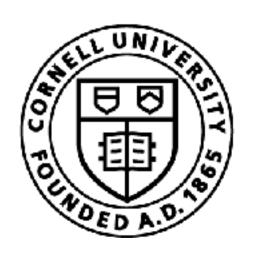
Inverse Reinforcement Learning: From Maximum Margin to Maximum Entropy

Sanjiban Choudhury

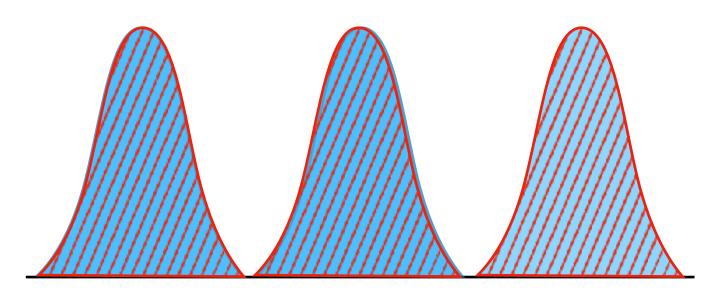


Let's travel to the INFINITE data limit!

The Three Regimes of Covariate Shift

Expert is realizable $\pi^E \in \Pi$

As $N \rightarrow \infty$, drive down $\epsilon = 0$ (or Bayes error)

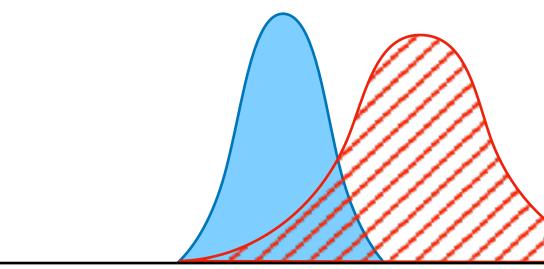


Solutio

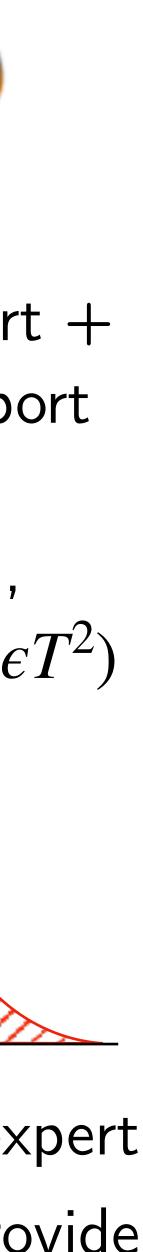
Nothing special. Collect lots of data and do Behavior Cloning

Non-realizable expert + limited expert support

Even as $N \to \infty$, behavior cloning $O(\epsilon T^2)$



Requires interactive expert (DAGGER/EIL) to provide labels $\Rightarrow O(\epsilon T)$



З

Expert is realizable $\pi^E \in \Pi$

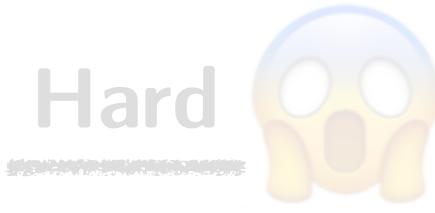
Non-realizable expert but full expert support

Setting

As $N \rightarrow \infty$, drive down $\epsilon = 0$ (or Bayes error)

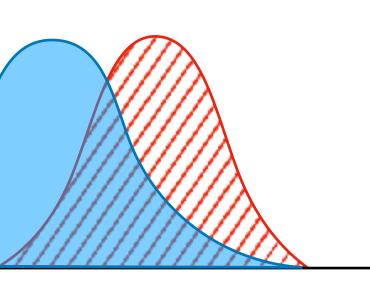
|--|--|--|

Nothing special. Collect lots of data and do Behavior Cloning

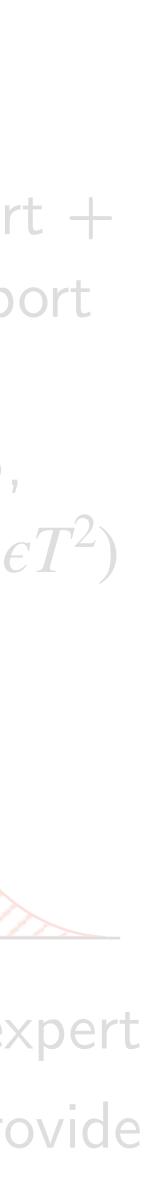


Non-realizable expert + limited expert support

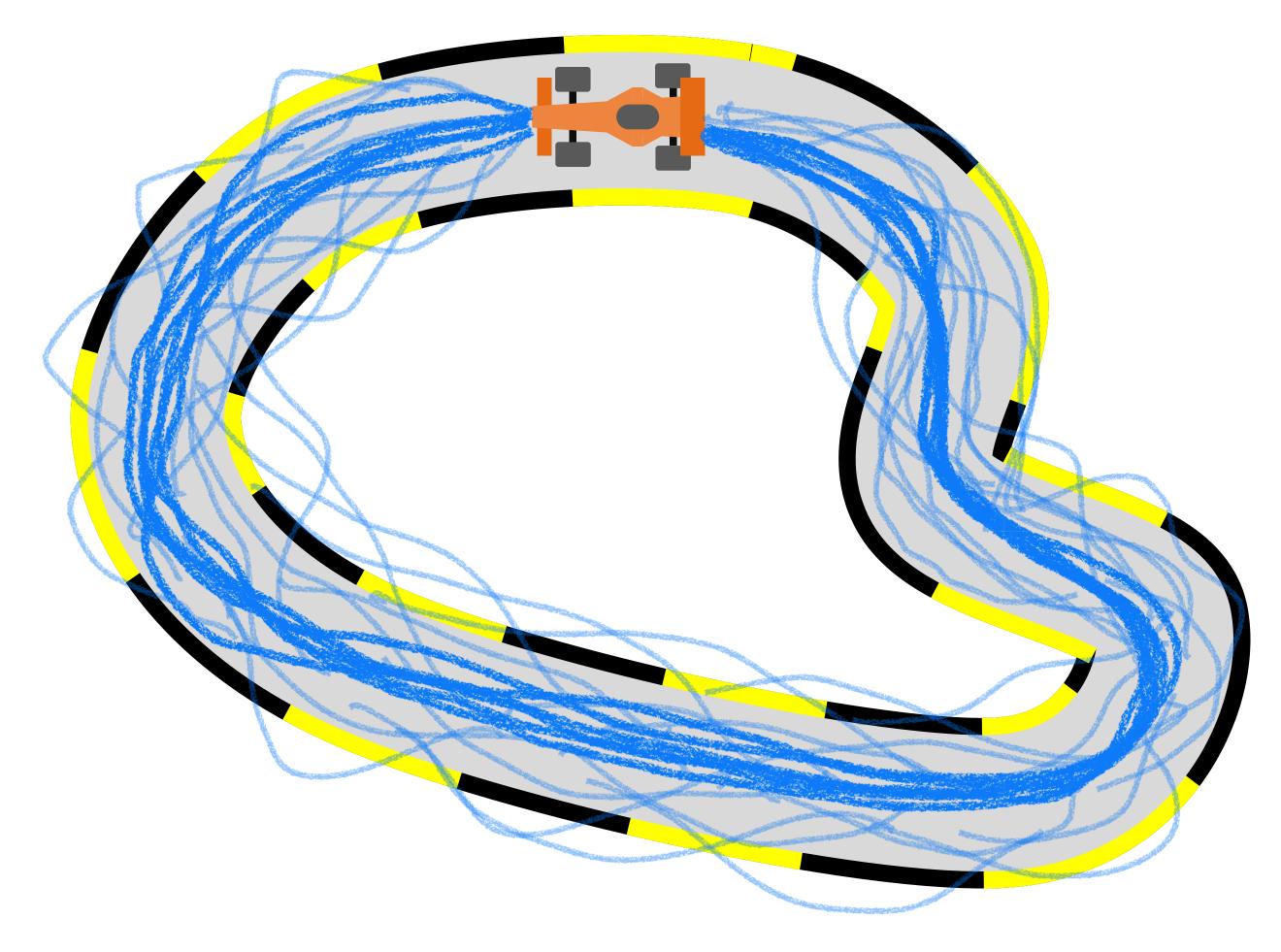
Even as $N \rightarrow \infty$, behavior cloning $O(\epsilon T^2)$



Requires interactive expert (DAGGER/EIL) to provide labels $\Rightarrow O(\epsilon T)$



Expert demonstrations have full coverage



.. but expert runs away after demonstrations

So expert data has full coverage ...

