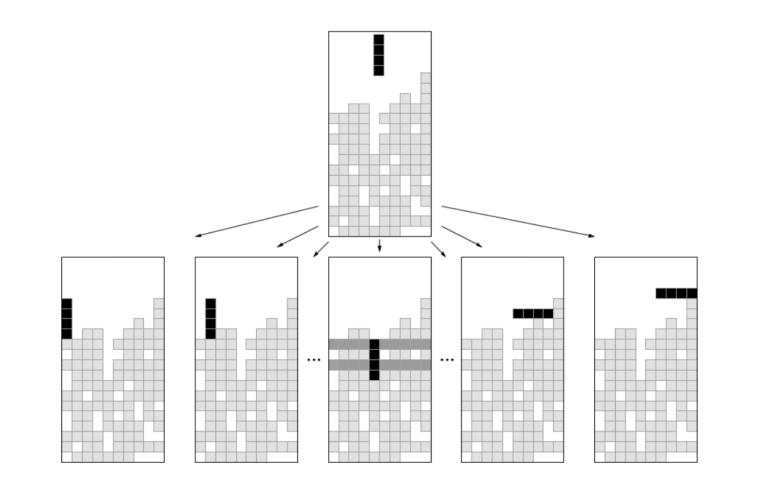
What's a good policy representation for Tetris?



(4 rotations)*(10 slots)

- (6 impossible poses) = 34

$$\pi_{\theta}: S_t \rightarrow a_t$$



State (s_t)

Action (a_t)

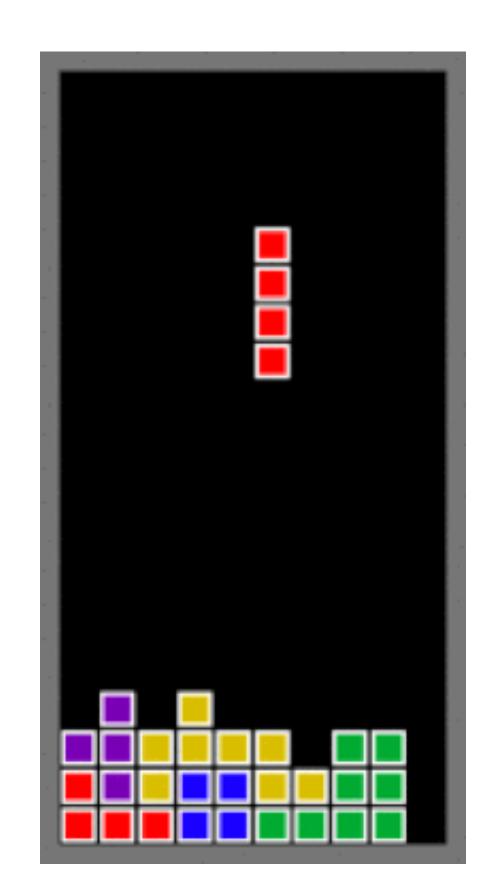
Activity!

Think-Pair-Share

Think (30 sec): Ideas for how to represent policy for tetris?

Pair: Find a partner

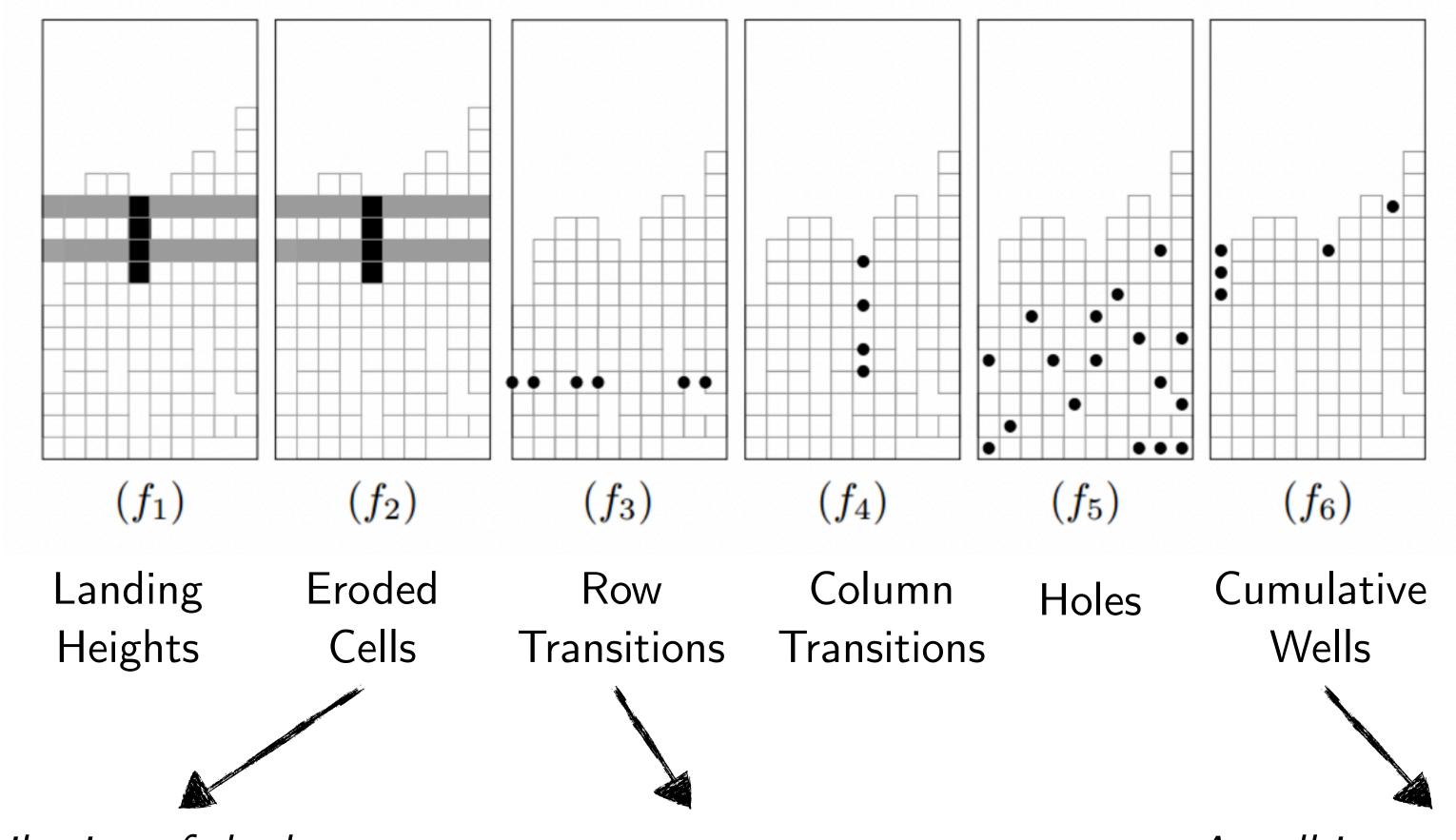
Share (45 sec): Partners exchange ideas



Some inspiration for Tetris policy

Until 2008, the best artificial Tetris player was handcrafted, as reported by Fahey (2003). Pierre Dellacherie, a self declared average Tetris player, identified six simple features and tuned the weights by trial and error.

Dellacherie Features



The contribution of the last piece to the cleared lines time the number of cleared lines.

The number of filled cells adjacent to the empty cells summed over all rows

A well is a succession of empty cells and the cells to the left and right are occupied

A magic formula?!?

- $-4 \times holes cumulative wells$
- $-\ row\ transitions-column\ transitions$
- $-landing\ height+eroded\ cells$

A magic formula?!?

- $-4 \times holes cumulative wells$
- $-\ row\ transitions-column\ transitions$
- $-\ landing\ height+eroded\ cells$

This linear evaluation function cleared an average of 660,000 lines on the full grid ... In the simplified implementation used by the approaches discussed earlier, the games would have continued further, until every placement would overflow the grid. Therefore, this report underrates this simple linear rule compared to other algorithms.

Can YOU do better than Dellacherie?

The Goal of Policy Optimization

$$\pi_{\theta}(s) = \arg\min_{a} \theta^{T} f(s, a)$$

#Think of f(s,a) being dellacherie features

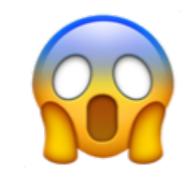
$$\min_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$$

Cost = +1000 Cost = +100 Cost = +100 Cost = +1000

#Think of c(s,a) as -num_rows_cleared

Is Policy Optimization a good idea?

