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Imitation Learning ….


It’s only a game!

(And a rather simple one at that!)
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But first …


We are going to

try to catch 
things we 
dropped in 

previous lectures  
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control

Learner 
traj

Human 
demonstration
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Okay… 

But how do we sample 

from 
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ξ ∼
1
Z

exp (−Cθ(ξ))



The discrete case is easy!
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Just call softmax()!

What about a continuous 
trajectories?

C θ
(ξ

)

ξ

ξ ∼
1
Z

exp (−Cθ(ξ))



Activity!



Think-Pair-Share!
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Think (30 sec): Let’s say you had access to the (convex) function 
 ?  How can we generate samples from exp(- )?Cθ(ξ) Cθ(ξ)

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 

C θ
(ξ

)
ξ



How can we use LQR / 
iLQR to sample from


?ξ ∼
1
Z

exp (−Cθ(ξ))
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call iLQR sampler

# Update cost
(Push down human cost) (Push up planner cost)

MaxEnt with ILQR



How do we “lift” 
MaxEntIOC from 

trajectories to policies?
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The Entropy Regularized Game
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max
ϕ

min
θ

𝔼st,at∼πθ
[Cϕ(st, at)] −𝔼s*t ,a*t ∼π*[Cϕ(ξ)] −βH(πθ)

Entropy



The Entropy Regularized Game
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max
ϕ

min
θ

𝔼st,at∼πθ
[Cϕ(st, at)] −𝔼s*t ,a*t ∼π*[Cϕ(ξ)] −βH(πθ)

Entropy

for i = 1,…, N # Loop over episodes

πθ = arg min
π

𝔼st,at∼π[Cϕ(st, at)] − βH(π)

ϕ+ = ϕ + η[∇θ𝔼st,at∼πθ
[Cϕ(st, at)] − ∇θ𝔼s*t ,a*t ∼π*[Cϕ(ξ)]]

# Soft Actor Critic

# Update cost



Two Core Ideas
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Data

“What is the distribution 
of states?”

“What is the 
metric to match to 

human?”

Loss



Two Core Ideas
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“What is the 
metric to match to 

human?”

Data

“What is the distribution 
of states?”

Loss
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Hard

Non-realizable expert + 

limited expert support


Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER / EIL) to 

provide labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable




As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.  

Collect lots of data and 

do Behavior CloningSo
lu
tio
n

Medium

Non-realizable expert

but full expert support


Even as , 
behavior cloning 

N → ∞
O(ϵCT)

Requires interactive simulator 
(MaxEntIRL) to match 

distribution ⇒ O(ϵT)

where C is conc. coef

Just

Behavior

Cloning

Interactive

Expert

Interactive

Simulator



Two Core Ideas
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“What is the 
metric to match to 

human?”

Data

“What is the distribution 
of states?”

Loss



Hints of a Big Picture ….
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“What is the metric to 
match to human?”

Loss

min
π

J(π) − J(π*)

What we really want to solve is:



Hints of a Big Picture ….
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“What is the metric to 
match to human?”

Loss

min
π

𝔼s∼dπ
[Q*(s, π(s)) − Q*(s, π*(s))]

What we get from PDL:

Difference in Q values!
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“What is the metric to 
match to human?”

Loss

min
π

𝔼s∼dπ
[Q*(s, π(s)) − Q*(s, π*(s))]

What we really want to solve is:

Difference in Q values!

Q⇤(s, a)

But Q* is latent!

Hints of a Big Picture ….
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Estimate Q* from demonstrations, interventions, preferences, ..

and even E-stops!

Q⇤(s, a)
Demonstrations

Interventions

Preferences

E-stops

ℒ(Q*θ )
Loss

Hints of a Big Picture ….



Imitation Learning from a Bayesian Lens
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https://www.youtube.com/watch?v=ECLvd8peQJc


The BIG Picture!
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The Road Ahead!



Active Imitation Learning
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Lindner, D., Turchetta, M., Tschiatschek, S., Ciosek, K., & Krause, A. (2021). Information Directed Reward Learning for Reinforcement 
Learning. Advances in Neural Information Processing Systems, 34, 3850-3862.



Learning from Suboptimal Experts
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Learn policies that

outperform expert


for any choice of cost 

function  



Hierarchical Imitation Learning
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cM
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Value

Errors

Planner
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ccM

Value

Errors
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(Level N) cccM