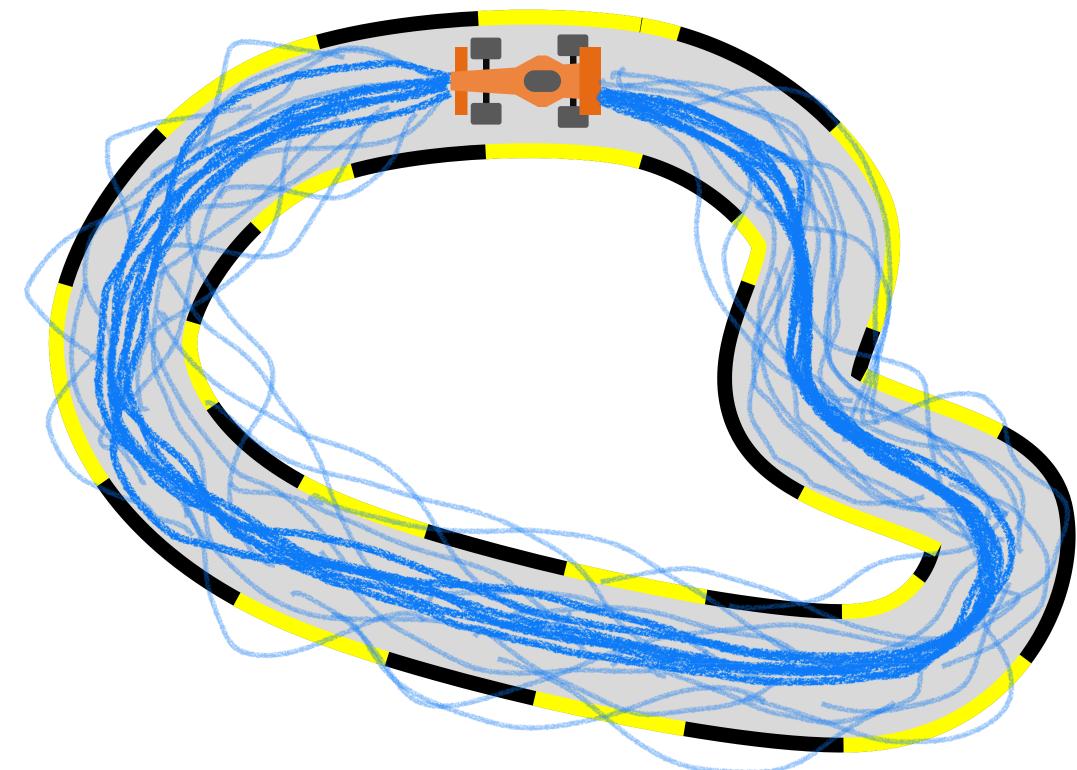
.. why don't we just do Behavior Cloning?

Think-Pair-Share!

Think (30 sec): Will BC work? $O(\epsilon T)$ or $O(\epsilon T^2)$? Make the argument!

Pair: Find a partner

Share (45 sec): Partners exchange ideas

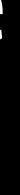


We don't have an interactive

BC results in compounding

errors

expert



Or what if we had an interactive simulator?

What if we knew our MDP (except the cost)?

CRUSHER robot from CMU

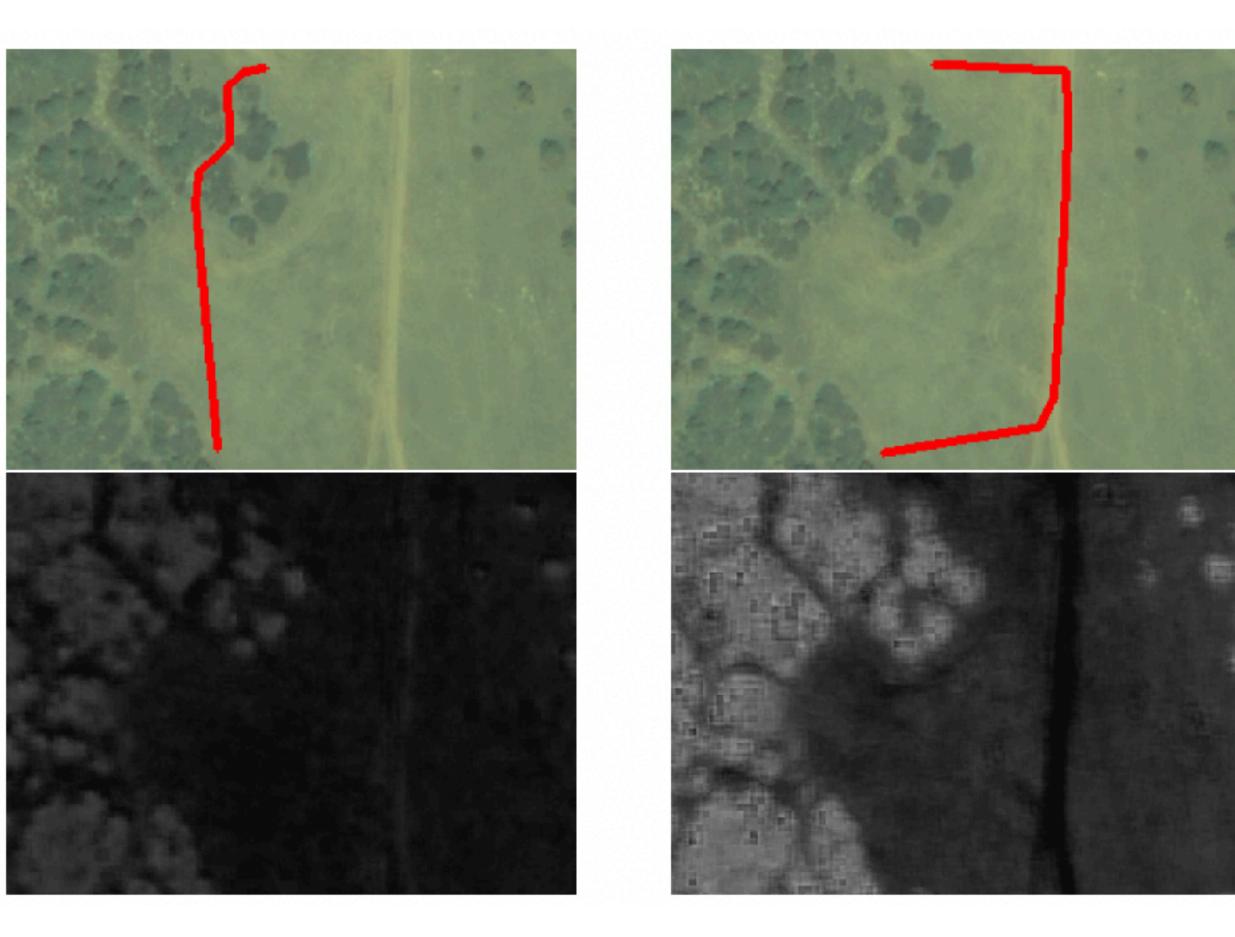
NUBUII

Can we learn a cost function for CRUSHER navigation?



Let's formalize!

Learning to Search (LEARCH)



Min distance

Stay on roads

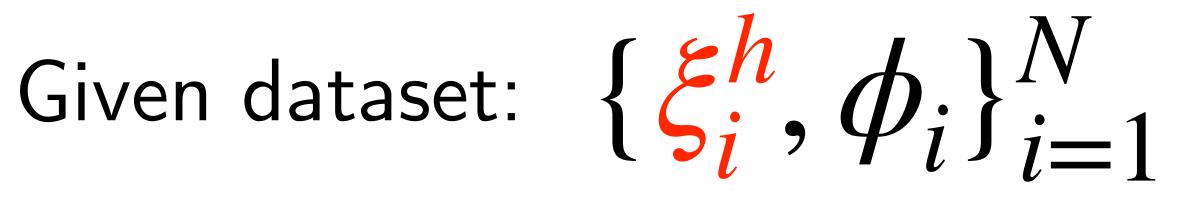
Learning to Search: **Functional Gradient Techniques** for Imitation Learning

Nathan D. Ratliff Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 ndr@ri.cmu.edu

J. Andrew Bagnell **Robotics Institute and Machine Learning** Carnegie Mellon University Pittsburgh, PA 15213 dbagnell@ri.cmu.edu

Stay near trees

Learning to Search (LEARCH) an demonstration Human demonstration

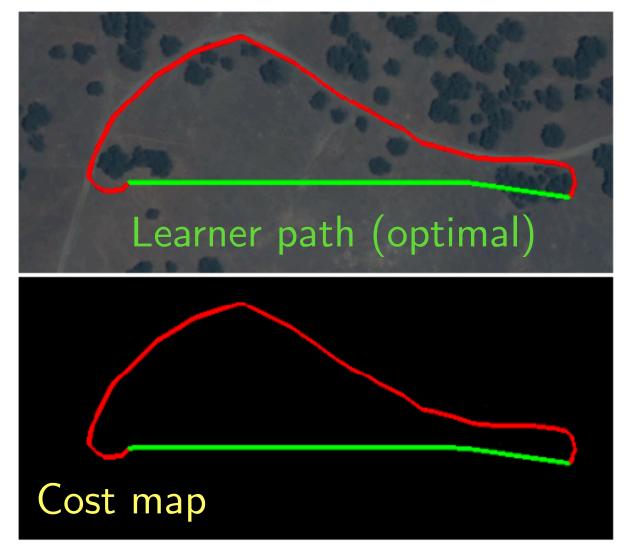


(Human demo) (Map)