Cons



A policy is simpler than value function

Careful feature engineering

Easy to bake in engineering knowledge

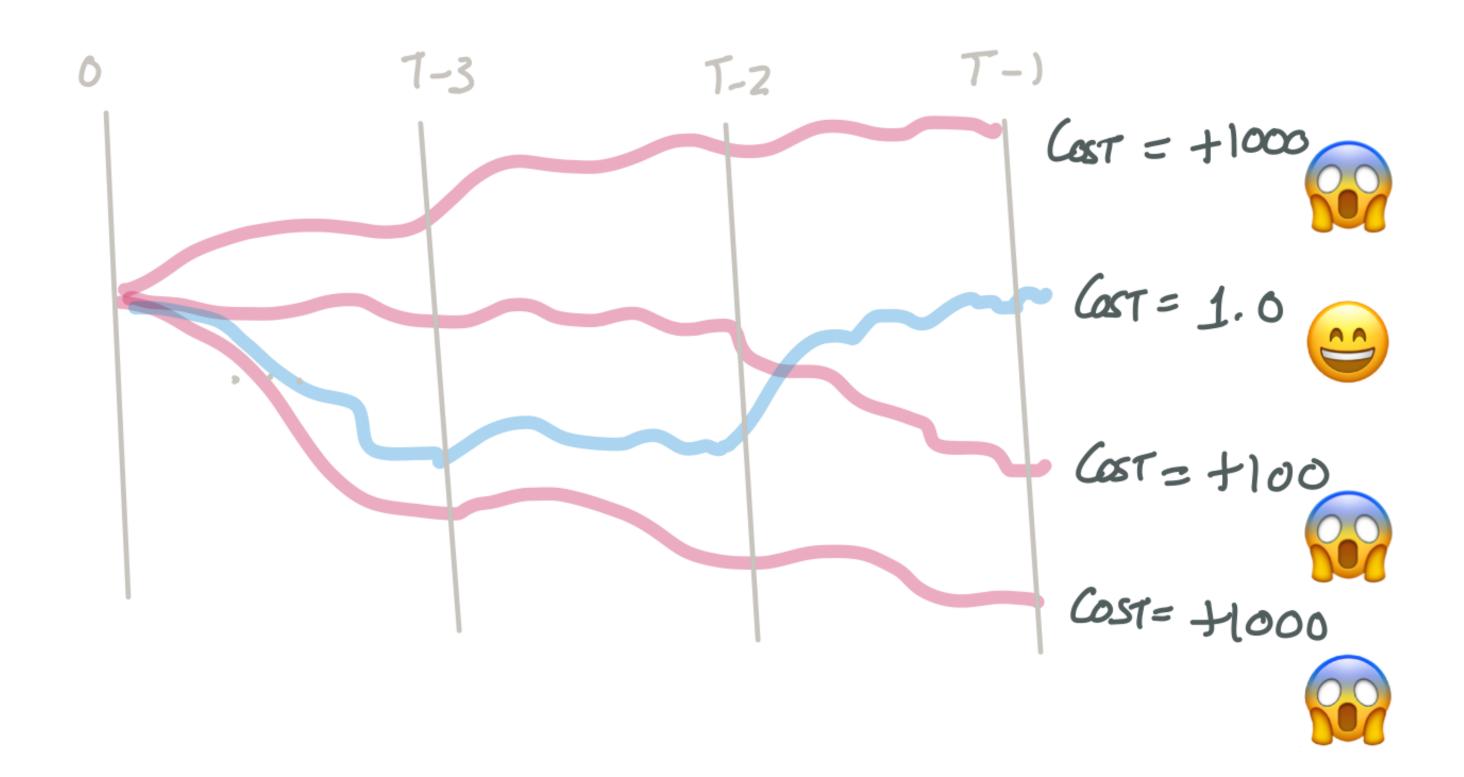
Exploration is difficult in this setting

Easy to code up!

Ignoring Markov structure of states and costs

What are some ways to solve this optimization?

$$\min_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$$



Activity!

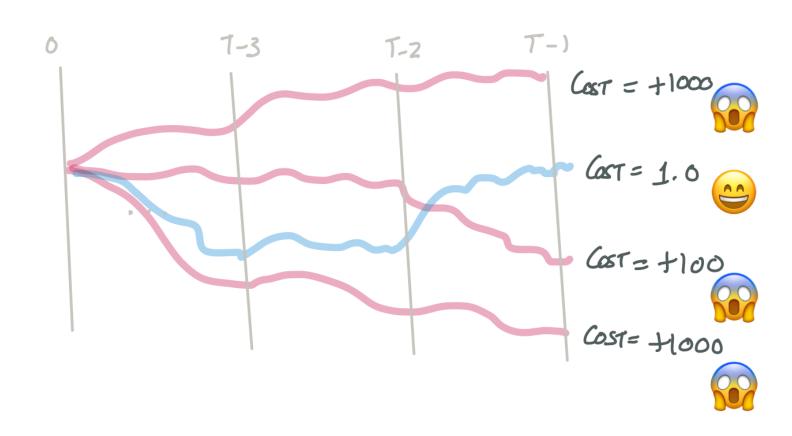
Think-Pair-Share

Think (30 sec): What are some of the techniques we can use to solve the policy optimization?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

$$\min_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$$



Option 1: Gradient Descent

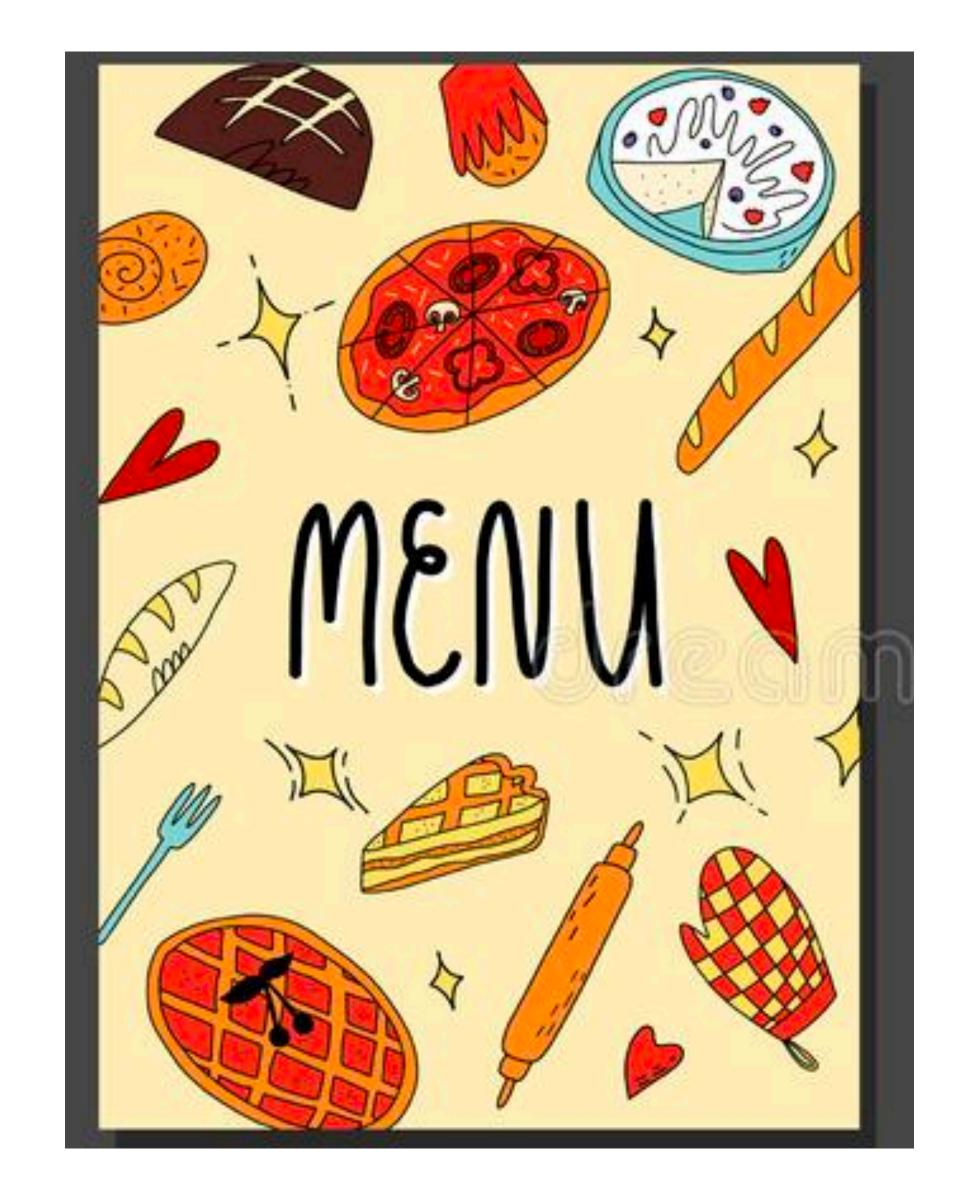
$$\theta^+ = \theta - \eta \nabla_{\theta} J(\theta)$$

What could go wrong?

