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Recap: Two Ingredients of RL
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Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3



CuRSE of VALUE 

APPROXIMATION!



Two sides of the same coin
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Bootstrapping Distribution shift approximate dynamic programming 89
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Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201
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Figure 8.1.5: Training with
neural network.
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To hell with Value Estimates! 

5
Trust ONLY actual Returns



Bye Bye Bellman …
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“not to be blinded by the 
beauty of the Bellman 

equation”

- Andrew Moore



What if we focused on 
finding good policies … ?
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Sometimes a policy is waaaaay simpler than the value

The Policy! The Value!



Can we just focus on finding a good policy?
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πθ : st → at

Learn a mapping from 

states to actions

Roll-out policies in the real-world

to estimate value 



The Game of 
Tetris
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What’s a good policy representation for Tetris?

11

12 draft: modern adaptive control and reinforcement learning

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k ⇥ 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x0 will
be given the current state x and the action a. Solving deterministic

State ( )st Action ( )at

(4 rotations)*(10 slots)

 - (6 impossible poses) = 34

πθ : st → at



Activity!



Think-Pair-Share 
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Think (30 sec): Ideas for how to represent policy for tetris?

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 



Some inspiration for Tetris policy
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Until 2008, the best artificial Tetris player was handcrafted, 
as reported by Fahey (2003). Pierre Dellacherie, a self 
declared average Tetris player, identified six simple features 
and tuned the weights by trial and error.



Dellacherie Features
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Eroded

Cells

The contribution of the last 
piece to the cleared lines 

time the number of cleared 
lines.

The number of filled cells 
adjacent to the empty cells 

summed over all rows

Row

Transitions

Landing

Heights

Column

Transitions

Holes Cumulative

Wells

A well is a succession of 
empty cells and the cells to 

the left and right are 
occupied



A magic formula ?!?
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A magic formula ?!?
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This linear evaluation function cleared an average of 660,000 lines on the full grid …

… In the simplified implementation used by the approaches discussed earlier, the games would 
have continued further, until every placement would overflow the grid. Therefore, this report 

underrates this simple linear rule compared to other algorithms.



Can YOU do better 
than Dellacherie?



The Goal of Policy Optimization
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πθ(s) = arg min
a

θTf(s, a)

min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)

#Think of f(s,a) being dellacherie features

#Think of c(s,a) as 

-num_rows_cleared



Is Policy Optimization a good idea?

20

Pros Cons

A policy is simpler than 
value function

Easy to bake in engineering 
knowledge

Easy to code up!
Ignoring Markov structure 
of states and costs

Careful feature engineering

Exploration is difficult in 
this setting



What are some ways to solve this optimization?
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min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)



Activity!



Think-Pair-Share 
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Think (30 sec): What are some of the techniques we can use to 
solve the policy optimization?

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 

min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)



Option 1: Gradient Descent
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θ+ = θ − η∇θJ(θ)

What could go wrong?

1. Is  differentiable?J(θ)

2. Is  noisy?J(θ)



Option 2: Zeroth Order Methods

• Nelder Mead


• Cross Entropy


• Simulated Annealing


• Genetic Algorithm


• Response Surface Methods


• Coordinate Descent

25
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Cross 

Entropy 

If you were ever 
stranded on an 

island …



Let’s build 

some intuition!



Credit: https://
blog.otoro.net/

2017/10/29/visual-
evolution-strategies/



The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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Cross Entropy for Gaussian
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Dθ := 𝒩(μ, Σ)

μt =
1
e

e

∑
i=1

θi

Σt =
1
e

e

∑
i=1

(θi − μt)2

Gaussian Distribution

Mean

Variance



Does it work?
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Does it work?
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Practical

Issues and


Fixes



Problem 1: What happens to the variance?

39

Σt =
1
e

e

∑
i=1

(θi − μt)2

Simple fix: Add a bit of noise to the variance

Σt =
1
e

e

∑
i=1

(θi − μt)2 + Σnoise

Collapses too quickly!



Problem 2: What if we have a bad batch of samples?
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μt =
1
e

e

∑
i=1

θi

Simple fix: Slowly update mean

The elites can be bad, and the mean can slingshot into a bad value

μt = μt−1 + η
1
e

e

∑
i=1

θi



Problem 3: What if we never converge and do random 
walks?
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Single-steps cancel out

Use small Σ

Progress correlated

Use large Σ

A very fancy version of Cross Entropy: CMA-ES 



Tetris is cute…

But what about real


robots?

42



Cross Entropy for Snake Robot Gaits
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Uses a Gaussian 
Process

to fit a 

distribution

Prove it can find the optimal gait with minimal samples



Cross Entropy Search for Motion Planning

44

Distribution over

control trajectories 
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Georgia Tech Auto Rally (Byron Boots lab)

Cross Entropy for Control
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Have we redacted too much?



Black-box vs White-box vs Gray-box
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Black-box vs White-box vs Gray-box
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How can we take 
gradients if we don’t 
know the dynamics?
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The Likelihood  
Ratio Trick!



REINFORCE
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Tetris Policy

f1(s, a) = # number of holes

f2(s, a) = # max height



Chugging through the gradient ..
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Understanding the REINFORCE update
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tl;dr

Black-box Gray-box