Human Cost

$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left(C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \min_{\xi} [C_{\theta}(\xi, \phi_{i}) - \gamma(\xi, \xi^{h})] \right) + R(\theta)$ (Margin) Learner Regularizer Cost

Learning to Search (LEARCH) Human demonstration

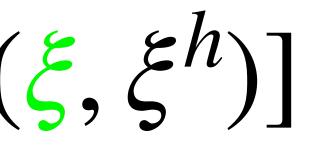


for i = 1, ..., N

 $\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$

(Push down human cost)

Loop over datapoints

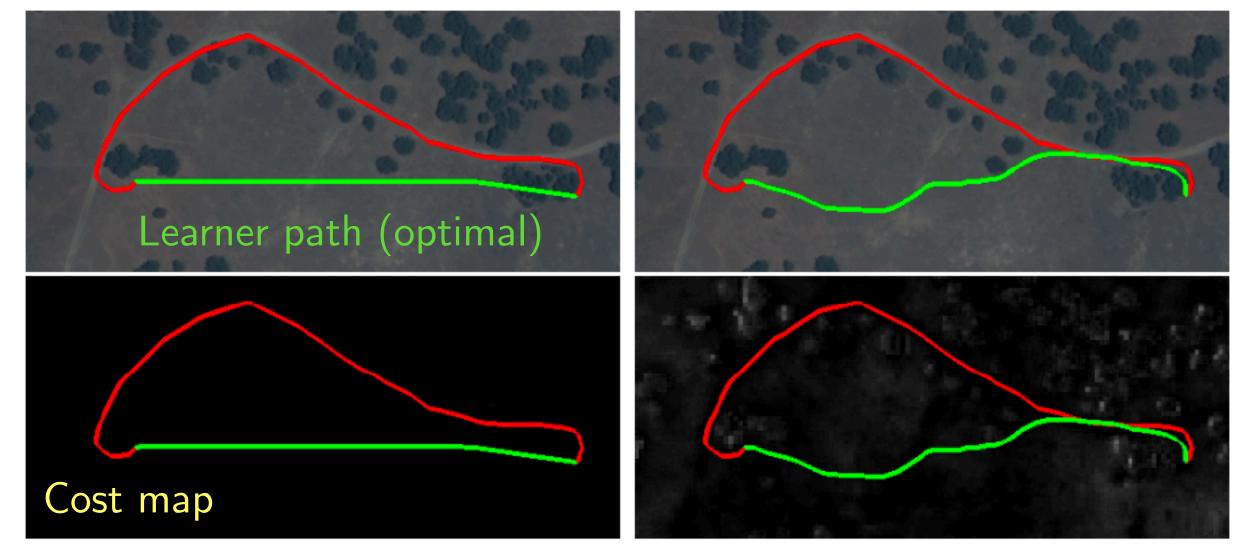


Call planner!

$\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost)

Learning to Search

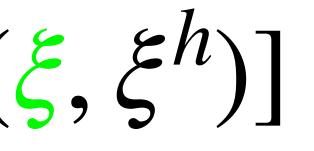
Human demonstration

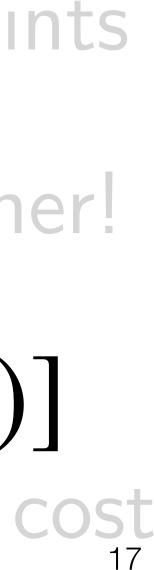


for i = 1, ..., N

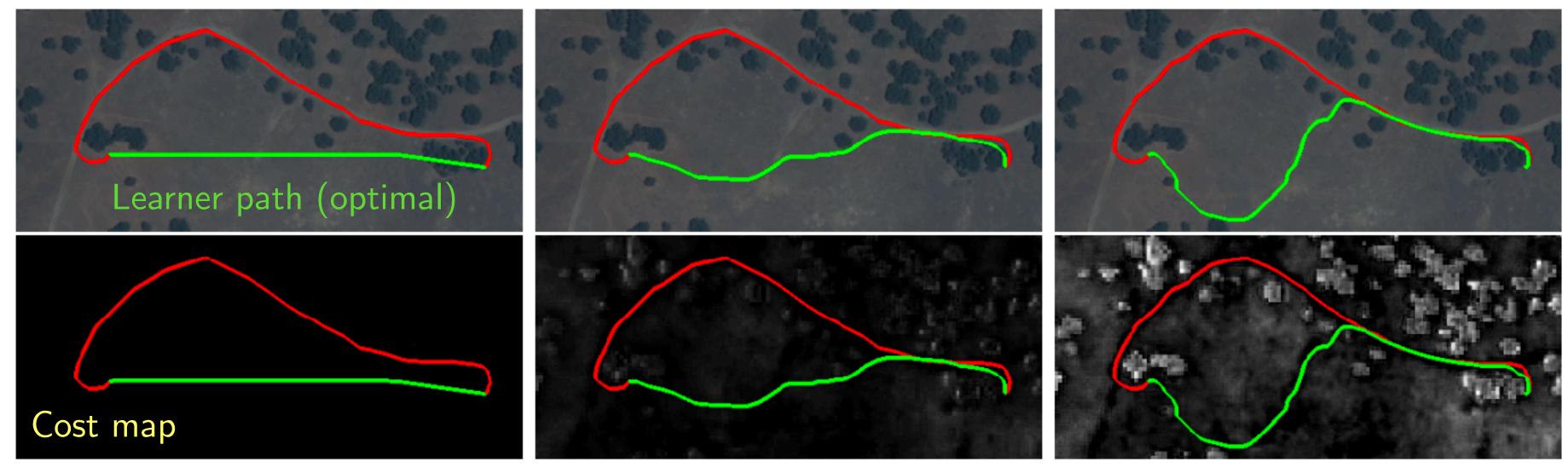
$\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$ # Call planner! $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost) (Push down human cost)

Loop over datapoints





Learning to Search (LEARCH) Human demonstration



for i = 1, ..., N

$\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$

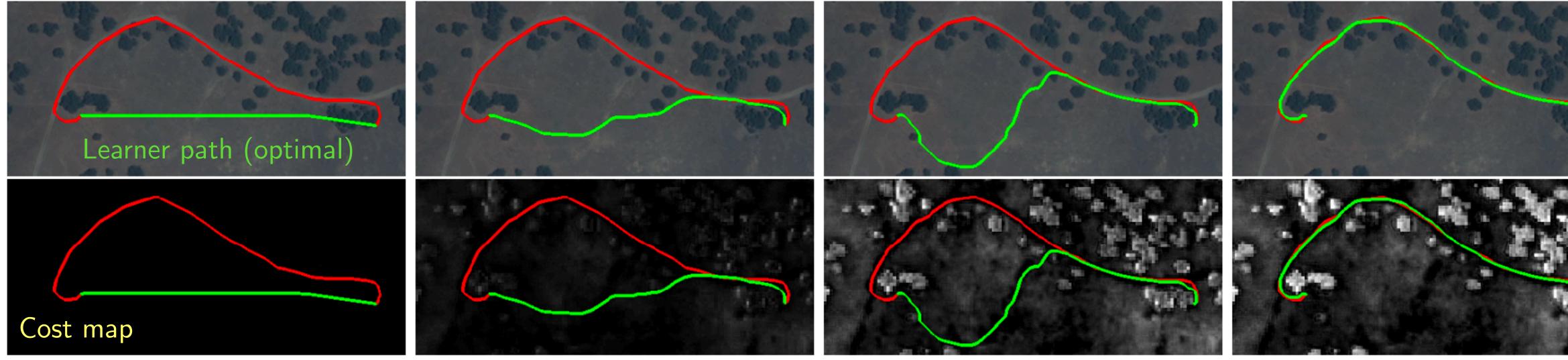
(Push down human cost)

Loop over datapoints

Call planner!