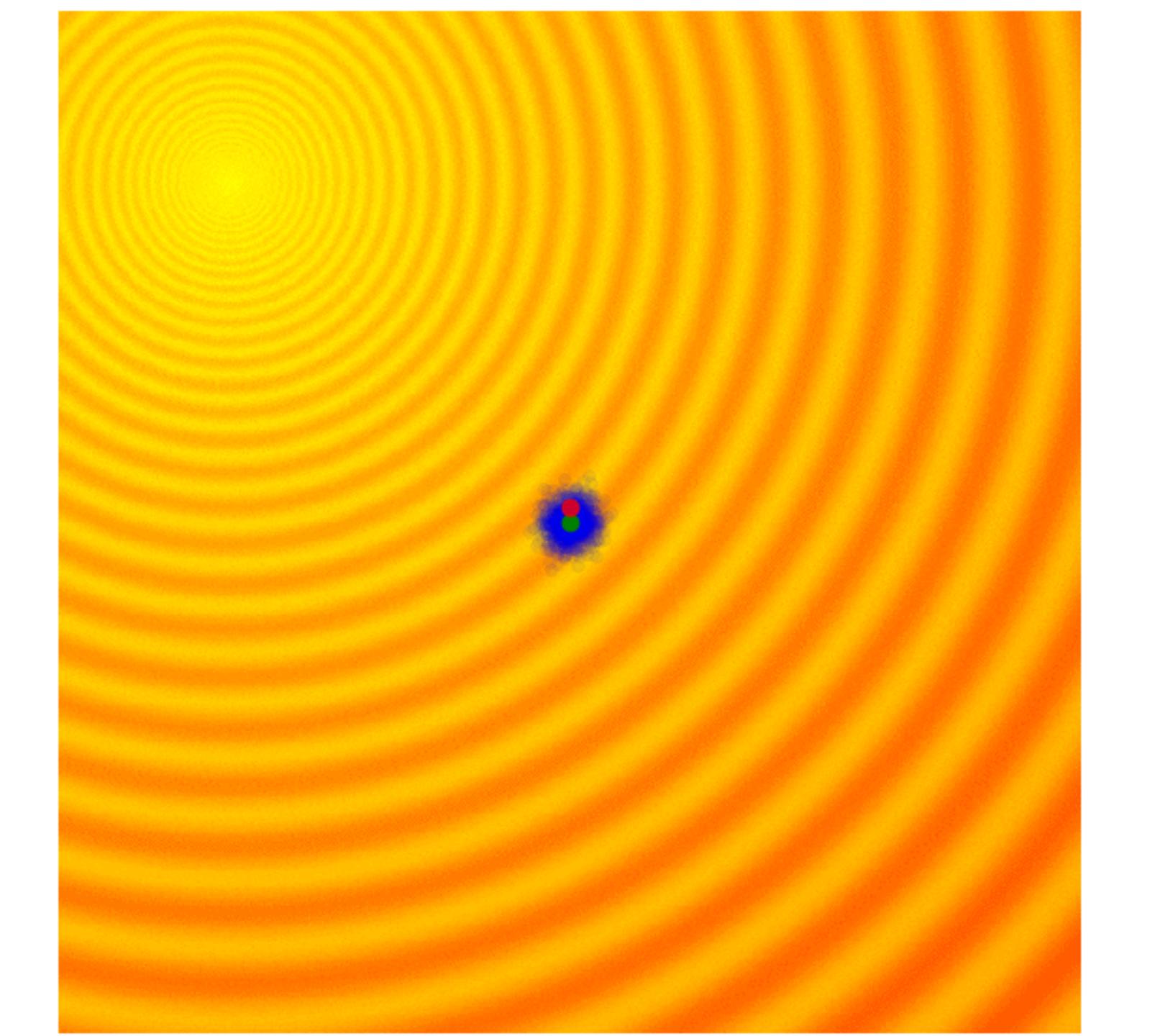
- 1. Is $J(\theta)$ differentiable?
- 2. Is $J(\theta)$ noisy?

Option 2: Zeroth Order Methods

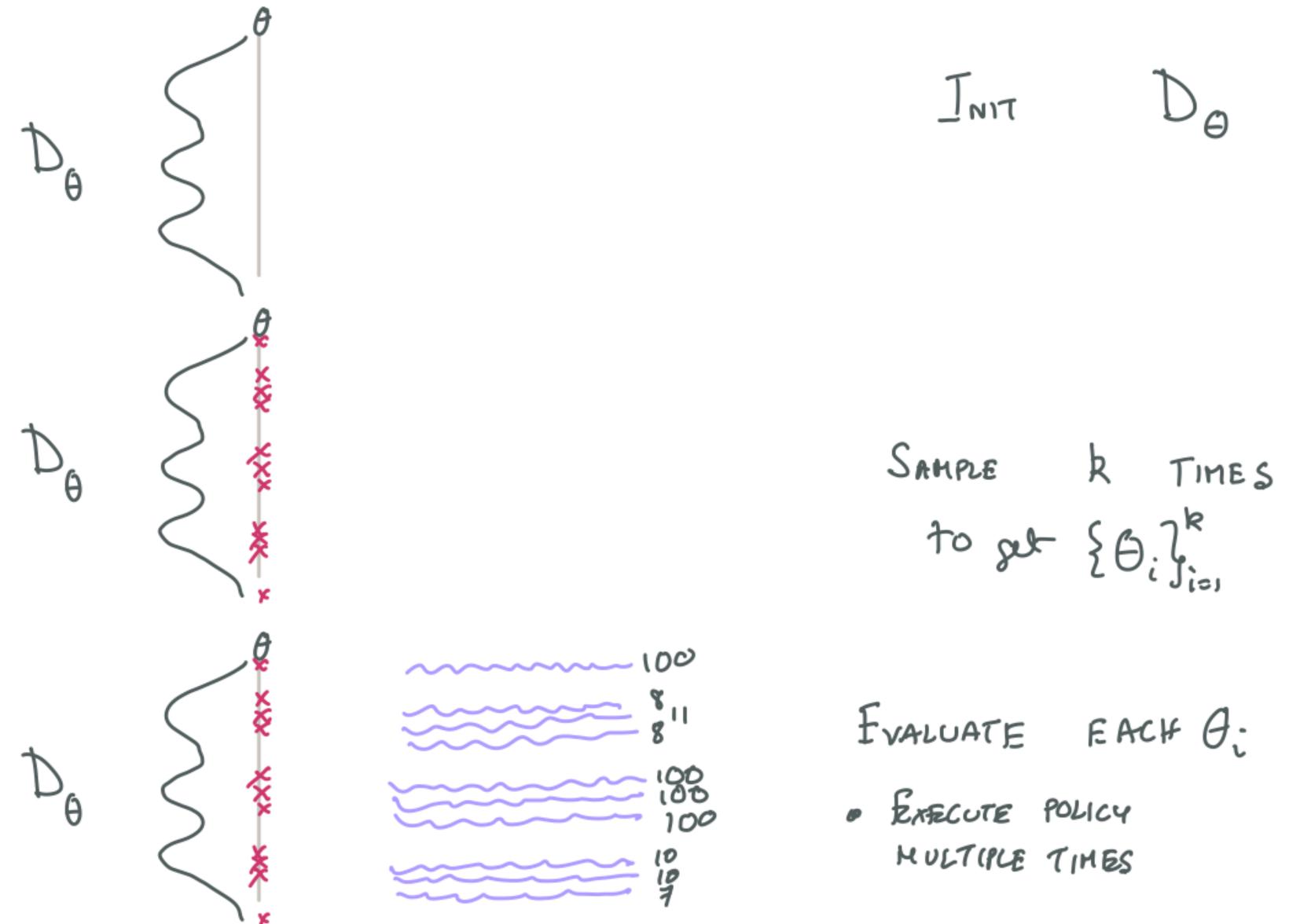
- Nelder Mead
- Cross Entropy
- Simulated Annealing
- Genetic Algorithm
- Response Surface Methods
- Coordinate Descent



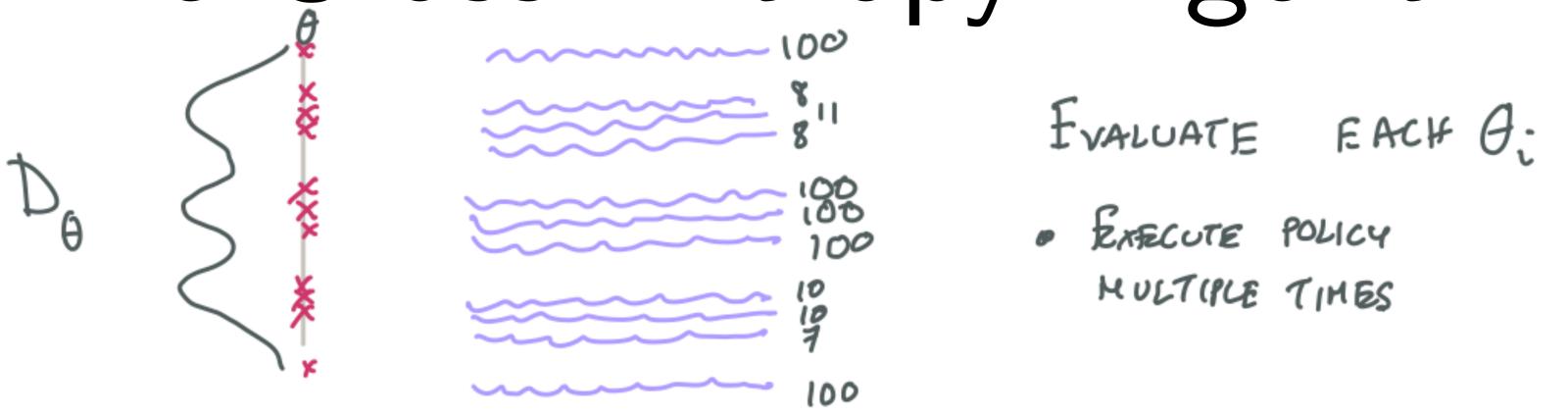
Let's build some intuition!

