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The story thus far ...




But what if the dynamics are unknown?




Exploration vs Exploitation
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-1000

N\
®



Doors Round1 Round 2 Round 3

-1000

N\
®






Think-Pair-Share

Think (30 sec): What strategy would you pick doors?

Pair: Find a partner

ideas




What it we played the
game over multiple time
steps’
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Don't see how good a
door is until the end of

the episode




When we know the MDP: Dynamic Programming!

V(S5:) < Ex [Re1 +vYV(S5t+1)]
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When we don't know MDP: Estimate Values
Monte Carlo Temporal Difference

V(S:) « V(S;) + a (G — V(S,)) V(St) < V(St) + a(Rev1 + yV(St+1) — V(5t))
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Two Ingredients of RL

Exploration Exploitation

Estimate Values Q(s, a)
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What is an application
where we really need RL?
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Why are Games perfect for RL?

You know the cost function
* 41 for winning and - 1 for losing

You don't know the transition function
* Don't know what opponent will do, stochasticity in dice

rolls etc.

Pertect for learning from trial and error (by playing itself!)
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Name the Game!

One of the biggest success stories of RL

An agent trained via
self-play and neural networks

Beat the world champion

Discovered totally new moves
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The game of

Backgammon
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24 23 22 21 20 19 18 17 16 15 14 13

1 2 3 4 5 6 /7 8 9 10 11 12

A backgammon position

white pieces move
counterclockwise

black pieces
move clockwise
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Temporal Difference Learning and TD-Gammon

TD-Gammon

Initialised with random weights
Trained by games of self-play

Using non-linear temporal-difference learning

V(S, W)

Ot
Aw

V(St+1, W) — V(St, W)
ad:Vwv(S:,w)

Greedy policy improvement (no exploration)

Algorithm always converged In practice

From David Silver
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Why was TD Gammon such a big deal?

1) Power of self- play

2) First time system could deal with stochastic uncertainty in dynamics (this broke
everything in the deep blue style chess engines that were first super human)

3) Actually learned a value function: first "human" like behavior rather than just deep
search with some heuristic values.

4) Changed elements of how backgammon is played because it demonstrated that
certain positions were more valuable than selt play

5) Demonstrated the TD idea could be scaled to super human performance at a game
previously unaddressable.

6) Use a "deep" (i.e. Neural) representation within RL algorithms

7) Saw the benefit of imitation learning, but eventually got better than imitation

8) Showed boosting performance by some explicit forward search
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Two Ingredients of RL: TD-Gammon

No exploration,
was just greedy
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Exploration Exploitation

Used temporal difference
to estimate values

Estimate Values
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Okay, but what about
games with more
complex representations?’
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Circa 2013

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Use NN to learn Q-function and then use to infer the optimal policy, (s)

state, s Q(s,a;) = 20

&
Deep 0(s)ay) =3 » 7(s) = argmax Q(s, a)
NN 4
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Image Source: MIT Introduction to Deep Learning
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Two Ingredients of RL: DQN

Epsilon-Greedy Used Q-learning with

Deep CNN
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Exploration Exploitation Estimate Values
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Okay, but what about
games that require some
level of planning?
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AlphaGoZero

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'*, Ioannis Antonoglou!, Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap!, Fan Hui', Laurent Sifre’,
George van den Driessche!, Thore Graepel' & Demis Hassabis!
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AlphaGoZero
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Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The
program plays a game sy, ..., sy against itself. In each position s, an MCTS
oy is executed (see Fig. 2) using the latest neural network fg. Moves are
selected according to the search probabilities computed by the MCTS,
a;~ ;. The terminal position st is scored according to the rules of the
game to compute the game winner z. b, Neural network training in
AlphaGo Zero. The neural network takes the raw board position s; as its
input, passes it through many convolutional layers with parameters 0,

and outputs both a vector p,, representing a probability distribution over
moves, and a scalar value v, representing the probability of the current
player winning in position s;. The neural network parameters 0 are
updated to maximize the similarity of the policy vector p; to the search
probabilities 7r;, and to minimize the error between the predicted winner v;
and the game winner z (see equation (1)). The new parameters are used in
the next iteration of self-play as in a.
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Two Ingredients of RL: AlphaGoZero

Monte Carlo Tree Search Deep value network

_|_
Deep policy network
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Exploration Exploitation Estimate Values
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So what happens when we replace the
human with a robot?

)ﬁphaGo Lee Sedo\
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https://www.youtube.com/watch?v=J3gvpaNFvZU
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photo: Axel Griesh/MPG, Munich

Learning Strategies in Table Tennis using Inverse
Reinforcement Learning

Katharina Muelling - Abdeslam Boularias - Betty Mohler -
Bernhard Scholkopf - Jan Peters
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1992

2001
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Reinforcement Learning in Robotics:
A Survey

Jens Kober*' J. Andrew Bagnell* Jan PetersY

email: jkober@cor-lab.uni-bielefeld.de, dbagnell@ri.cmu.edu, mail@jan-peters.net
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(d) Sarcos humanoid DB

(c) Autonomous helicopter

1994

1996
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CURSES IN ROBOTICS




Curses in RL for Robotics

Curse of Real-World Samples

Curse of Reward Specification

Curse of Dimensionality
Curse of Model Uncertainty
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No Silver Bullet!




Ingredients for Practical RL

Leveraging Demonstrations

Kakade et al, Bagnell and Scheider

Reward Shaping
Ng et al.

Appropriate Policy Representation
] Locally linear (Kolter and Ng),
Dynamic Motor Primitives (Schaal)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Conservatism and Trust

Plannable Models
Abbeel and Ng

Kakade and Langford, Schulman et al.
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What about Deep RL?
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autonomous execution


https://www.youtube.com/watch?v=Q4bMcUk6pcw
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We’ve Learned SAGE

Julian Ibarz’, Jie Tan', Chelsea Finn'-3, Mrinal Kalakrishnan?, Peter Pastor?, Sergey Levine'-*

Levine et al 2016

(a) block stacking (b) door opening

Harnoja et al 2018 Gu et al 2017
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‘ "\ There is
A

no Deep RL




There is no Deep RL"

There is There is
Deep Learning Reinforcement Learning

Better representations for state / value function
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