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Recap: Two Ingredients of RL
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CURSE OF VALVE
APPROXINMATION!




Two sides of the same coin

Bootstrapping Distribution shift

Iteration 101
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To hell with Value Estimates!

Trust ONLY actual Returns



Bye Bye Bellman ...

‘not to be blinded by the
beauty of the Bellman
equation’

- Andrew Moore



What if we focused on
finding good policies ... ?




Sometimes a policy is waaaaay simpler than the value

Car—on—the—Hilll J* (pos,vel)
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The Policy! The Valuel



Can we just focus on finding a good policy?
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Learn a mapping from Roll-out policies in the real-world
states to actions to estimate value
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The Game of

Tetris



What's a good policy representation for Tetris?

(4 rotations)*(10 slots)
- (6 impossible poses) = 34

State (s,) Action (a,)
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Think-Pair-Share

Think (30 sec): Ideas for how to represent policy for tetris?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas

13



Some inspiration for Tetris policy

Until 2008, the best artificial Tetris player was handcrafted,
as reported by Fahey (2003). Pierre Dellacherie, a self
declared average Tetris player, identified six simple features
and tuned the weights by trial and error.
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Dellacherie Features

(f1) (f2) (f3) (f4) (f5) (f6)
Landing Eroded Row Column Holes  Cumulative
Heights Transitions  Transitions

Cells

Wells

A well is a succession of

The contribution of the last The number of filled cells

piece to the cleared lines adjacent to the empty cells empty cells and the cells to
time the number of cleared summed over all rows the left and right are
lines. occupied



A magic formula 717

—4 X holes — cumulative wells

— row transitions — column transitions
— landing height + eroded cells
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A magic formula 717

—4 X holes — cumulative wells
— row transitions — column transitions
— landing hetght + eroded cells

This linear evaluation function cleared an average of 660,000 lines on the full grid ...
... In the simplified implementation used by the approaches discussed earlier, the games would
have continued further, until every placement would overflow the grid. Therefore, this report
underrates this simple linear rule compared to other algorithms.
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Can YOU do better
than Dellacherie?




The Goal of Policy Optimization

7,(s) = arg min O' (s, a)
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T—1
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s Policy Optimization a good idea?’

Pros

A policy is simpler than
value function

Easy to bake in engineering
knowledge

Easy to code up!

N8

Cons

Careful feature engineering

Exploration is difficult in
this setting

lgnoring Markov structure
of states and costs
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What are some ways to solve this optimization?

-1
min J(0) = Z E, (s, a)
0
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Think-Pair-Share

Think (30 sec): What are some of the techniques we can use to

solve the policy optimization?
T—1

min J(f) = Z = C(Sp ay)
: : 0
Pair: Find a partner =0
Ca;fr:—j—\ooom
D&/
(arTs_LoM‘
Share (45 sec): Partners exchange Gera o,
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Option 1: Gradient Descent

0t =0 —nV,J0)

What could go wrong?

1. Is J(O) differentiable?

2. Is J(0) noisy?



Option 2: Zeroth Order Methods

® Nelder Mead

® Cross Entropy

e Simulated Annealing

® Genetic Algorithm

® Response Surface Methods

® Coordinate Descent
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|l et's build
some intuition!




Credit: https://
blog.otoro.net/
2017/10/29/visual-
evolution-strategies/




The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The Cross Entropy Algorithm
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The gross Entropy Algorithm
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The (a:ross Entropy Algorithm
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Cross Entropy for Gaussian

Gaussian Distribution D, := A (u, X)

1 €
Mean I — 6.
p eg‘ l

1 €
Variance Y= — 2 (0; — //tt)2
€ i
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Does it work?

Learning Tetris Using the Noisy Cross-Entropy Method

Istvan Szita
szityu@eotvos.elte.hu

Andras Lorincz

andras.lorincz@elte.hu

Department of Information Systems, Eotvos Lordand University, Budapest, Hungary
H-1117

The cross-entropy method is an efficient and general optimization algo-
rithm. However, its applicability in reinforcement learning (RL) seems
to be limited because it often converges to suboptimal policies. We ap-
ply noise for preventing early convergence of the cross-entropy method,
using Tetris, a computer game, for demonstration. The resulting policy
outperforms previous RL algorithms by almost two orders of magnitude.
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Does it work?

