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The story thus far …
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But what if the dynamics are unknown?
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Exploration vs Exploitation
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From Dan Klein
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Activity!



Think-Pair-Share 
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Think (30 sec): What strategy would you pick doors?

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 



What if we played the 
game over multiple time 

steps?
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Don’t see how good a 

door is until the end of 

the episode
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When we know the MDP: Dynamic Programming!
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When we don’t know MDP: Estimate Values
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Monte Carlo Temporal Difference



Two Ingredients of RL
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Exploration Exploitation Estimate Values Q(s, a)
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What is an application 
where we really need RL?
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Games!



Why are Games perfect for RL?
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You know the cost function 
* +1 for winning and - 1 for losing 

You don’t know the transition function 
* Don’t know what opponent will do, stochasticity in dice 
rolls etc.  

Perfect for learning from trial and error (by playing itself!)
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Name the Game!

One of the biggest success stories of RL

An agent trained via  
self-play and neural networks

Beat the world champion

Discovered totally new moves
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The game of  
Backgammon



20



21
From David Silver

TD-Gammon



Why was TD Gammon such a big deal?
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1) Power of self- play 
2) First time system could deal with stochastic uncertainty in dynamics (this broke 
everything in the deep blue style chess engines that were first super human) 
3) Actually learned a value function: first "human" like behavior rather than just deep 
search with some heuristic values.   
4) Changed elements of how backgammon is played because it demonstrated that 
certain positions were more valuable than self play 
5) Demonstrated the TD idea could be scaled to super human performance at a game 
previously unaddressable. 
6) Use a "deep" (i.e. Neural) representation within RL algorithms 
7) Saw the benefit of imitation learning, but eventually got better than imitation 
8) Showed boosting performance by some explicit forward search 



Two Ingredients of RL: TD-Gammon
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Exploration Exploitation Estimate Values

No exploration, 
was just greedy 

Used temporal difference 
to estimate values 
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Okay, but what about 
games with more 

complex representations?
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Circa 2013
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Image Source: MIT Introduction to Deep Learning



Two Ingredients of RL: DQN
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Exploration Exploitation Estimate Values

Epsilon-Greedy
Used Q-learning with  

Deep CNN
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Okay, but what about 
games that require some 

level of planning?
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AlphaGoZero
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AlphaGo



AlphaGoZero
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Two Ingredients of RL: AlphaGoZero
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Monte Carlo Tree Search Deep value network 
+ 

Deep policy network

Exploration Exploitation Estimate Values
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So what happens when we replace the 
human with a robot?
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https://www.youtube.com/watch?v=J3gvpaNFvZU
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Curses in ROBOTICS



Curses in RL for Robotics
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Curse of Dimensionality

Curse of Real-World Samples

Curse of Reward Specification

Curse of Model Uncertainty
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No Silver Bullet!



Ingredients for Practical RL
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Conservatism and Trust

Appropriate Policy Representation
Locally linear (Kolter and Ng),  

Dynamic Motor Primitives (Schaal)
Leveraging Demonstrations

Kakade et al, Bagnell and Scheider

Plannable Models
Abbeel and Ng

Kakade and Langford, Schulman et al.
Reward Shaping

Ng et al.



What about Deep RL?
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https://www.youtube.com/watch?v=Q4bMcUk6pcw
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Levine et al 2016

Harnoja et al 2018 Gu et al 2017

Kalashnikov et al. 2018Harnoja et al. 2019
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There is  
no Deep RL 



There is no “Deep RL”
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There is  
Deep Learning

There is  
Reinforcement Learning

Better representations for state / value function