 $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$ # Update cost (Push up planner cost)

Learning to Search (LEARCH) Human demonstration



for i = 1, ..., N

$\xi_i^* = \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)]$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}^{*}, \phi_{i}) + \nabla_{\theta} R(\theta) \right]$

(Push down human cost)

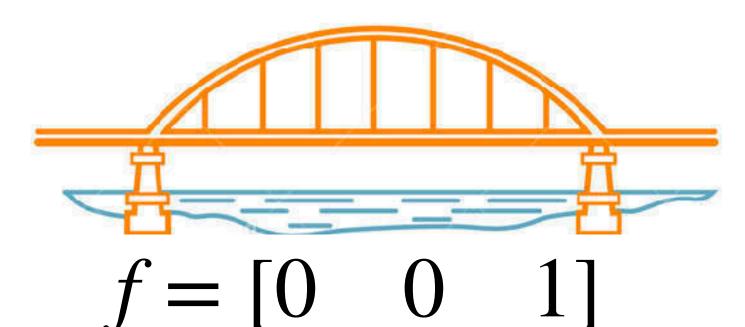
Loop over datapoints

(Push up planner cost)

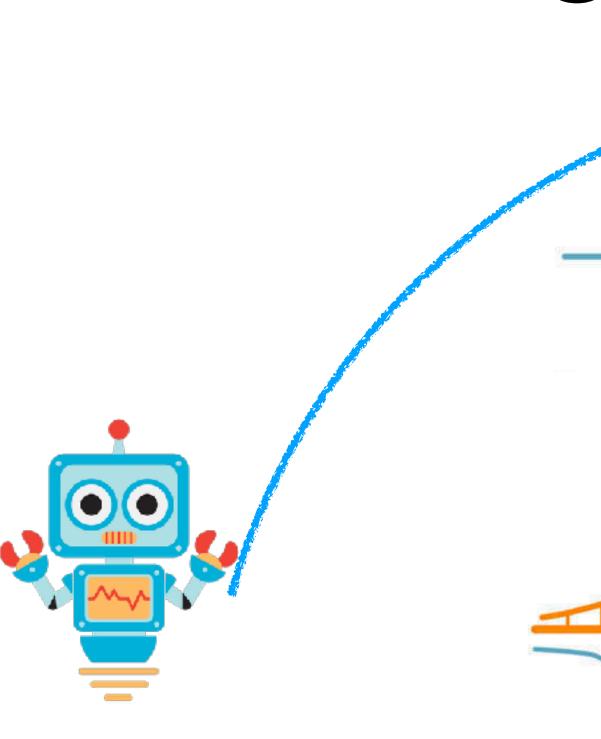
Call planner!

What happens when the expert is stochastic / noisy / suboptimal?

LEARCH converges to $w = [1 \ 0 \ 0]!$



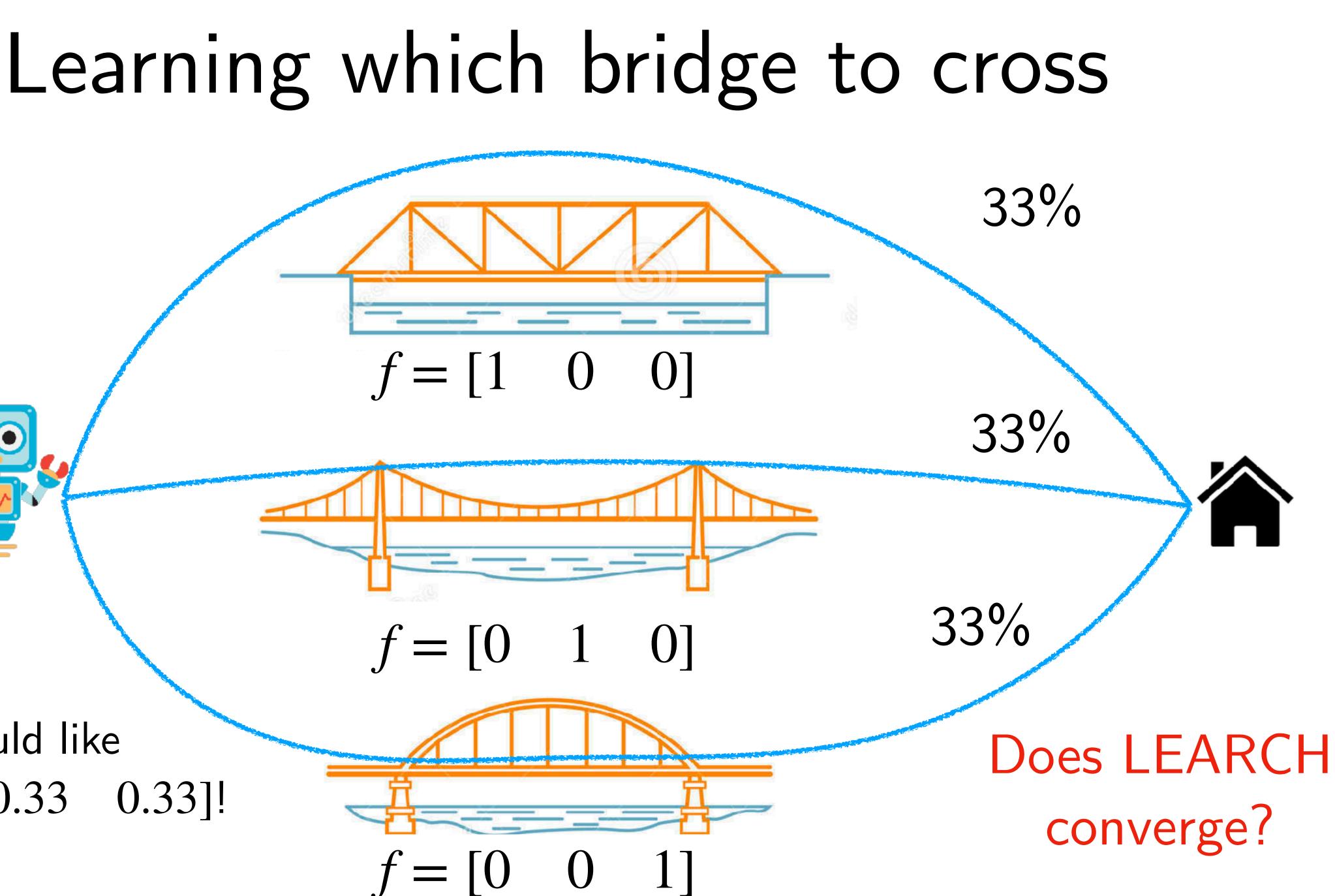
 $f = [1 \ 0 \ 0]$



Learning which bridge to cross

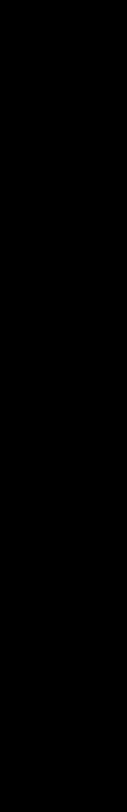
Demonstrations always pick Bridge 1

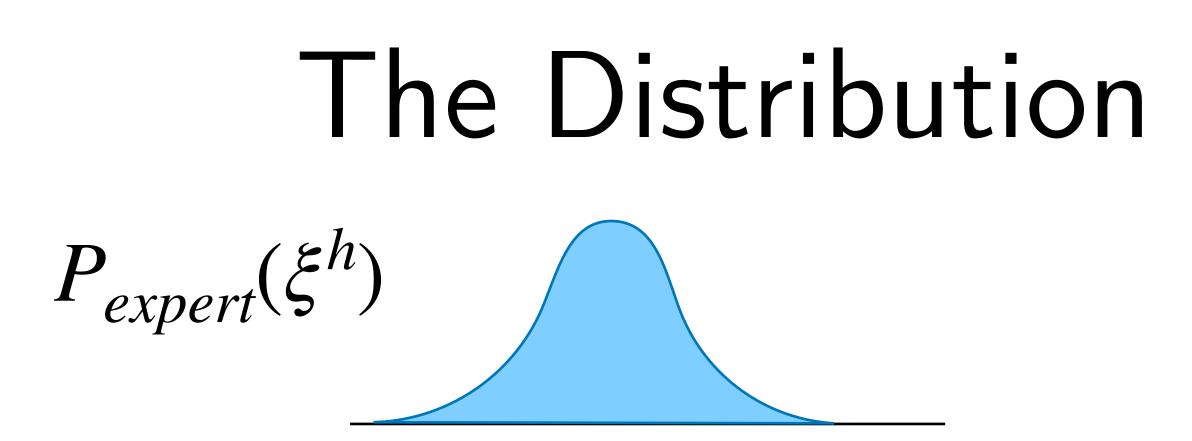
We would like $w = [0.33 \quad 0.33 \quad 0.33]!$



Expert demonstrations are coming from some (unknown) distribution ...

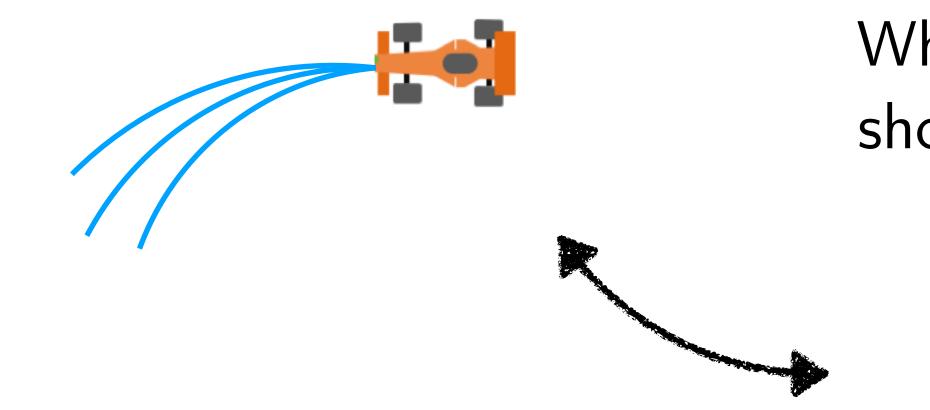
Can we learn this distribution?