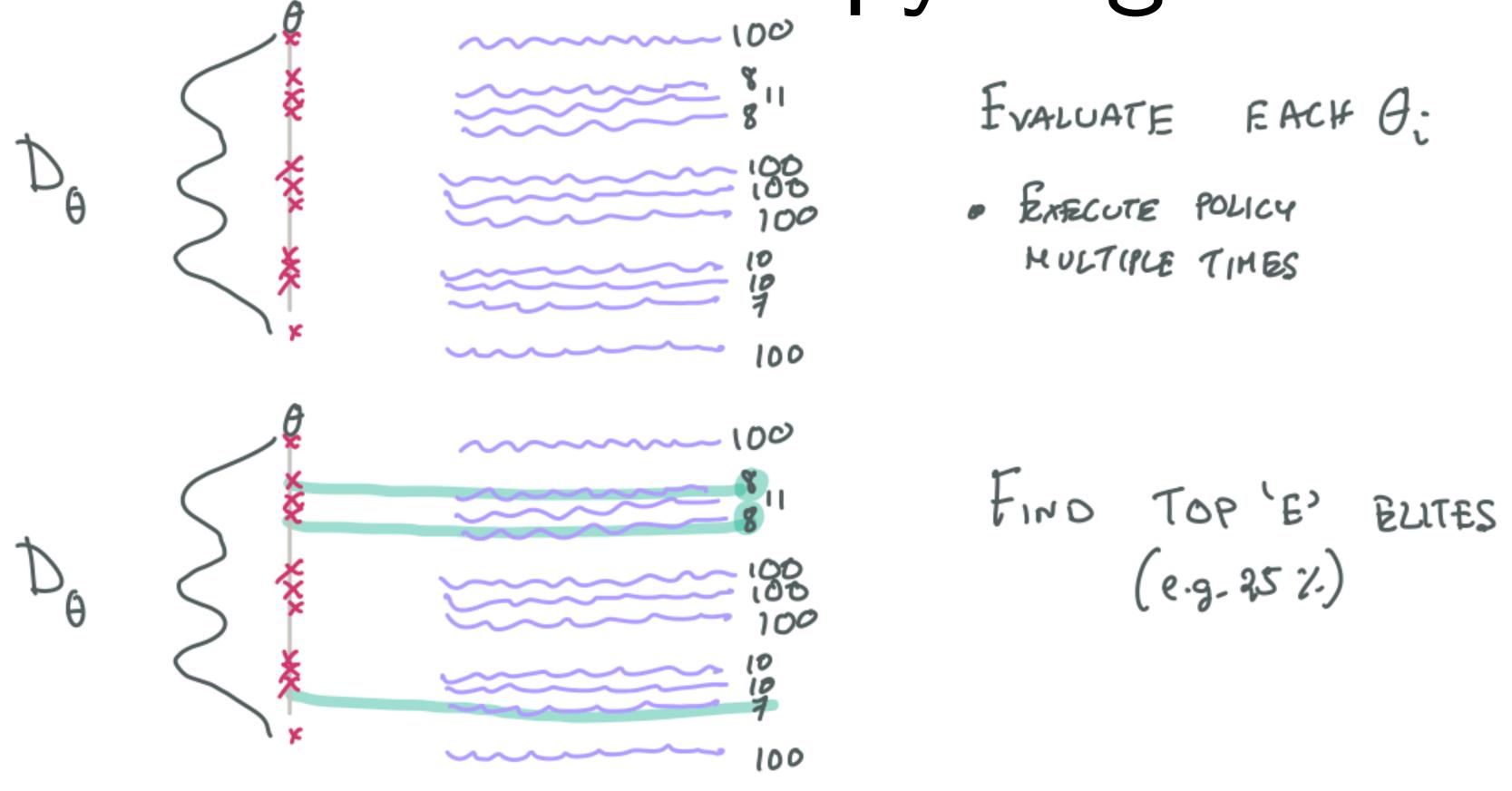


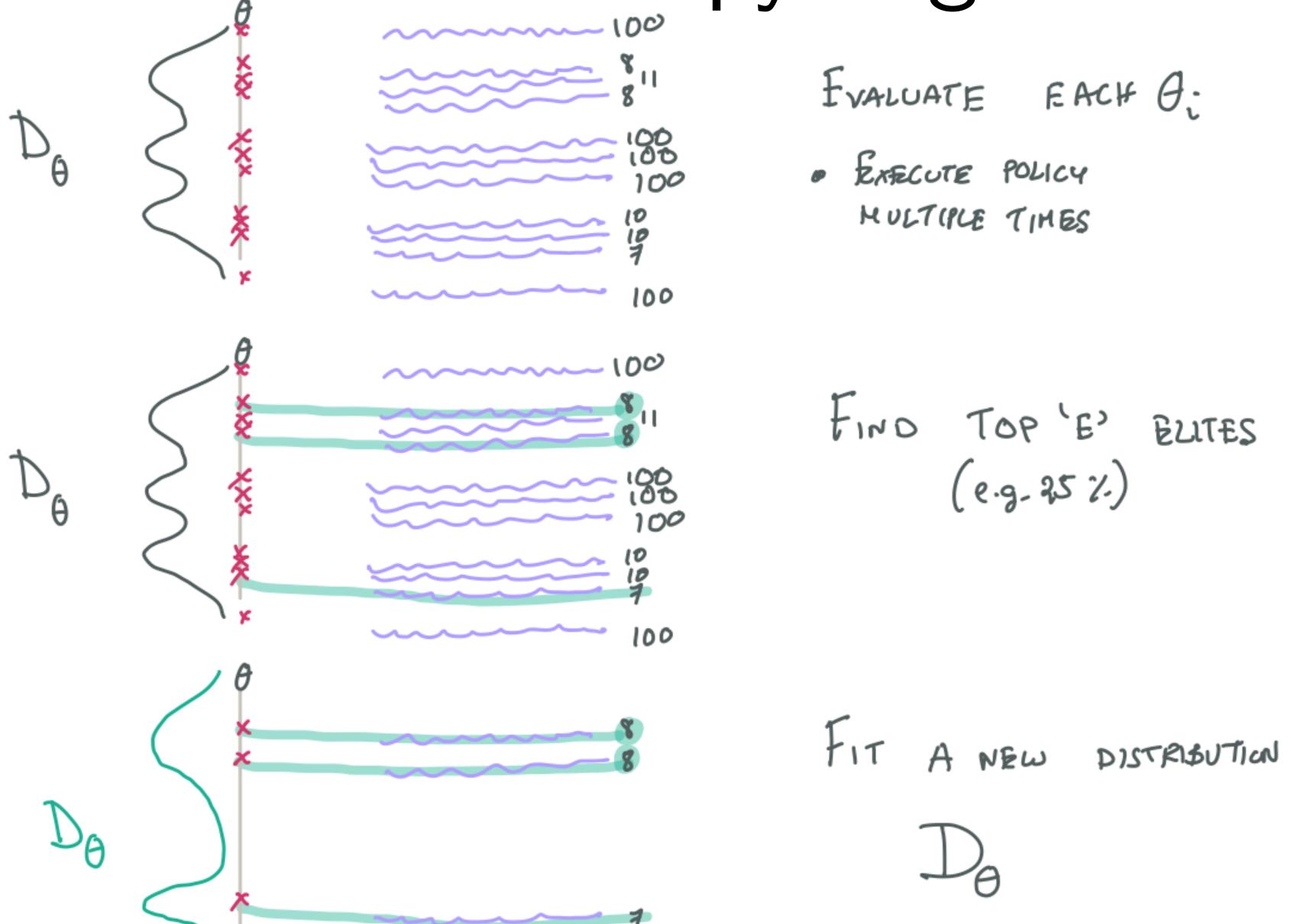
Credit: https://
blog.otoro.net/
2017/10/29/visualevolution-strategies/



100







Cross Entropy for Gaussian

Gaussian Distribution $D_{\theta} := \mathcal{N}(\mu, \Sigma)$

$$D_{\theta} := \mathcal{N}(\mu, \Sigma)$$

Mean

$$\mu^t = \frac{1}{e} \sum_{i=1}^e \theta_i$$

Variance

$$\Sigma^t = \frac{1}{e} \sum_{i=1}^e (\theta_i - \mu^t)^2$$

Does it work?

