Reinforcement Learning: From Games to Robotics

Sanjiban Choudhury

The story thus far ...

a line a Complete de Statiste d'an estatemente de la

But what if the dynamics are unknown?

Exploration vs Exploitation

- •

Doors

Round 2 Round 1 Round 3

 a^2

a¹

•

•

Think-Pair-Share

Think (30 sec): What strategy would you pick doors?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

What if we played the game over multiple time steps?

- •
- t = 1

t = 2

Don't see how good a door is until the end of the episode

When we know the MDP: Dynamic Programming!

 $V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$

When we don't know MDP: Estimate Values

Monte Carlo

Temporal Difference

Two Ingredients of RL

Exploration Exploitation

What is an application where we really need RL?

Games!

Why are Games perfect for RL?

You know the cost function * +1 for winning and - 1 for losing

You don't know the transition function rolls etc.

- * Don't know what opponent will do, stochasticity in dice

Perfect for learning from trial and error (by playing itself!)

Name the Game!

One of the biggest success stories of RL

An agent trained via self-play and neural networks

Beat the world champion

Discovered totally new moves

The game of Backgammon

A backgammon position

S

TD-Gammon

By Gerald Tesauro

- Initialised with random weights Trained by games of self-play
- Using non-linear temporal-difference learning

$$\delta_t = v(S_{t+1}, \mathbf{w}) - v(S_t)$$

 $\Delta \mathbf{w} = lpha \delta_t \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$

Greedy policy improvement (no exploration) Algorithm always converged in practice Ο

Why was TD Gammon such a big deal?

1) Power of self- play

2) First time system could deal with stochastic uncertainty in dynamics (this broke everything in the deep blue style chess engines that were first super human)3) Actually learned a value function: first "human" like behavior rather than just deep search with some heuristic values.

4) Changed elements of how backgammon is played because it demonstrated that certain positions were more valuable than self play5) Demonstrated the TD idea could be scaled to super human performance at a game previously unaddressable.

6) Use a "deep" (i.e. Neural) representation within RL algorithms7) Saw the benefit of imitation learning, but eventually got better than imitation8) Showed boosting performance by some explicit forward search

Two Ingredients of RL: TD-Gammon

No exploration, was just greedy

Exploration Exploitation

Used temporal difference to estimate values

Estimate Values

Okay, but what about games with more complex representations?

Playing Atari with Deep Reinforcement Learning

DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Circa 2013

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

NUCL Predation between and the second of the second of the second of the second of the second se Destruction of the American

Use NN to learn Q-function and then use to infer the optimal policy, $\pi(s)$

Image Source: MIT Introduction to Deep Learning

Two Ingredients of RL: DQN

Epsilon-Greedy

Exploration Exploitation

Used Q-learning with Deep CNN

Estimate Values

Okay, but what about games that require some level of planning?

AlphaGoZero

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

$\mathsf{AlphaGo}$

AlphaGoZero

b Neural network training

Figure 1 | **Self-play reinforcement learning in AlphaGo Zero. a**, The program plays a game $s_1, ..., s_T$ against itself. In each position s_t , an MCTS α_{θ} is executed (see Fig. 2) using the latest neural network f_{θ} . Moves are selected according to the search probabilities computed by the MCTS, $a_t \sim \pi_t$. The terminal position s_T is scored according to the rules of the game to compute the game winner z. **b**, Neural network training in AlphaGo Zero. The neural network takes the raw board position s_t as its input, passes it through many convolutional layers with parameters θ , and outputs both a vector p_t , representing a probability distribution over moves, and a scalar value v_t , representing the probability of the current player winning in position s_t . The neural network parameters θ are updated to maximize the similarity of the policy vector p_t to the search probabilities π_t , and to minimize the error between the predicted winner v_t and the game winner z (see equation (1)). The new parameters are used in the next iteration of self-play as in **a**.

Two Ingredients of RL: AlphaGoZero

Monte Carlo Tree Search

Exploration Exploitation

Deep value network + Deep policy network

Estimate Values

So what happens when we replace the human with a robot?

Learning Strategies in Table Tennis using Inverse Reinforcement Learning

Katharina Muelling $\,\cdot\,$ Abdeslam Boularias $\,\cdot\,$ Betty Mohler $\,\cdot\,$ Bernhard Schölkopf $\,\cdot\,$ Jan Peters

Reinforcement Learning in Robotics: A Survey

Jens Kober^{*†} J. Andrew Bagnell[‡]

email: jkober@cor-lab.uni-bielefeld.de, dbagnell@ri.cmu.edu, mail@jan-peters.net

(a) OBELIX robot

(c) Autonomous helicopter

1992

2001

Jan Peters§¶

1994

(b) Zebra Zero robot

1996

(d) Sarcos humanoid DB

CURSES IN ROBOTICS

Curses in RL for Robotics

Curse of Dimensionality

Curse of Real-World Samples

Curse of Reward Specification

Curse of Model Uncertainty

No Silver Bullet!

Ingredients for Practical RL

Leveraging Demonstrations Kakade et al, Bagnell and Scheider

Reward Shaping Ng et al.

Conservatism and Trust Kakade and Langford, Schulman et al.

Appropriate Policy Representation Locally linear (Kolter and Ng),

Dynamic Motor Primitives (Schaal)

Plannable Models Abbeel and Ng

What about Deep RL?

Position 2

TITLE I DE LA COMPTENSION

real time

autonomous execution

How to Train Your Robot with Deep **Reinforcement Learning – Lessons** We've Learned

1–22 ©The Author(s) 2020 Reprints and permission: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/ToBeAssigned www.sagepub.com/

SAGE

Julian Ibarz¹, Jie Tan¹, Chelsea Finn^{1,3}, Mrinal Kalakrishnan², Peter Pastor², Sergey Levine^{1,4}

Levine et al 2016

Harnoja et al. 2019

Kalashnikov et al. 2018

(a) block stacking Harnoja et al 2018

(b) door opening

Gu et al 2017

There is no Deep RL

There is no "Deep RL"

There is Deep Learning

There is Reinforcement Learning