ALGORITHM

GRID SIZE

LINES CLEARED

FEATURE SET USED

TSITSIKLIS & VAN ROY (1996)

BERTSEKAS & TSITSIKLIS (1996)
LAGOUDAKIS ET AL. (2002)
KAKADE (2002)

DELLACHERIE

[REPORTED BY FAHEY (2003)]
RAMON & DRIESSENS (2004)
BOHM ET AL. (2005)

FARIAS & VAN Roy (2006)
SZITA & LORINCZ (2006)
ROMDHANE & LAMONTAGNE (2008)

BouMAzA (2009)
THIERY & SCHERRER (2009A;B)
GABILLON ET AL. (2013)

APPROXIMATE VALUE
ITERATION

A - PI
LEAST-SQUARES PI

NATURAL POLICY
GRADIENT

HAND TUNED
RELATIONAL RL
GENETIC ALGORITHM

LINEAR PROGRAMMING
CROSS ENTROPY

CASE-BASED
REASONING AND RL

CMA-ES
CROSS ENTROPY

CLASSIFICATION-BASED
POLICY ITERATION

16 x 10

19 x 10
20 x 10
20 x 10

20 x 10
20 x 10
20 x 10

20 x 10
20 x 10
20 x 10

20 x 10
205¢10
20 x 10

30

2,800
~ 2,000
~ 5,000

660,000

~ 50
480,000,000
(TWO PIECE)
4,274
348,895

~ 50

35,000,000
35,000,000
51,000,000

HOLES AND PILE
HEIGHT

BERTSEKAS
LLAGOUDAKIS
BERTSEKAS

DELLACHERIE

BOHM

BERTSEKAS
DELLACHERIE

BCTS
DT

DT FOR POLICY
DT + RBF FOR VALUE
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Problem 1: What happens to the variance?
Y — li ((9 _//tt)Z
€ =1 |

Collapses too quickly!

Simple fix: Add a bit of noise to the variance

1 €
= — 2 (‘91 o /’tt)z T 2‘naise
€
=1
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Problem 2: What it we have a bad batch of samples?

1 €
=— Z 0,
i=1
The elites can be bad, and the mean can slingshot into a bad value

Simple fix: Slowly update mean

pl=pt +77—29
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Problem 3: What it we never converge and do random

Single-steps cancel out
Use small 2

walks?

Progress correlated
Use large 2

<

A

A very fancy version of Cross Entropy: CMA-ES
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Tetris I1s cute...
But what about real
robots?
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Cross Entropy for Snake Robot Gaits

Using Response Surfaces and Expected Improvement to Optimize Snake
Robot Gait Parameters

Matthew Tesch, Jeff Schneider, and Howie Choset

Uses a Gaussian
Process
to fit a
distribution

y

Prove it can find the optimal gait with minimal samples

-
. -- a
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Cross Entropy Search for Motion Planning
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2560, 2.5 second trajectories sampled Cross Entro PY for Control
with cost-weighted average @ 60 Hz

Georgia Tech Auto Rally (Byron Boots lab)
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Black-box vs White-box vs Gray-box
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Black-box vs White-box vs Gray-box
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How can we take
gradients it we don't
know the dynamics?
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The Likelihood
Ratio Trick!




REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7ty

while not converged do

Run simulator with 7ty to collect {¢ (7) fi |
Compute estimated gradient

N 1 N T—1 ; ; ;
Vol== Y || ) Vglogmy (at()|5§)) R(¢W)
N = | =

~ Update parameters 6 < 0 + « Vo]
return 7ty
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Tetris Policy

exp (GTf(s, a))

7to(als) = Z,:exp (GTf(s,a/))

a

f;(s,a) = # number ot holes
f-(s,a) = # max height
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Chugging through the gradient ..

Vo log mp(als) = Vg |0 f(s,a) —logZexp (OTf(s, a’))]

oy Do S) o2 (07 f ()
I Yo exp (07 f(s,a))

— f(s,a) — Z, f(S/a,) 7ty (a'|s)
= f(s,a) = Exy(as) [f(s,4)




Understanding the REINFORCE update

LET 7£1 [S‘)a) = #}')b(ﬂ-&.
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tl ; d r The Goal of Policy Optimization

7p(s) = arg min 01 f(s, a)

T-1

minJ() = )
0

=0

Black-box

= C(Sp, ay)
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Gray-box

The Cross Entropy Algorithm
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REINFORCE

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy 7y

while not converged do

Run simulator with 7ty to collect {& (1) fi 1
Compute estimated gradient

N | N [/T-1 - i
Vol== Y. || Y Vologmg (a§)|55)) R(eW)
N =3 [ \i=

| Update parameters 6 < 0 +a Vg ]
return 77y
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