(Unknown) expert distribution

All we see are expert samples



The Distribution Matching Problem

Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$

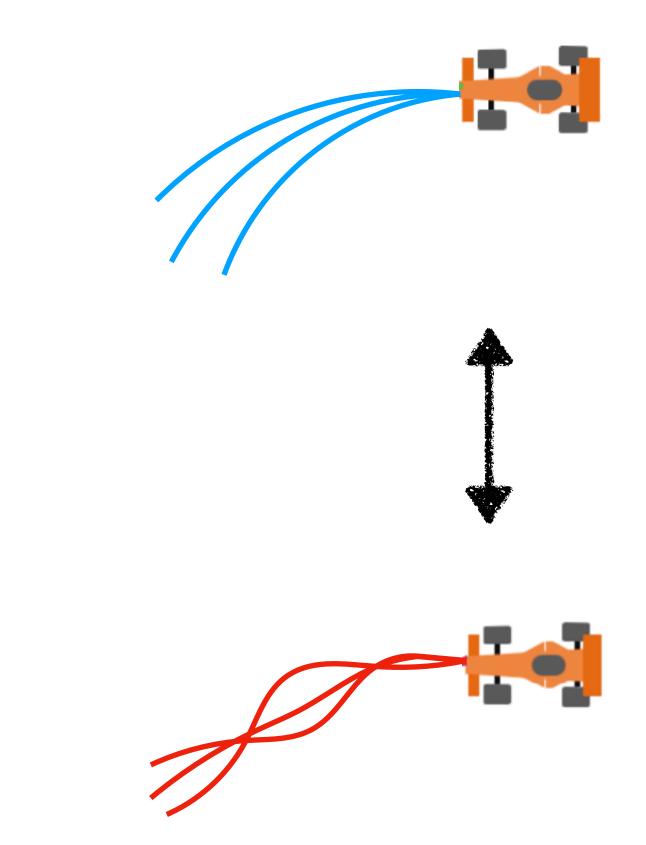
What loss should we use?

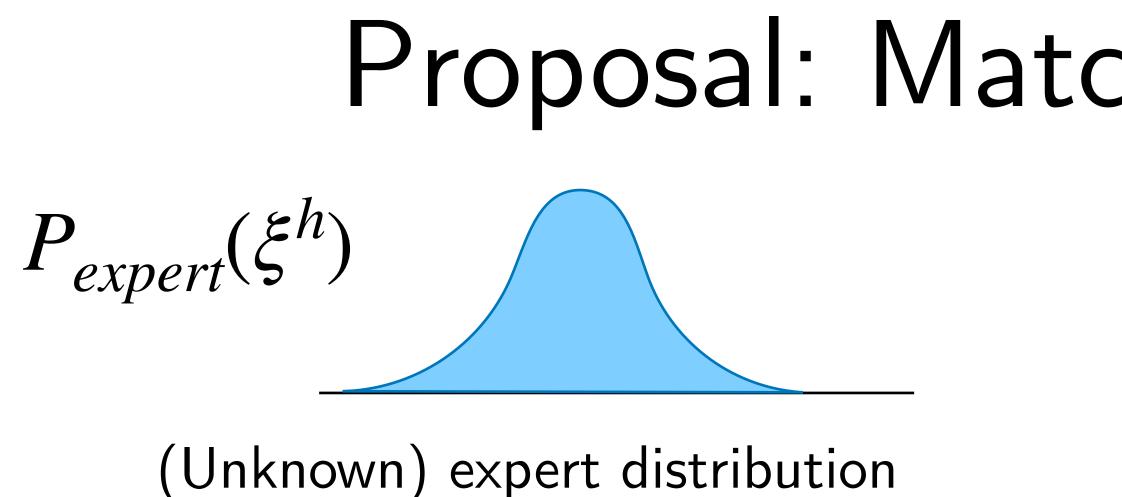
Think-Pair-Share!

Think (30 sec): Given samples from expert and learner, what loss should we define to get learner to match expert distribution?

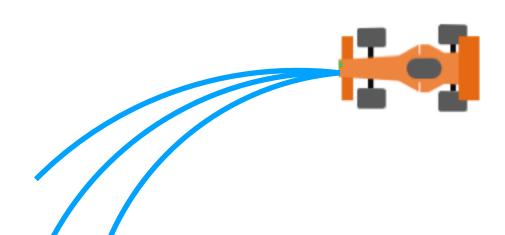
Pair: Find a partner

Share (45 sec): Partners exchange ideas





All we see are expert samples



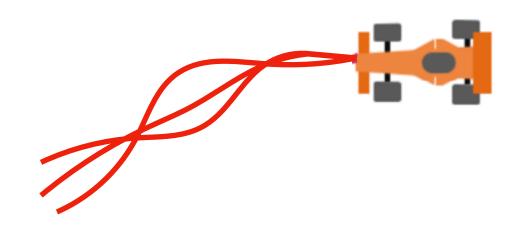
 $\mathbb{E}_{\xi^h \sim P_{expert}(.)} \operatorname{cost}(\xi^h) = \mathbb{E}_{\xi \sim P_{\theta}(.)} \operatorname{cost}(\xi)$

Proposal: Match expected costs?

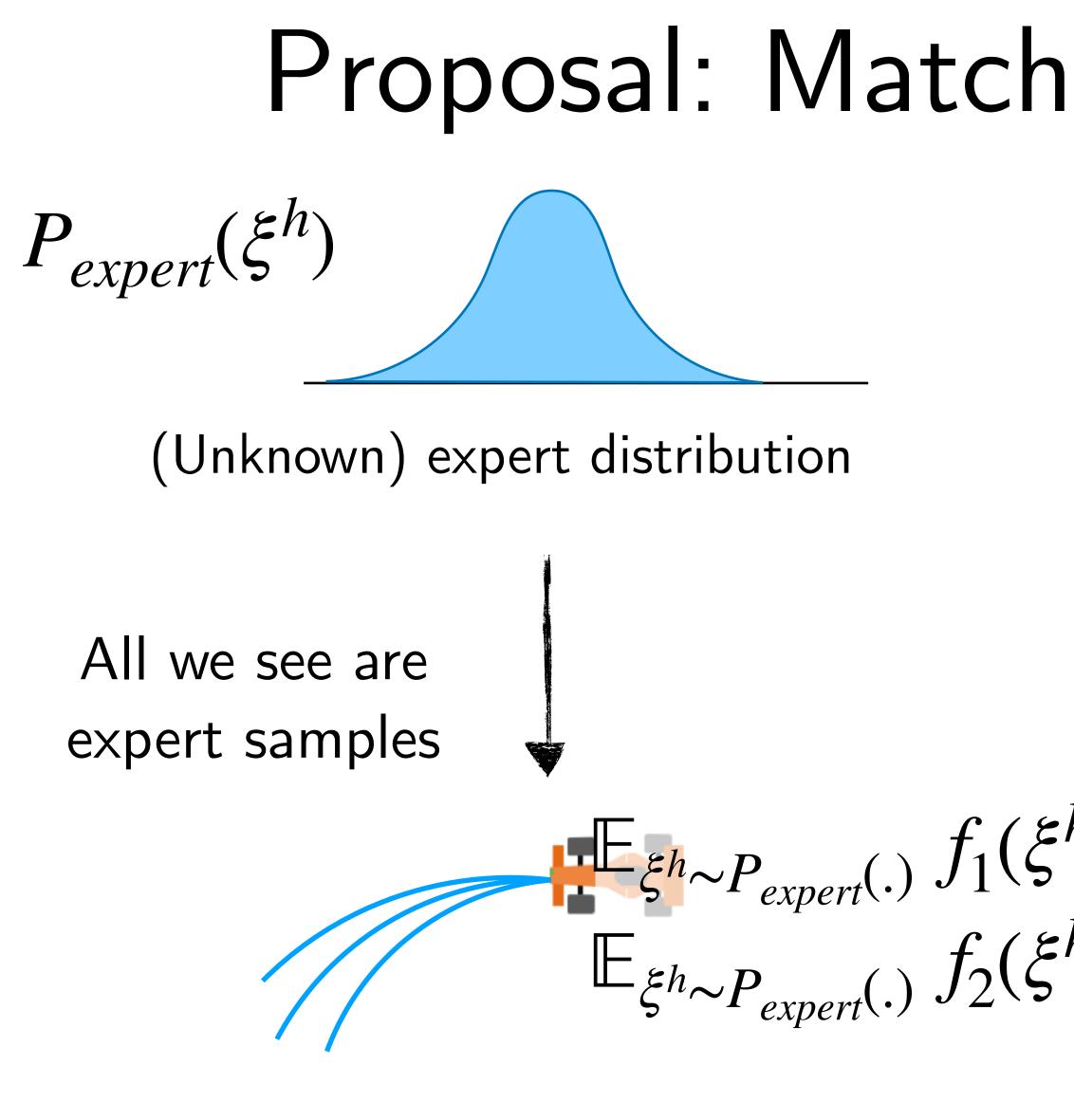
Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$



But wait .. how can we match costs if we don't know the weights w? $cost(\xi) = w^T f$



 $\mathbb{E}_{\xi^h \sim P_{expert}(.)} f_k(\xi^h) = \mathbb{E}_{\xi \sim P_{\theta}(.)} f_k(\xi)$

Proposal: Match expected features!

Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$

 $\mathbb{E}_{\xi^h \sim P_{expert}(.)} f_1(\xi^h) = \mathbb{E}_{\xi \sim P_{\theta}(.)} f_1(\xi)$ $\mathbb{E}_{\xi^h \sim P_{expert}(.)} f_2(\xi^h) = \mathbb{E}_{\xi \sim P_{\theta}(.)} f_2(\xi)$

Let's formalize!

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

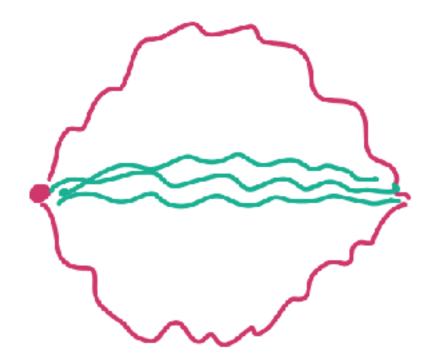
School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bziebart@cs.cmu.edu, amaas@andrew.cmu.edu, dbagnell@ri.cmu.edu, anind@cs.cmu.edu

Maximum Entropy Inverse Optimal Control

LEO: Learning Energy-based Models in Factor Graph Optimization

Paloma Sodhi^{1,2}, Eric Dexheimer¹, Mustafa Mukadam², Stuart Anderson², Michael Kaess¹ ¹Carnegie Mellon University, ² Facebook AI Research

Maximum Entropy Inverse Optimal Control

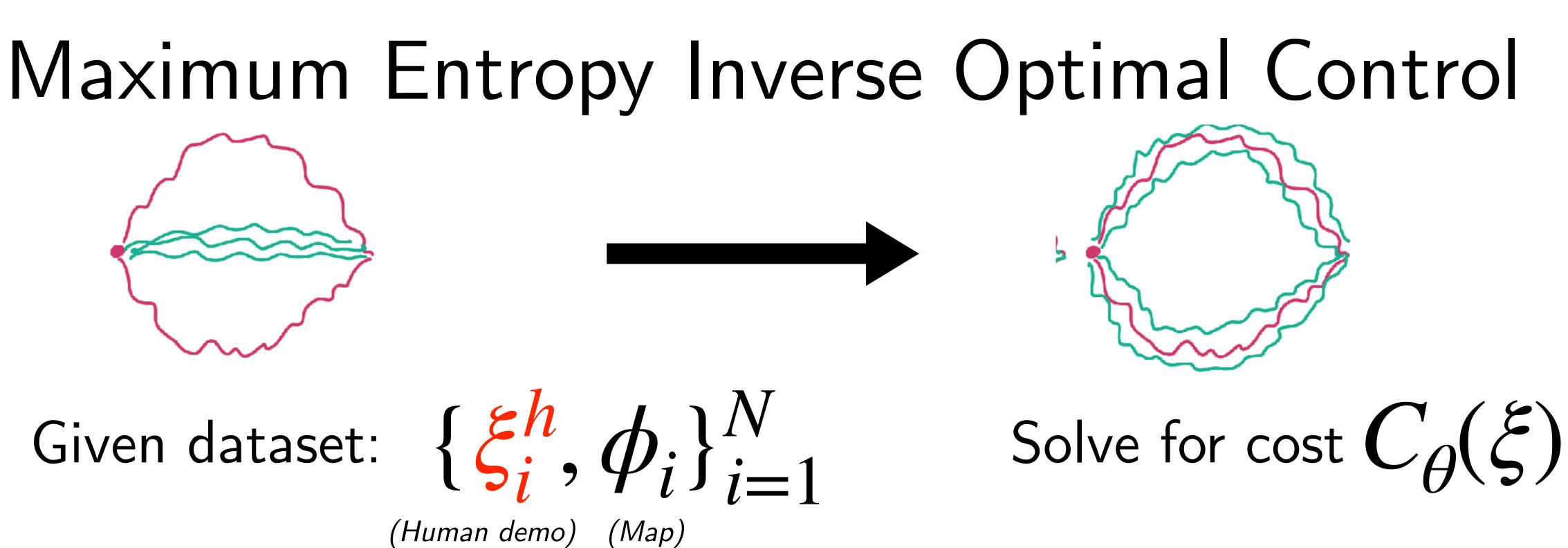


Given dataset: $\{\xi_i^h, \phi_i\}_{i=1}^N$

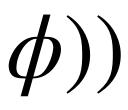
(Human demo) (Map)

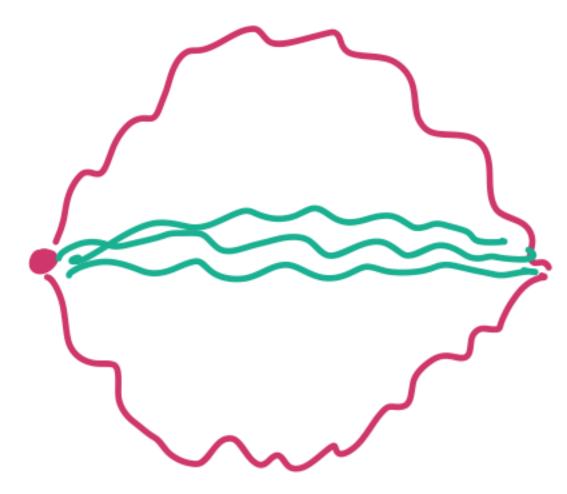
 $\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} -\log P_{\theta}(\xi_i^h | \phi_i) \qquad P_{\theta}(\xi | \phi) = \frac{1}{Z(\theta, \phi)} \exp(-C_{\theta}(\xi, \phi))$

Max lik. of human traj



More costly traj, less likely





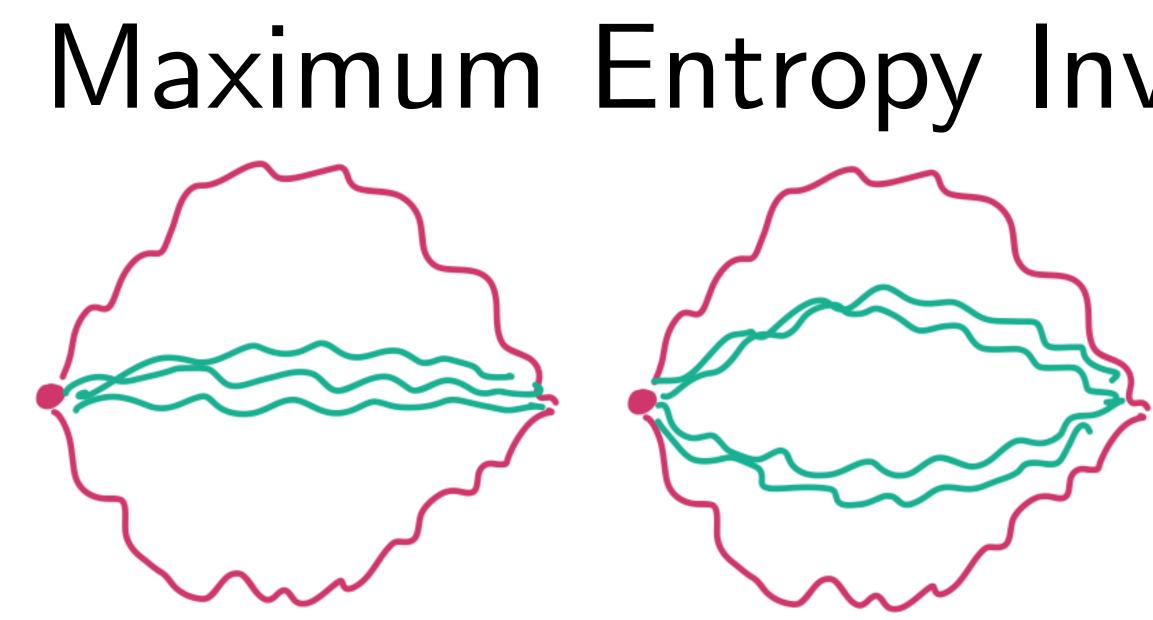
for i = 1, ..., N $\frac{\xi_i}{7} \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

Loop over datapoints

Call planner!