Learning Tetris Using the Noisy Cross-Entropy Method

István Szita

szityu@eotvos.elte.hu

András Lőrincz

andras.lorincz@elte.hu

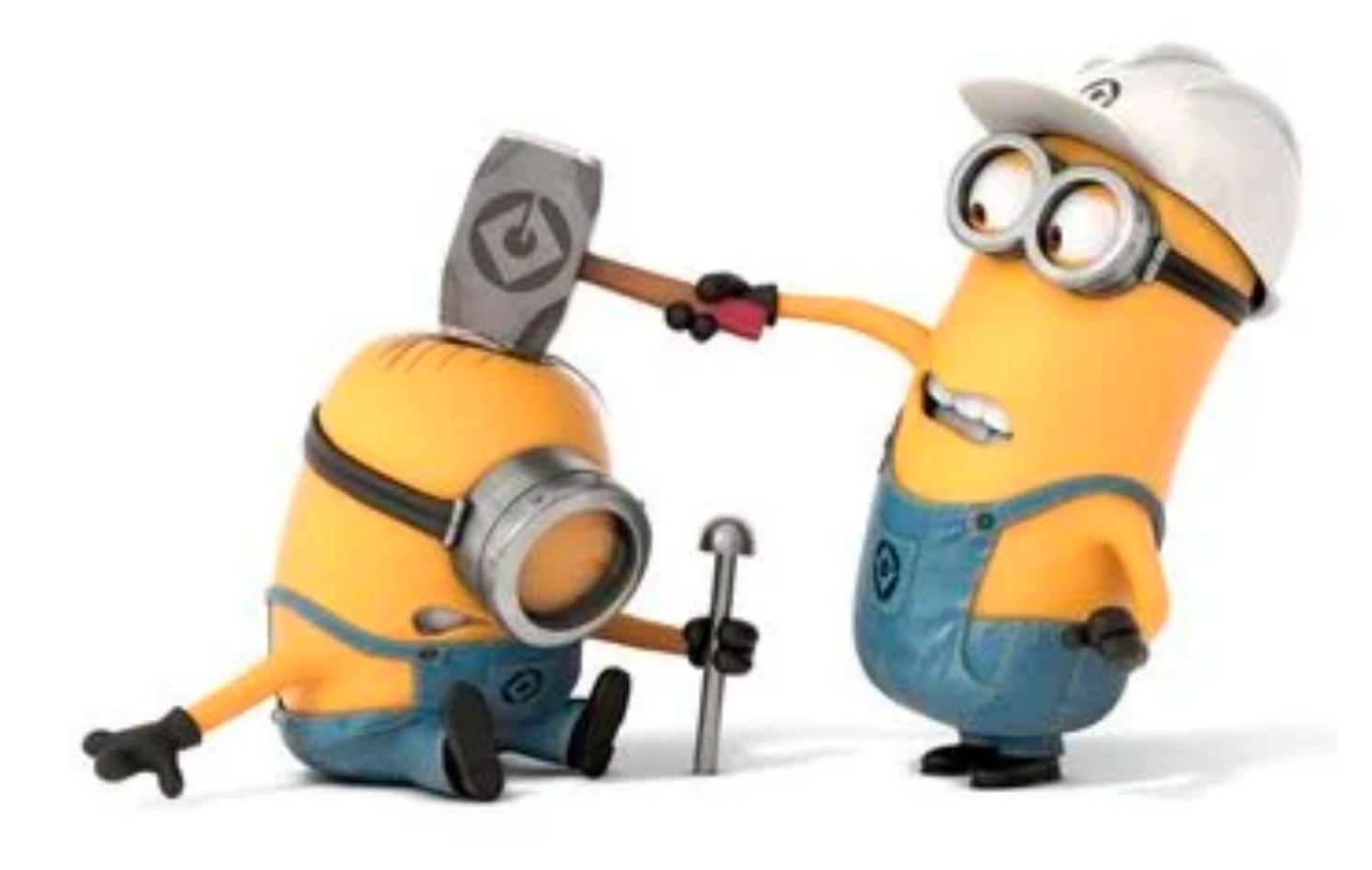
Department of Information Systems, Eötvös Loránd University, Budapest, Hungary H-1117

The cross-entropy method is an efficient and general optimization algorithm. However, its applicability in reinforcement learning (RL) seems to be limited because it often converges to suboptimal policies. We apply noise for preventing early convergence of the cross-entropy method, using Tetris, a computer game, for demonstration. The resulting policy outperforms previous RL algorithms by almost two orders of magnitude.

Does it work?

	ALGORITHM	GRID SIZE	Lines Cleared	FEATURE SET USED
TSITSIKLIS & VAN ROY (1996)	APPROXIMATE VALUE ITERATION	16×10	30	HOLES AND PILE HEIGHT
Bertsekas & Tsitsiklis (1996)	λ - PI	19×10	2,800	BERTSEKAS
LAGOUDAKIS ET AL. (2002)	LEAST-SQUARES PI	20×10	$\approx 2,000$	LAGOUDAKIS
KAKADE (2002)	NATURAL POLICY GRADIENT	20×10	≈ 5,000	BERTSEKAS
DELLACHERIE				
[REPORTED BY FAHEY (2003)]	HAND TUNED	20×10	660,000	DELLACHERIE
RAMON & DRIESSENS (2004)	RELATIONAL RL	20×10	≈ 50	
Вöнм ет аl. (2005)	GENETIC ALGORITHM	20×10	480,000,000 (Two Piece)	Вöнм
FARIAS & VAN ROY (2006)	LINEAR PROGRAMMING	20×10	4,274	BERTSEKAS
SZITA & LÖRINCZ (2006)	CROSS ENTROPY	20×10	348,895	DELLACHERIE
ROMDHANE & LAMONTAGNE (2008)	CASE-BASED REASONING AND RL	20×10	≈ 50	
BOUMAZA (2009)	CMA-ES	20×10	35,000,000	BCTS
THIERY & SCHERRER (2009A;B)	CROSS ENTROPY	20×10	35,000,000	DT
GABILLON ET AL. (2013)	CLASSIFICATION-BASED	20×10	51,000,000	DT FOR POLICY
	POLICY ITERATION			DT + RBF FOR VAL

Practical Issues and Fixes



Problem 1: What happens to the variance?

$$\Sigma^t = \frac{1}{e} \sum_{i=1}^e (\theta_i - \mu^t)^2$$

Collapses too quickly!

Simple fix: Add a bit of noise to the variance

$$\Sigma^{t} = \frac{1}{e} \sum_{i=1}^{e} (\theta_{i} - \mu^{t})^{2} + \Sigma_{noise}$$

Problem 2: What if we have a bad batch of samples?

$$\mu^t = \frac{1}{e} \sum_{i=1}^e \theta_i$$

The elites can be bad, and the mean can slingshot into a bad value

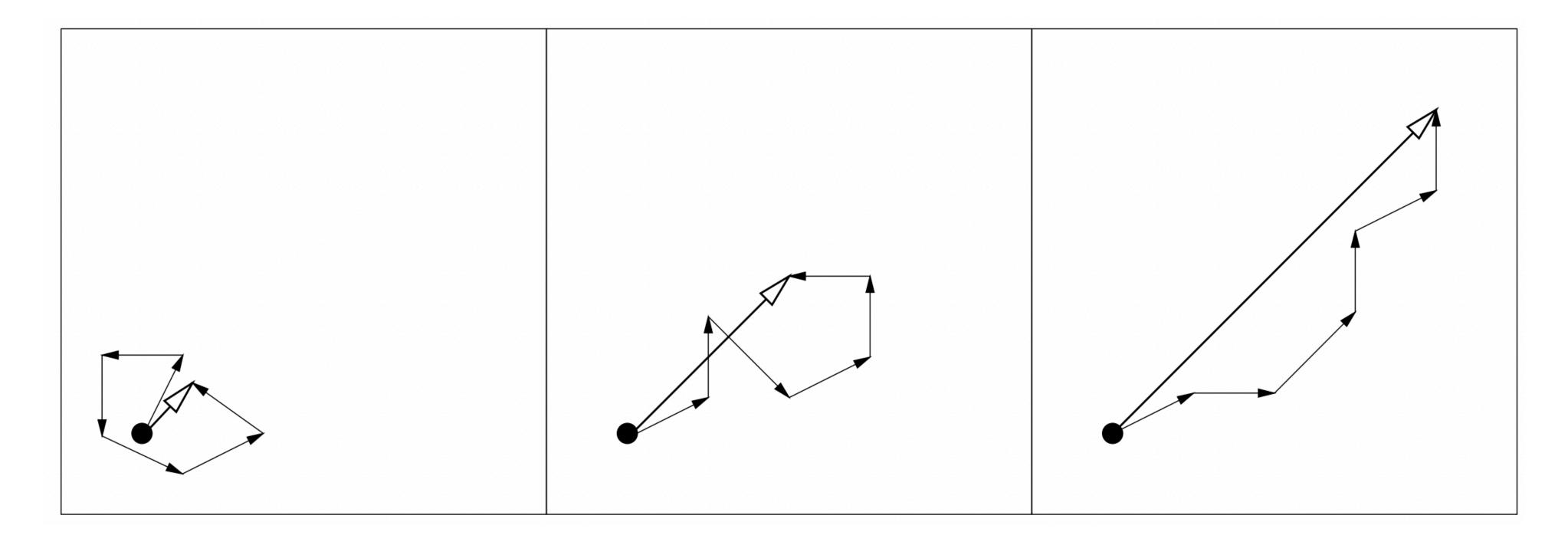
Simple fix: Slowly update mean

$$\mu^{t} = \mu^{t-1} + \eta \frac{1}{e} \sum_{i=1}^{e} \theta_{i}$$

Problem 3: What if we never converge and do random walks?

