Reinforcement Learning: From Games to Robotics

Sanjiban Choudhury

Cornell Bowers CIS Computer Science

The story thus far ...

But what if the dynamics are unknown?

Exploration vs Exploitation

Doors
Round 1 Round 2 Round 3

Activity!

Think-Pair-Share

Think (30 sec): What strategy would you pick doors?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

What if we played the game over multiple time steps?

Don't see how good a door is until the end of the episode

When we know the MDP: Dynamic Programming!

$$
V\left(S_{t}\right) \leftarrow \mathbb{E}_{\pi}\left[R_{t+1}+\gamma V\left(S_{t+1}\right)\right]
$$

When we don't know MDP: Estimate Values

Monte Carlo

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(G_{t}-V\left(S_{t}\right)\right)
$$

Temporal Difference

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)
$$

Two Ingredients of RL

Estimate Values $Q(s, a)$

What is an application where we really need RL?

Why are Games perfect for RL?

You know the cost function

* +1 for winning and -1 for losing

You don't know the transition function

* Don't know what opponent will do, stochasticity in dice rolls etc.

Perfect for learning from trial and error (by playing itself!)

Name the Game!

One of the biggest success stories of RL

An agent trained via self-play and neural networks

Beat the world champion

Discovered totally new moves

The game of Backgammon

TD-Gammon

Initialised with random weights
Trained by games of self-play
Using non-linear temporal-difference learning

$$
\begin{aligned}
\delta_{t} & =v\left(S_{t+1}, \mathbf{w}\right)-v\left(S_{t}, \mathbf{w}\right) \\
\Delta \mathbf{w} & =\alpha \delta_{t} \nabla_{\mathbf{w}} v\left(S_{t}, \mathbf{w}\right)
\end{aligned}
$$

Greedy policy improvement (no exploration) Algorithm always converged in practice

Why was TD Gammon such a big deal?

1) Power of self- play
2) First time system could deal with stochastic uncertainty in dynamics (this broke everything in the deep blue style chess engines that were first super human)
3) Actually learned a value function: first "human" like behavior rather than just deep search with some heuristic values.
4) Changed elements of how backgammon is played because it demonstrated that certain positions were more valuable than self play
5) Demonstrated the TD idea could be scaled to super human performance at a game previously unaddressable.
6) Use a "deep" (i.e. Neural) representation within RL algorithms
7) Saw the benefit of imitation learning, but eventually got better than imitation
8) Showed boosting performance by some explicit forward search

Two Ingredients of RL: TD-Gammon

No exploration, was just greedy

Exploration Exploitation

Used temporal difference to estimate values

Estimate Values

Okay, but what about games with more complex representations?

Circa 2013

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies
\{vlad,koray, david, alex.graves,ioannis,daan,martin.riedmiller\} @ deepmind.com

xima... $-\square \times$

Use NN to learn Q-function and then use to infer the optimal policy, $\pi(s)$
state, s

Two Ingredients of RL: DQN

Epsilon-Greedy

Used Q-learning with Deep CNN

Exploration Exploitation

Estimate Values

Okay, but what about games that require some level of planning?

AlphaGoZero

Mastering the game of Go without human knowledge

David Silver ${ }^{1 *}$, Julian Schrittwieser ${ }^{1 *}$, Karen Simonyan ${ }^{1 *}$, Ioannis Antonoglou ${ }^{1}$, Aja Huang ${ }^{1}$, Arthur Guez ${ }^{1}$, Thomas Hubert ${ }^{1}$, Lucas Baker ${ }^{1}$, Matthew Lai¹ ${ }^{1}$ Adrian Bolton ${ }^{1}$, Yutian Chen ${ }^{1}$, Timothy Lillicrap ${ }^{1}$, Fan Hui ${ }^{1}$, Laurent Sifre ${ }^{1}$, George van den Driessche ${ }^{1}$, Thore Graepel ${ }^{1}$ \& Demis Hassabis ${ }^{1}$

AlphaGo

AlphaGoZero

Neural network training

Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The program plays a game s_{1}, \ldots, s_{T} against itself. In each position s_{t}, an MCTS α_{θ} is executed (see Fig. 2) using the latest neural network f_{θ}. Moves are selected according to the search probabilities computed by the MCTS, $a_{t} \sim \pi_{t}$. The terminal position s_{T} is scored according to the rules of the game to compute the game winner z. \mathbf{b}, Neural network training in AlphaGo Zero. The neural network takes the raw board position s_{t} as its input, passes it through many convolutional layers with parameters θ, and outputs both a vector \boldsymbol{p}_{t}, representing a probability distribution over moves, and a scalar value v_{t}, representing the probability of the current player winning in position s_{t}. The neural network parameters θ are updated to maximize the similarity of the policy vector \boldsymbol{p}_{t} to the search probabilities $\boldsymbol{\pi}_{t}$, and to minimize the error between the predicted winner v_{t} and the game winner z (see equation (1)). The new parameters are used in the next iteration of self-play as in a.

Two Ingredients of RL: AlphaGoZero

Monte Carlo Tree Search

Exploration Exploitation

Deep value network
$+$
Deep policy network

Estimate Values

So what happens when we replace the human with a robot?

Learning Strategies in Table Tennis using Inverse Reinforcement Learning

Katharina Muelling • Abdeslam Boularias • Betty Mohler
Bernhard Schölkopf . Jan Peters

Reinforcement Learning in Robotics: A Survey

Jens Kober ${ }^{* \dagger}$ J. Andrew Bagnell ${ }^{\ddagger}$ Jan Peters ${ }^{\ddagger}{ }^{\S}$
email: jkober@cor-lab.uni-bielefeld.de, dbagnell@ri.cmu.edu, mail@jan-peters.net

1992

(a) OBELIX robot
(c) Autonomous helicopter

(b) Zebra Zero robot
(d) Sarcos humanoid DB

1996

CURSES IN ROBOTICS

Curses in RL for Robotics

Curse of Real-World Samples

Curse of Reward Specification

Curse of Dimensionality
Curse of Model Uncertainty

No Silver Bullet!

Ingredients for Practical RL

Leveraging Demonstrations Kakade et al, Bagnell and Scheider

Reward Shaping
Ng et al.

Conservatism and Trust
Kakade and Langford, Schulman et al.

Appropriate Policy Representation Locally linear (Kolter and Ng), Dynamic Motor Primitives (Schaal)

Plannable Models

What about Deep RL?

How to Train Your Robot with Deep Reinforcement Learning - Lessons We've Learned

Julian Ibarz ${ }^{1}$, Jie Tan ${ }^{1}$, Chelsea Finn ${ }^{1,3}$, Mrinal Kalakrishnan ${ }^{2}$, Peter Pastor ${ }^{2}$, Sergey Levine ${ }^{1,4}$

Levine et al 2016

Harnoja et al. 2019

Kalashnikov et al. 2018

(b) door opening

There is no Deep RL

There is no "Deep RL"

There is
Deep Learning

There is
Reinforcement Learning

Better representations for state / value function

