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Two Ingredients of RL
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Exploration Exploitation Estimate Values Q(s, a)

s

a1

a2

a3
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When the 
MDP is known!

Run Value 

/ Policy Iteration



When MDP is known: Policy Iteration
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Vπ(s) = c(s, π(s)) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)] π+(s) = arg min
a

c(s, a) + γ𝔼s′￼∼𝒯(s,a)Vπ(s′￼)]

Estimate value Improve policy



What happens when the 
MDP is unknown?
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Need to estimate the value of policy

Policy πValue Vπ(s)
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Estimate the value of policy from sample rollouts

Policy πRoll outs
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Value  Vπ(s)Roll outs

Estimate the value of policy from sample rollouts



Activity!



Think-Pair-Share 
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Think (30 sec): Given a bunch of roll-outs, how can you estimate 
value of a state? (Hint: More than one way!)

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 



Option 1: Just execute the damn policy!
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and look at the returns ..



Monte Carlo Evaluation
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Goal: Learn  from complete rollout Vπ(s) s1, a1, c1, s2, a2, c2, . . . ∼ π

Define: Return is the total discounted cost
Gt = ct+1 + γct+2 + γ2ct+3 + …

Value function is the expected return

Vπ(s) = 𝔼π[Gt |st = s]



First Visit Monte Carlo
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For episode in rollouts:

If state s is visited for first time t

Increment counter N(s) ← N(s) + 1

Increment total return 

S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞
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For episode in rollouts:

If state s is visited for first time t

Increment counter N(s) ← N(s) + 1

Increment total return 

S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)
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For episode in rollouts:

If state s is visited for first time t

Increment counter N(s) ← N(s) + 1

Increment total return 

S(s) ← S(s) + Gt

Update V(s) = S(s)/N(s)

Law of large numbers:  as V(s) → Vπ(s) N(s) → ∞
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Can we incrementally 
update the value V(s)?
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Exponential Moving Average!
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For episode in rollouts:

If state s is visited for first time t

Update V(s) ← V(s) + α(Gt − V(s))

Estimation

error



Facts about Monte Carlo

18From David Silver



Can we do better than 
Monte Carlo?
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What if we want quick updates? 

(No patience to wait till end)

What if we don’t have complete 
episodes?



Option 2: Trust your value estimate 
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Value of a state
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Vπ(st)

π st+1 π

= ct γct+1+ + γ2ct+2 +

Expected discounted sum of cost from 
starting at a state 

and following a policy from then on

st π

⋯

π* = arg min
π

𝔼s0
Vπ(s0)



Value of a state-action
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st st+1 π

= ct γct+1+ + γ2ct+2 +Qπ(st, at)

at
π

⋯
⋯

Expected discounted sum of cost from 
starting at a state, executing action 

and following a policy from then on

Qπ(st, at) = c(st, at) + γ𝔼st+1∼𝒯(st,at)V
π(st+1)



Temporal Difference (TD) learning
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Goal: Learn  from tracesVπ(s)

(st, at, ct, st+1)
Recall value function  satisfiesVπ(s)

TD Idea: Update value using estimate of next state value

(st, at, ct, st+1) (st, at, ct, st+1) (st, at, ct, st+1)

Vπ(s) = c(s, π(s)) + γ𝔼s′￼
Vπ(s′￼)

V(st) ← V(st) + α (ct + γV(st+1) − V(st))
Temporal Difference Error



TD Learning
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For every (st, at, ct, st+1)
V(st) ← V(st) + α(ct + γV(st+1) − V(st))



25

Monte-Carlo Temporal Difference

V(s) ← V(s) + α(Gt − V(s)) V(s) ← V(s) + α(c + γV(s′￼) − V(s))

Zero Bias Can have bias

High Variance Low Variance

Always convergence

(Just have to wait till heat death of the universe)

May not converge if 

using function approximation
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If you are interested

in helping me make 
pretty grid world 

animations of MC, 
TD, Q-learning …


Please reach out!



So far we have been 
talking about estimation 

of .


What happens when we 
improve policy?

Vπ(s)
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Use the same policy iteration idea ?
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Estimate value 

using TD 

Qπ(s, a) Greedily improve policy

π+ = arg min

a
Qπ(s, a)

Will this work?



Is greedy policy improvement the right thing to do?

29



SARSA
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Estimate value 

using TD 

Qπ(s, a) Use epsilon-greedy 

to update policy 

Need to explore!!



Can we learn off-policy?
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Q-learning: Learning off-policy
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For every (st, at, ct, st+1)
Q*(st, at) = Q*(st, at) + α(c(st, at) + γmin

a′￼

Q*(st+1, a′￼)−Q*(st, at))

Notice we are not approximating  Qπ(st, at)

We don’t even care about π

We can learn from any data!



Is this … magic?
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We just learned in IL how distribution shift is a big deal …

It’s not magic. Q-learning relies on a set of assumptions:

1. Each state-action is visited infinite times

2. Learning rate  must be annealed over timeα



How can we use a 
(s,a,c,s’) more than 

once?


What happens if samples 
are highly correlated?
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Solution: Use a replay buffer!
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Credit S. Levine
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https://www.youtube.com/watch?v=W4joe3zzglU


Making Q-learning better!
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Problem: Q-learning suffers from an estimation bias min
a′￼

Q*(st+1, a′￼)

Solution: Double Q-learning Q*(st+1, arg min
a′￼

Q̃(st+1, a′￼))

Problem: Q-learning samples uniformly from replay buffer

Solution: Prioritized DQN - samples states with higher bellman error

Problem: Q-learning doesn’t seem to learn …. 

Solution: Start with high exploration + learning rate, anneal!

Hessel et al. Rainbow: Combining Improvements in Deep Reinforcement Learning



A Unified View of Reinforcement Learning



Monte-Carlo
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Temporal Difference Learning
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Dynamic Programming
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The Unified View

46



47

tl;dr