Single-steps cancel out Use small Σ

Progress correlated Use large $\boldsymbol{\Sigma}$



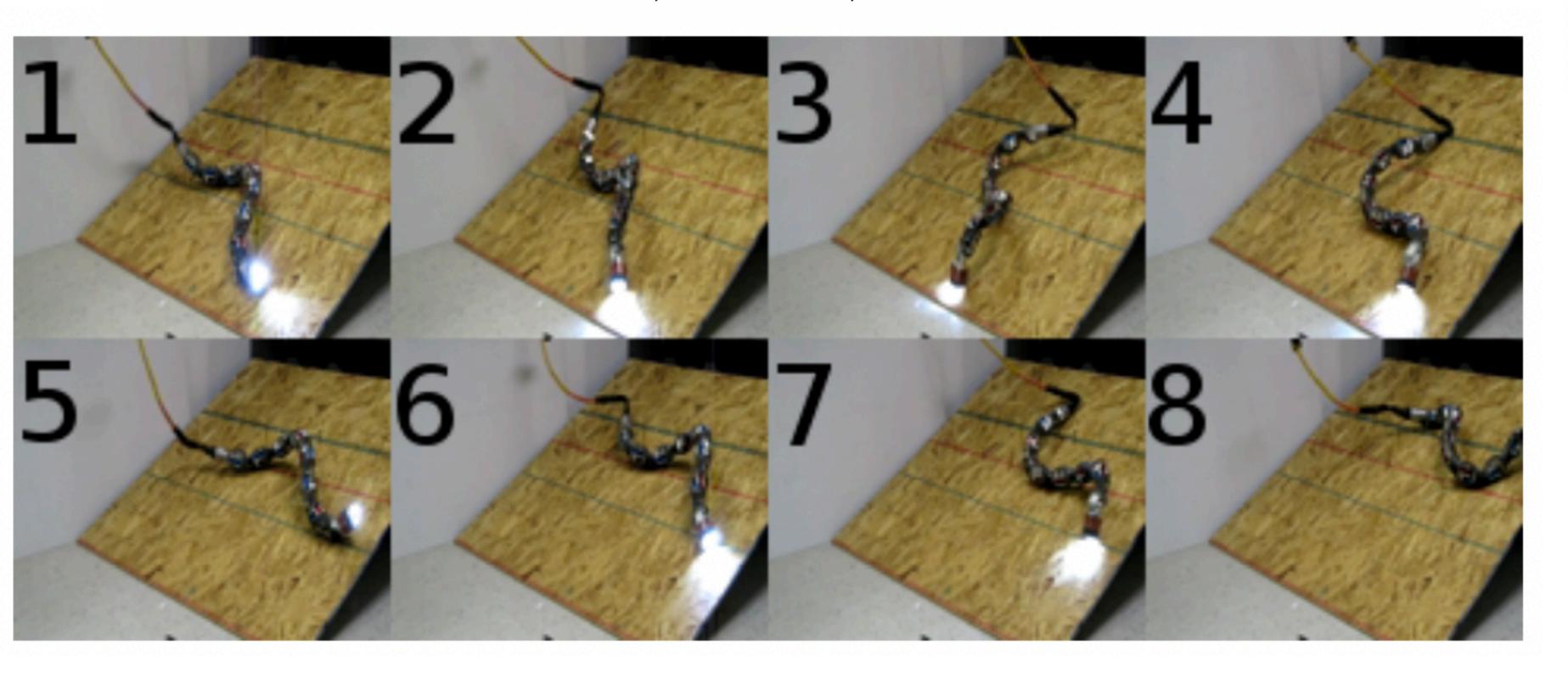
A very fancy version of Cross Entropy: CMA-ES

Tetris is cute...
But what about *real* robots?

Cross Entropy for Snake Robot Gaits

Using Response Surfaces and Expected Improvement to Optimize Snake Robot Gait Parameters

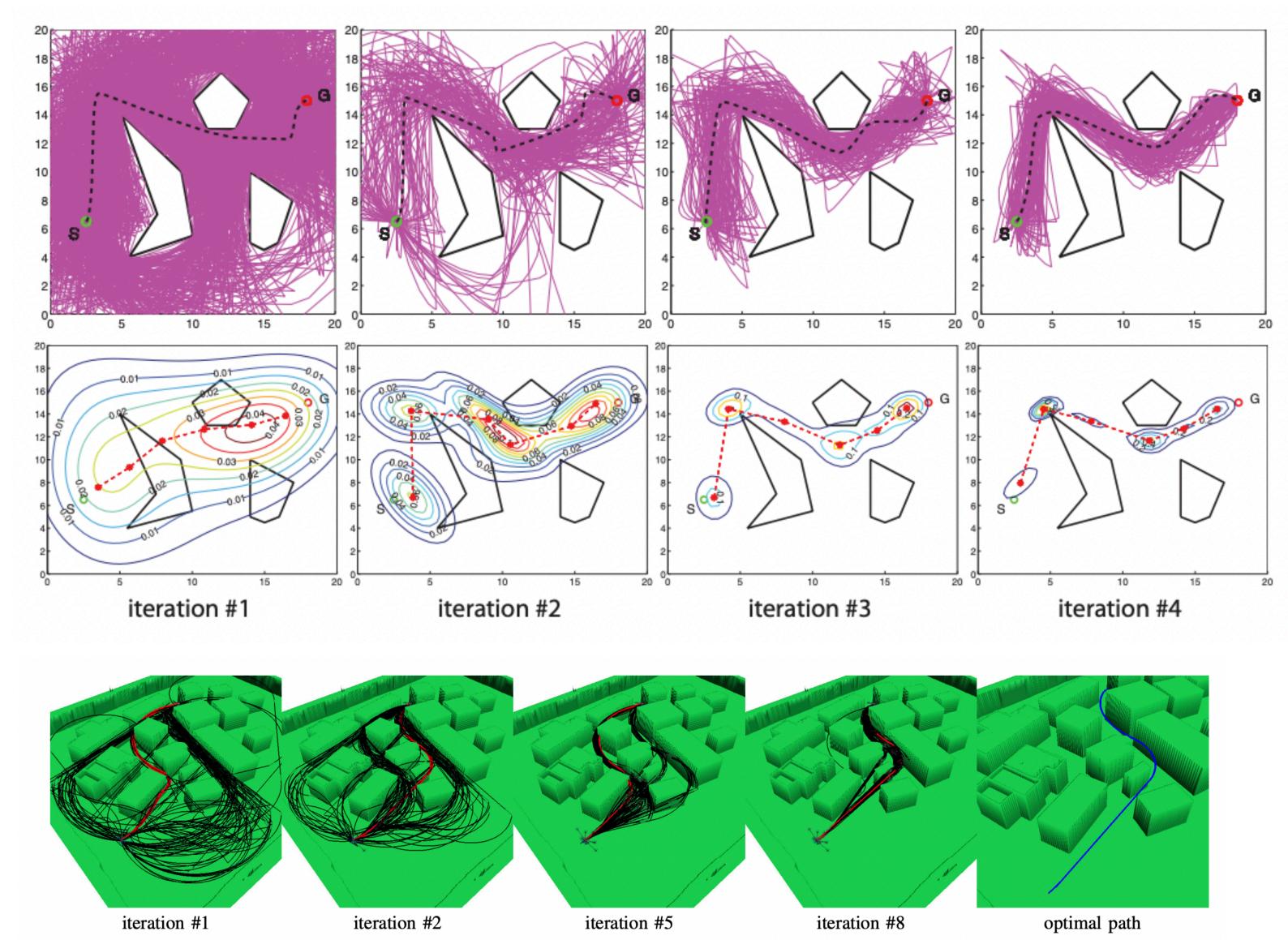
Matthew Tesch, Jeff Schneider, and Howie Choset