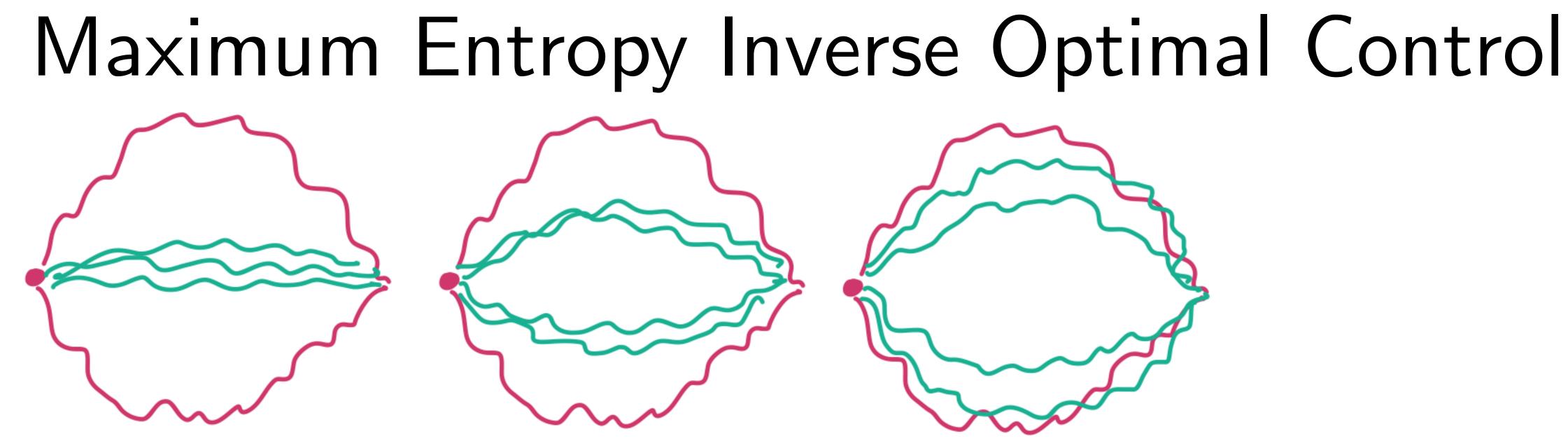


for i = 1, ..., N# Loop over datapoints $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

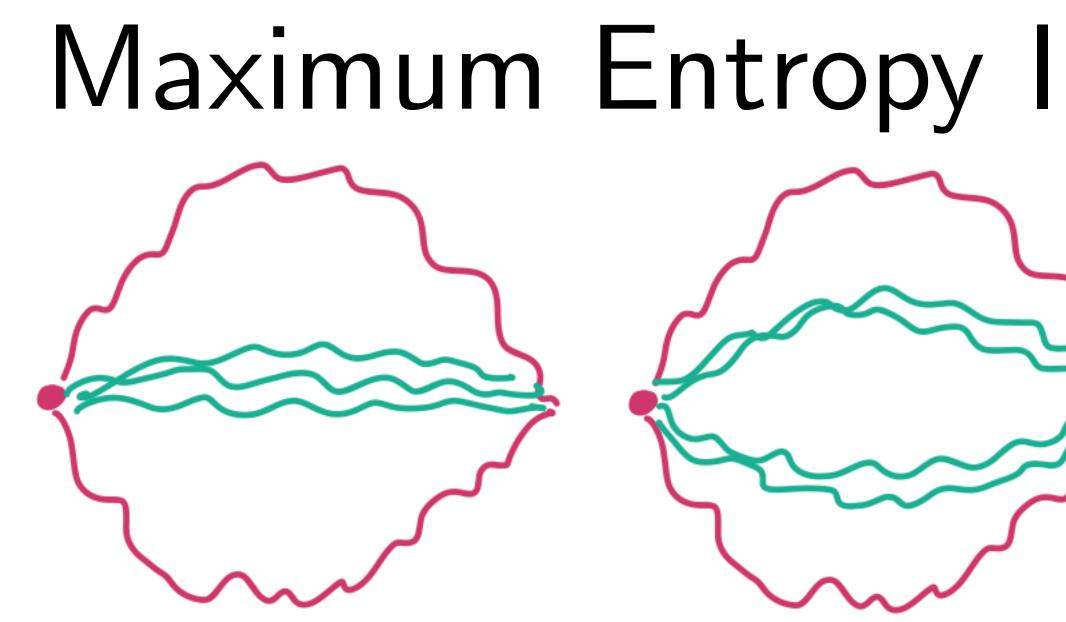
Call planner!



for i = 1, ..., N# Loop over datapoints $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Call planner!



for i = 1, ..., N $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

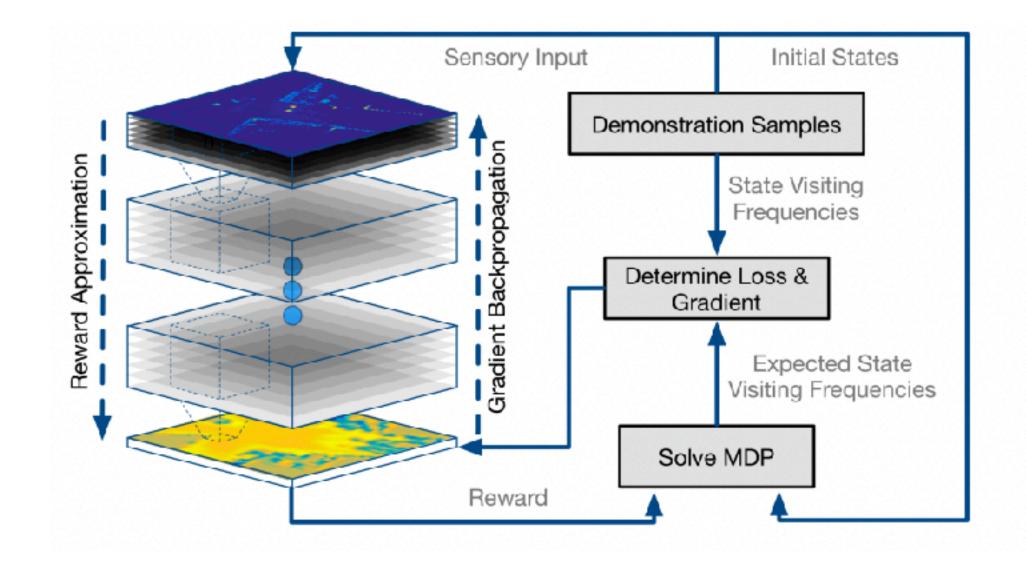
Loop over datapoints

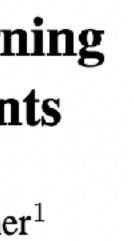
Call planner!

Deep Max Ent

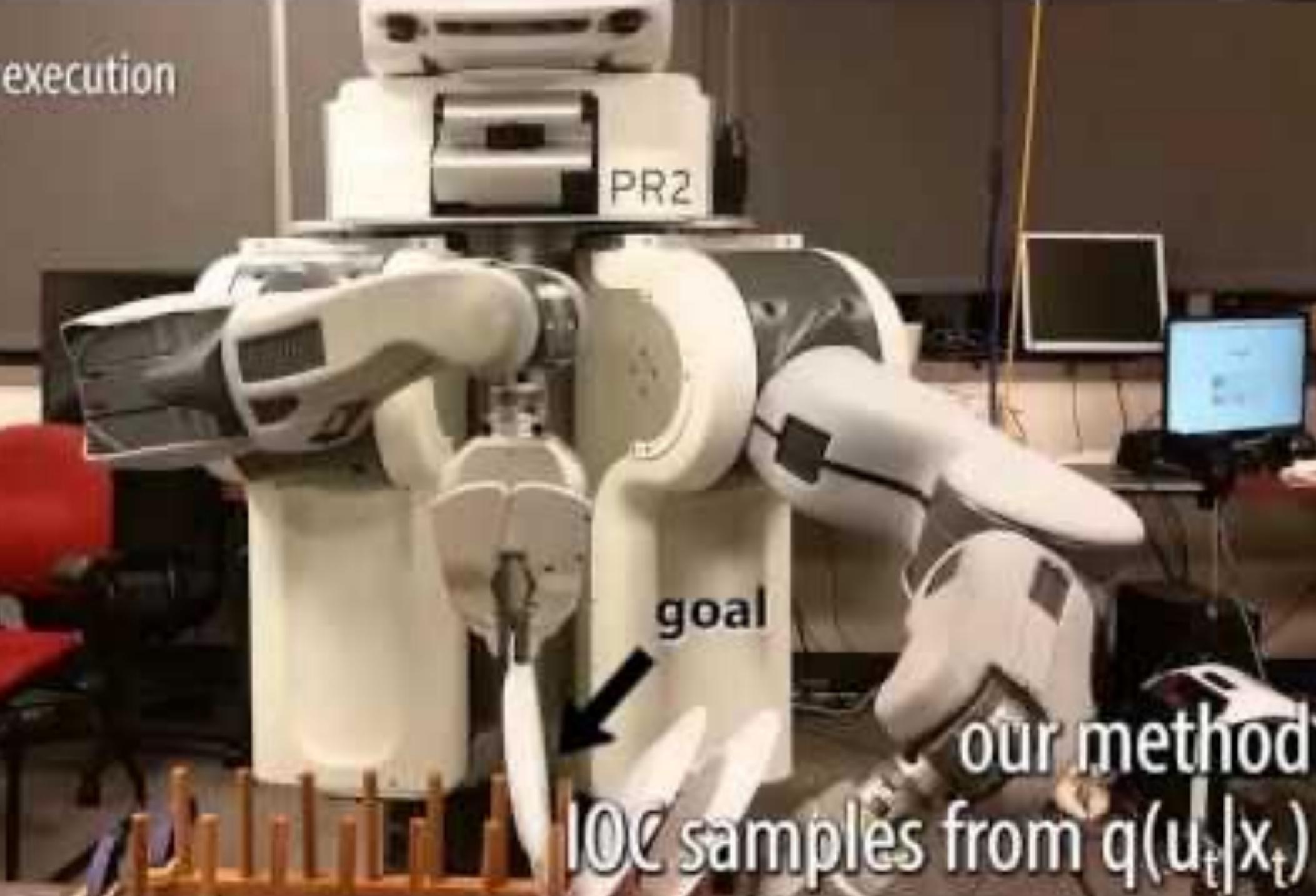
Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier¹, Dominic Zeng Wang¹ and Ingmar Posner¹





