
Black-box vs White-box

Policy Optimization

Sanjiban Choudhury

1

Recap: Two Ingredients of RL

2
Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3

CuRSE of VALUE

APPROXIMATION!

Two sides of the same coin

4

Bootstrapping Distribution shift approximate dynamic programming 89

���������

����	
��
�����
������

�������
���	����
��
������

�	�����
���	����
��
�������

Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

max

To hell with Value Estimates!

5
Trust ONLY actual Returns

Bye Bye Bellman …

6

“not to be blinded by the
beauty of the Bellman

equation”

- Andrew Moore

What if we focused on
finding good policies … ?

7

8

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010 1 -25 1 -200 19 -50 -300
-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

Sometimes a policy is waaaaay simpler than the value

The Policy! The Value!

Can we just focus on finding a good policy?

9

πθ : st → at

Learn a mapping from

states to actions

Roll-out policies in the real-world

to estimate value

The Game of
Tetris

10

What’s a good policy representation for Tetris?

11

12 draft: modern adaptive control and reinforcement learning

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k ⇥ 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x0 will
be given the current state x and the action a. Solving deterministic

State ()st Action ()at

(4 rotations)*(10 slots)

 - (6 impossible poses) = 34

πθ : st → at

Activity!

Think-Pair-Share

13

Think (30 sec): Ideas for how to represent policy for tetris?

Pair: Find a partner

Share (45 sec): Partners exchange

 ideas

Some inspiration for Tetris policy

14

Until 2008, the best artificial Tetris player was handcrafted,
as reported by Fahey (2003). Pierre Dellacherie, a self
declared average Tetris player, identified six simple features
and tuned the weights by trial and error.

Dellacherie Features

15

Eroded

Cells

The contribution of the last
piece to the cleared lines

time the number of cleared
lines.

The number of filled cells
adjacent to the empty cells

summed over all rows

Row

Transitions

Landing

Heights

Column

Transitions

Holes Cumulative

Wells

A well is a succession of
empty cells and the cells to

the left and right are
occupied

A magic formula ?!?

16

A magic formula ?!?

17

This linear evaluation function cleared an average of 660,000 lines on the full grid …

… In the simplified implementation used by the approaches discussed earlier, the games would
have continued further, until every placement would overflow the grid. Therefore, this report

underrates this simple linear rule compared to other algorithms.

Can YOU do better
than Dellacherie?

The Goal of Policy Optimization

19

πθ(s) = arg min
a

θTf(s, a)

min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)

#Think of f(s,a) being dellacherie features

#Think of c(s,a) as

-num_rows_cleared

Is Policy Optimization a good idea?

20

Pros Cons

A policy is simpler than
value function

Easy to bake in engineering
knowledge

Easy to code up!
Ignoring Markov structure
of states and costs

Careful feature engineering

Exploration is difficult in
this setting

What are some ways to solve this optimization?

21

min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)

Activity!

Think-Pair-Share

23

Think (30 sec): What are some of the techniques we can use to
solve the policy optimization?

Pair: Find a partner

Share (45 sec): Partners exchange

 ideas

min
θ

J(θ) =
T−1

∑
t=0

𝔼πθ
c(st, at)

Option 1: Gradient Descent

24

θ+ = θ − η∇θJ(θ)

What could go wrong?

1. Is differentiable?J(θ)

2. Is noisy?J(θ)

Option 2: Zeroth Order Methods

• Nelder Mead

• Cross Entropy

• Simulated Annealing

• Genetic Algorithm

• Response Surface Methods

• Coordinate Descent

25

26

Cross

Entropy

If you were ever
stranded on an

island …

Let’s build

some intuition!

Credit: https://
blog.otoro.net/

2017/10/29/visual-
evolution-strategies/

The Cross Entropy Algorithm

29

The Cross Entropy Algorithm

30

The Cross Entropy Algorithm

31

The Cross Entropy Algorithm

32

The Cross Entropy Algorithm

33

The Cross Entropy Algorithm

34

Cross Entropy for Gaussian

35

Dθ := 𝒩(μ, Σ)

μt =
1
e

e

∑
i=1

θi

Σt =
1
e

e

∑
i=1

(θi − μt)2

Gaussian Distribution

Mean

Variance

Does it work?

36

Does it work?

37

38

Practical

Issues and

Fixes

Problem 1: What happens to the variance?

39

Σt =
1
e

e

∑
i=1

(θi − μt)2

Simple fix: Add a bit of noise to the variance

Σt =
1
e

e

∑
i=1

(θi − μt)2 + Σnoise

Collapses too quickly!

Problem 2: What if we have a bad batch of samples?

40

μt =
1
e

e

∑
i=1

θi

Simple fix: Slowly update mean

The elites can be bad, and the mean can slingshot into a bad value

μt = μt−1 + η
1
e

e

∑
i=1

θi

Problem 3: What if we never converge and do random
walks?

41

Single-steps cancel out

Use small Σ

Progress correlated

Use large Σ

A very fancy version of Cross Entropy: CMA-ES

Tetris is cute…

But what about real

robots?

42

Cross Entropy for Snake Robot Gaits

43

Uses a Gaussian
Process

to fit a

distribution

Prove it can find the optimal gait with minimal samples

Cross Entropy Search for Motion Planning

44

Distribution over

control trajectories

45

Georgia Tech Auto Rally (Byron Boots lab)

Cross Entropy for Control

46

Have we redacted too much?

Black-box vs White-box vs Gray-box

47

Black-box vs White-box vs Gray-box

48

How can we take
gradients if we don’t
know the dynamics?

49

The Likelihood
Ratio Trick!

REINFORCE

51

52

Tetris Policy

f1(s, a) = # number of holes

f2(s, a) = # max height

Chugging through the gradient ..

53

Understanding the REINFORCE update

54

55

tl;dr

Black-box Gray-box