Uses a Gaussian Process
to fit a distribution

Prove it can find the optimal gait with minimal samples

Cross Entropy Search for Motion Planning

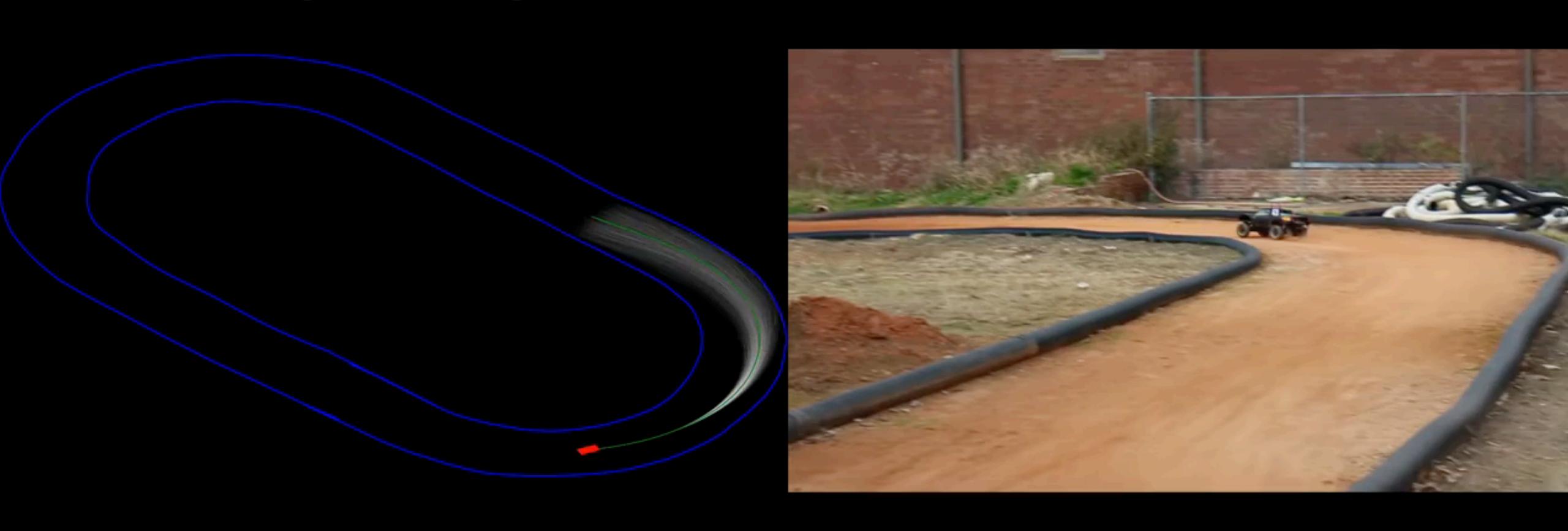


Cross-Entropy Randomized Motion Planning

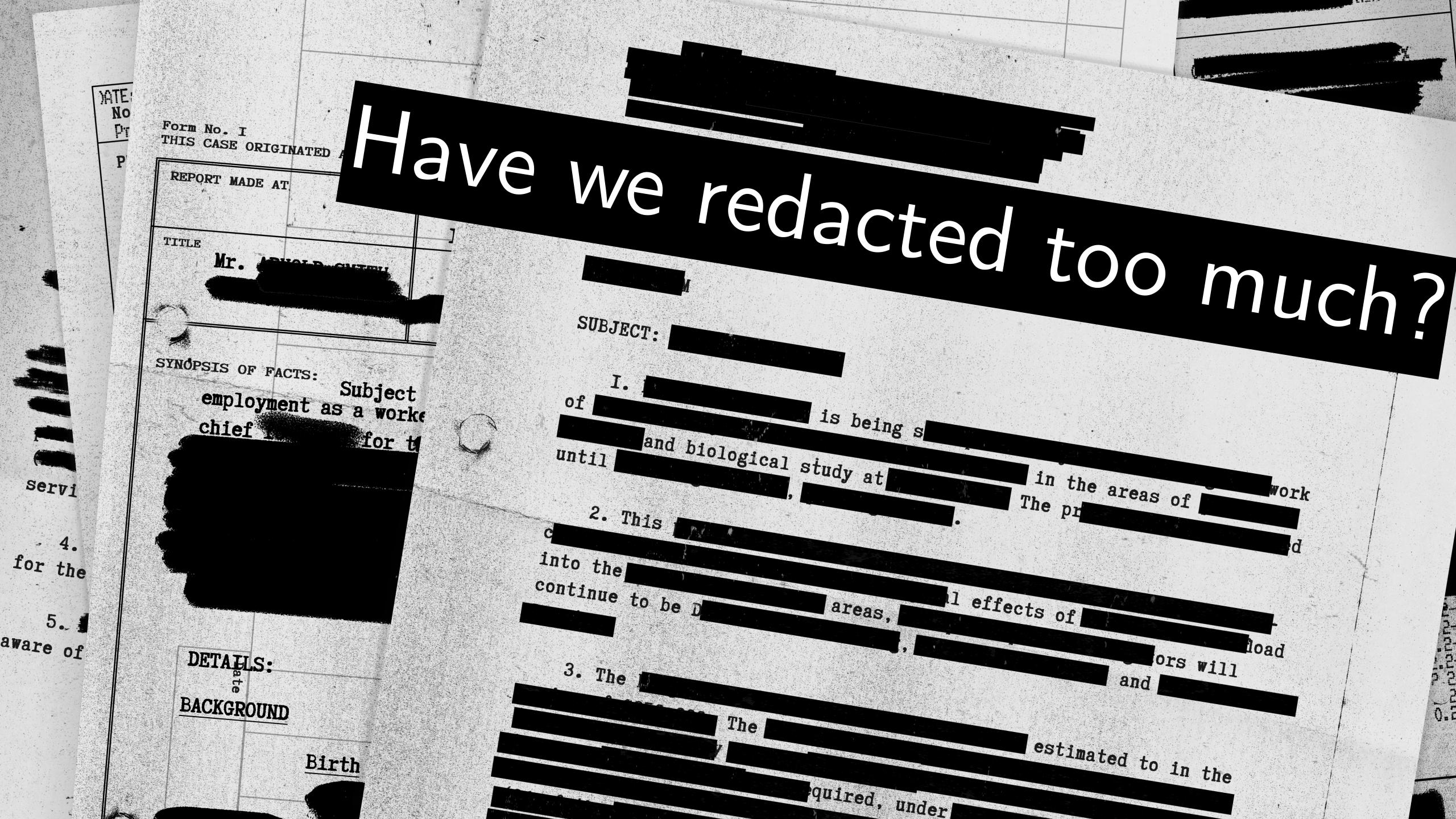
Marin Kobilarov

Distribution over control trajectories

2560, 2.5 second trajectories sampled Cross Entropy for Control with cost-weighted average @ 60 Hz



Georgia Tech Auto Rally (Byron Boots lab)



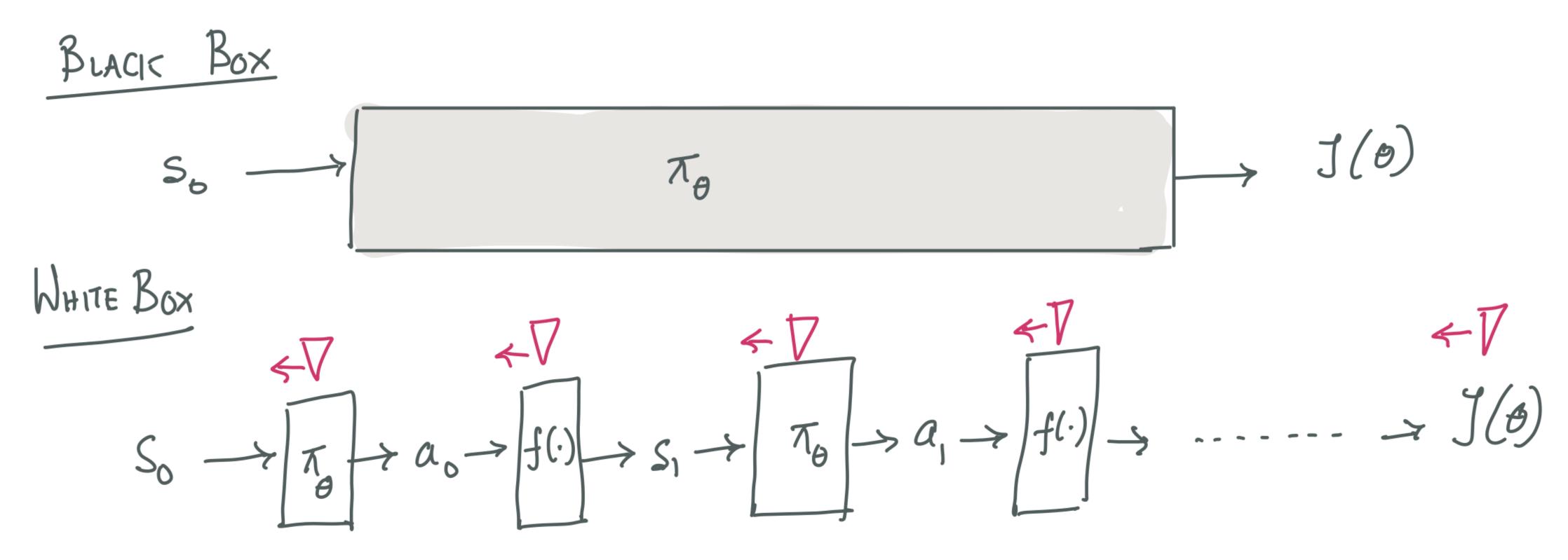
Black-box vs White-box vs Gray-box

$$\begin{array}{c|c}
\hline
\text{Black Box} \\
\hline
\text{So} & \hline
\end{array}$$

$$\begin{array}{c}
T_{\theta} \\
\hline
\text{White Box} \\
\hline
\end{array}$$

$$\begin{array}{c}
S_{0} & \rightarrow \boxed{T_{\theta}} \rightarrow a_{0} \rightarrow \boxed{f(\cdot)} \rightarrow S_{1} \rightarrow \boxed{T_{\theta}} \rightarrow a_{1} \rightarrow \boxed{f(\cdot)} \rightarrow \cdots \rightarrow \boxed{f$$

Black-box vs White-box vs Gray-box



How can we take gradients if we don't know the dynamics?