autonomous execution 1x real-time



Expert is realizable $\pi^E \in \Pi$

Setting

As $N \rightarrow \infty$, drive down $\epsilon = 0$ (or Bayes error)

Even as $N \to \infty$, behavior cloning $O(\epsilon CT)$

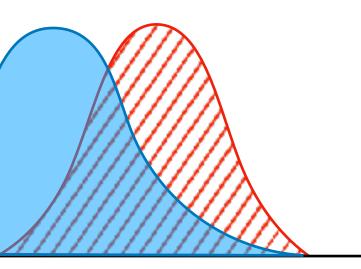
Solutio

Nothing special. Collect lots of data and do Behavior Cloning

Requires interactive simulator (MaxEntIRL) to match distribution $\Rightarrow O(\epsilon T)$

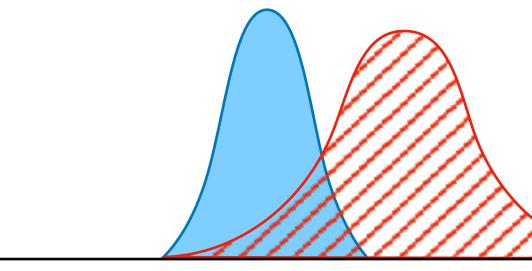


where *C* is conc. coeff

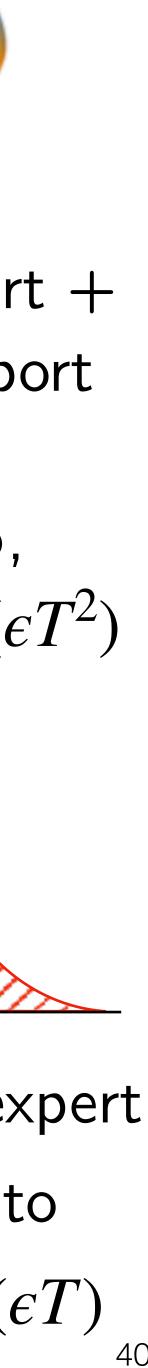


Non-realizable expert + limited expert support

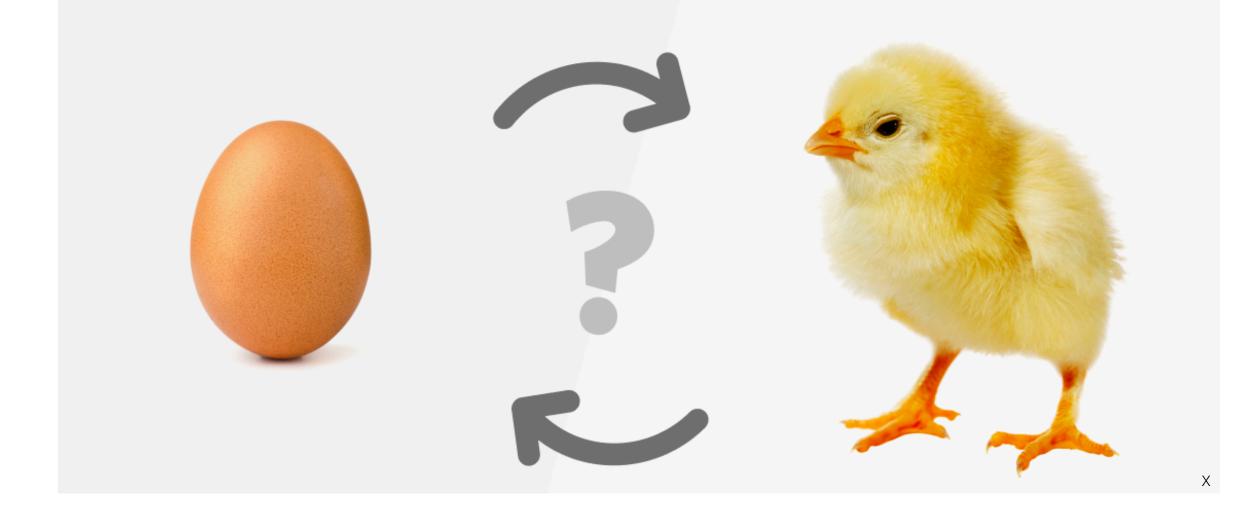
Even as $N \to \infty$, behavior cloning $O(\epsilon T^2)$

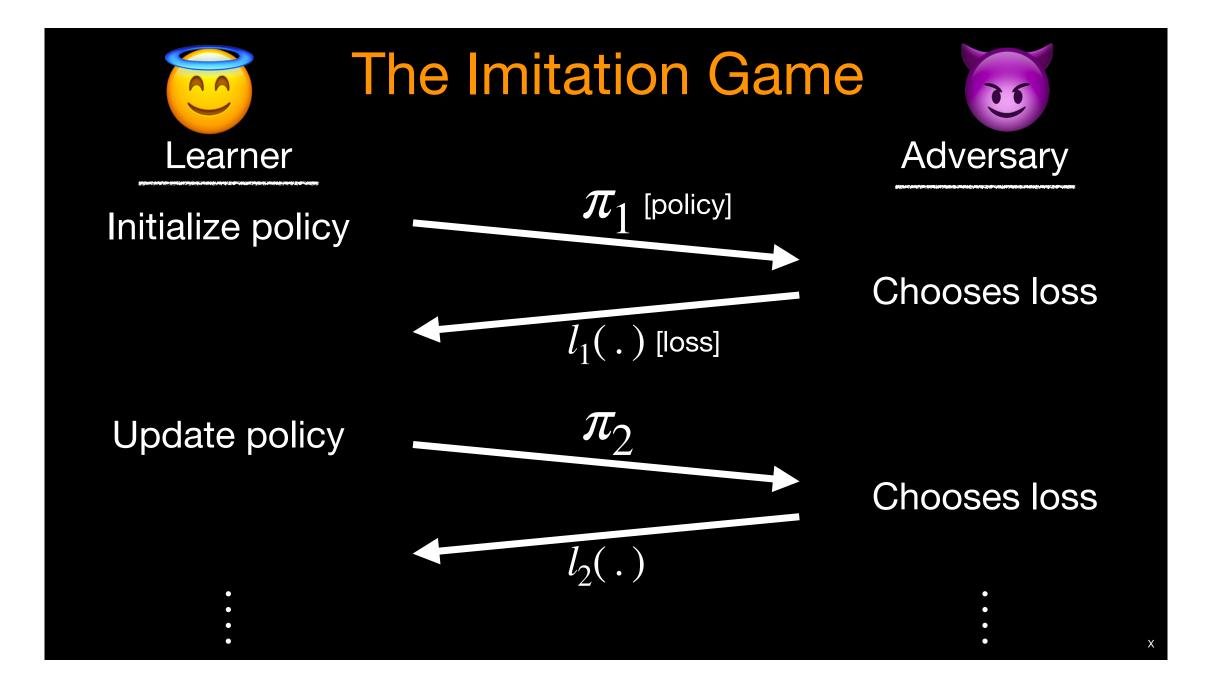


Requires interactive expert (DAGGER / EIL) to provide labels $\Rightarrow O(\epsilon T)$



tl;dr





To know the distribution, you need a learner To train a learner, you need a distribution