The Likelihood Ratio Trick!

REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy π_{θ} while not converged do

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{\nabla}_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} | s_{t}^{(i)} \right) \right) R(\xi^{(i)}) \right]$$

Update parameters $\theta \leftarrow \theta + \alpha \widetilde{\nabla}_{\theta} J$

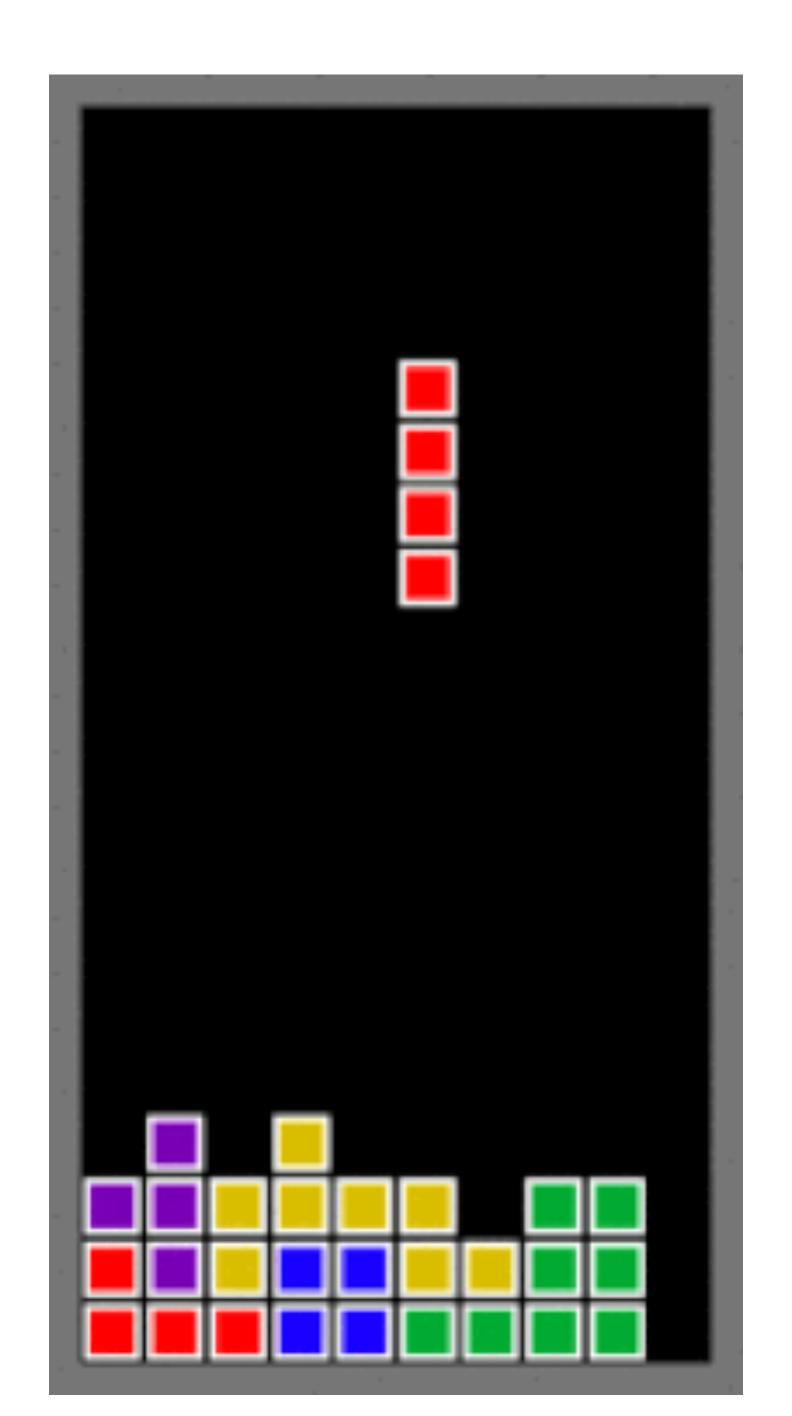
return π_{θ}

Tetris Policy

$$\pi_{\theta}(a|s) = \frac{\exp\left(\theta^{\top}f(s,a)\right)}{\sum\limits_{a'}\exp\left(\theta^{\top}f(s,a')\right)}$$

 $f_1(s, a) = \#$ number of holes

 $f_2(s, a) = \# \max \text{ height}$



Chugging through the gradient ..

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \nabla_{\theta} \left[\theta^{\top} f(s,a) - \log \sum_{a'} \exp \left(\theta^{\top} f(s,a') \right) \right]$$

$$= f(s,a) - \frac{\sum_{a'} f(s,a') \exp \left(\theta^{\top} f(s,a') \right)}{\sum_{a'} \exp \left(\theta^{\top} f(s,a') \right)}$$

$$= f(s,a) - \sum_{a'} f(s,a') \pi_{\theta} \left(a'|s \right)$$

$$= f(s,a) - E_{\pi_{\theta}(a'|s)} \left[f(s,a') \right]$$

Understanding the REINFORCE update

LET
$$f_1(s,a) = \# holes$$
.

$$R = +1$$

$$R = +1$$

$$R = +1$$

$$R = +1$$

$$R = -1$$

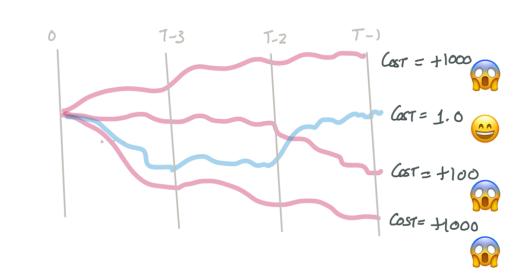
$$R$$

tl,dr

The Goal of Policy Optimization

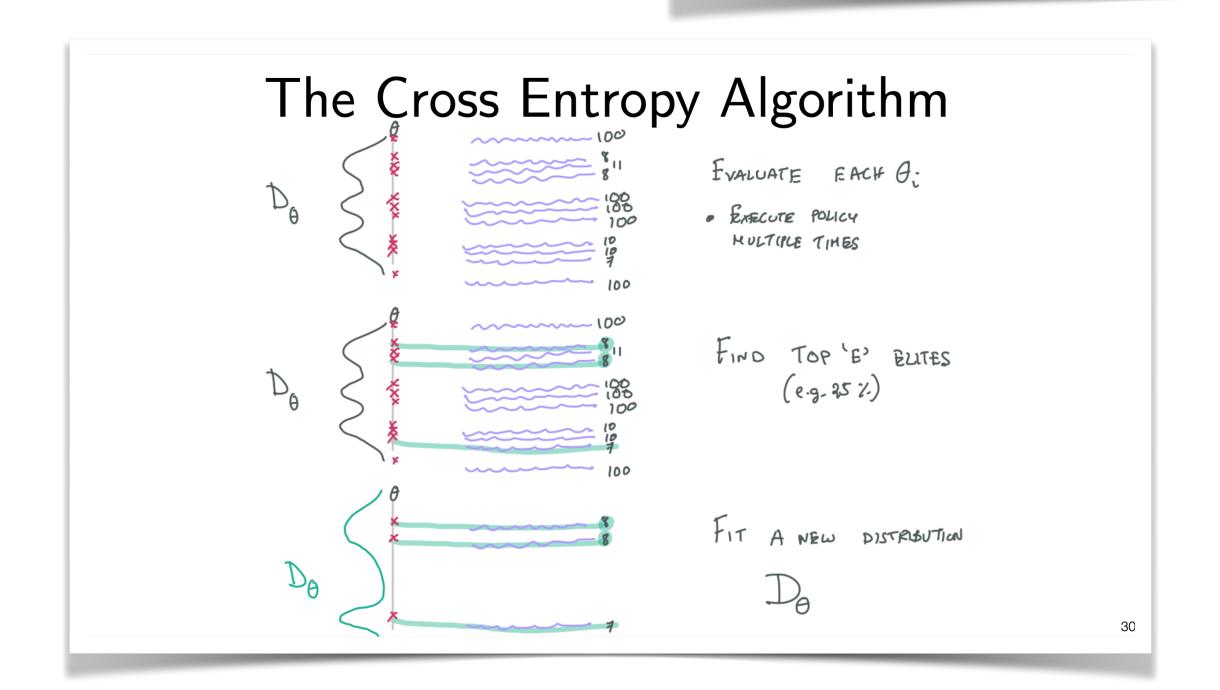
$$\pi_{\theta}(s) = \arg\min_{a} \theta^{T} f(s, a)$$

$$\min_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\pi_{\theta}} c(s_t, a_t)$$



Gray-box

Black-box



REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy π_{θ} while not converged do

Run simulator with π_{θ} to collect $\{\xi^{(i)}\}_{i=1}^{N}$ Compute estimated gradient

$$\widetilde{\nabla}_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{(i)} | s_{t}^{(i)} \right) \right) R(\xi^{(i)}) \right]$$

Update parameters $\theta \leftarrow \theta + \alpha \widetilde{\nabla}_{\theta} J$ return π_{θ}