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Let’s travel to the INFINITE data limit! 

The 

Three Regimes 


of

 Covariate 


Shift
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Hard

Non-realizable expert + 

limited expert support


Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER/EIL) to provide 

labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable




As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.  

Collect lots of data and 

do Behavior CloningSo
lu
tio
n



4

Medium

Non-realizable expert

but full expert support


Even as , 
behavior cloning 

N → ∞
O(ϵCT)

where C is conc. coef

?
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Se
tt
in
g
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do Behavior CloningSo
lu
tio
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Expert demonstrations have full coverage
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.. but expert runs

away after 

demonstrations



So expert data has 

full coverage …


.. why don’t we just do

Behavior Cloning?
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Activity!



Think-Pair-Share!
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Think (30 sec): Will BC work?  or  ?

Make the argument!

O(ϵT) O(ϵT2)

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 

To BC, or not to BC!



BC results in compounding 

errors


We don’t have an interactive 

expert
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What if we knew our MDP 

(except the cost)?


Or what if we had an 

interactive simulator?
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CRUSHER robot from CMU

https://www.youtube.com/watch?v=vk_-JqoGGQA
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Can we learn a cost function for CRUSHER navigation?



Let’s 

formalize!



Learning to Search (LEARCH)
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Min distance Stay on roads Stay near trees
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Human demonstration

Learner path (optimal) Learner path (optimal)

Human demonstration

min
θ

1
N

N

∑
i=1

(Cθ(ξh
i , ϕi) − min

ξ
[Cθ(ξ, ϕi) − γ(ξ, ξh)]) + R(θ)

Human

Cost

Learner

Cost

Regularizer

(Margin)

Given dataset: {ξh
i , ϕi}N

i=1
(Human demo) (Map)

Solve for cost Cθ(ξ)

Learning to Search (LEARCH)
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Human demonstration

Learner path (optimal)

for i = 1,…, N # Loop over datapoints

ξ*i = min
ξ

[Cθ(ξ, ϕi) − γ(ξ, ξh)]

θ+ = θ − η[∇θCθ(ξh
i , ϕi) − ∇θCθ(ξ*i , ϕi) + ∇θR(θ)]

# Call planner!

# Update cost(Push down human cost) (Push up planner cost)

Cost map

Learning to Search (LEARCH)



Learning to Search
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Human demonstration

Learner path (optimal)
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i , ϕi) − ∇θCθ(ξ*i , ϕi) + ∇θR(θ)]

# Call planner!

# Update cost(Push down human cost) (Push up planner cost)

Cost map
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Human demonstration
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for i = 1,…, N # Loop over datapoints

ξ*i = min
ξ
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Human demonstration

Learner path (optimal)
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Learning to Search (LEARCH)



What happens when the 
expert is stochastic / 
noisy / suboptimal?
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Learning which bridge to cross
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f = [1 0 0]

f = [0 1 0]

f = [0 0 1]

LEARCH converges to

!w = [1 0 0]

Demonstrations

always pick 

Bridge 1 




Learning which bridge to cross
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f = [1 0 0]

f = [0 1 0]

f = [0 0 1]

Does LEARCH

converge?

33%

33%

33%

We would like

!w = [0.33 0.33 0.33]



Expert demonstrations are 

coming from some (unknown) 

distribution ..


Can we learn this distribution?
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(Unknown) expert distribution

The Distribution Matching Problem
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples

?

What loss 
should we 

use?



Activity!



Think-Pair-Share!
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Think (30 sec): Given samples from expert and learner, what loss 
should we define to get learner to match expert distribution?

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 
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(Unknown) expert distribution

Proposal: Match expected costs?
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples

𝔼ξh∼Pexpert(.) cost(ξh) = 𝔼ξ∼Pθ(.) cost(ξ)



But wait .. how can we 
match costs if we don’t 
know the weights w?


cost(ξ) = wTf
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(Unknown) expert distribution

Proposal: Match expected features!
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples

𝔼ξh∼Pexpert(.) f1(ξh) = 𝔼ξ∼Pθ(.) f1(ξ)
𝔼ξh∼Pexpert(.) f2(ξh) = 𝔼ξ∼Pθ(.) f2(ξ)

𝔼ξh∼Pexpert(.) fk(ξh) = 𝔼ξ∼Pθ(.) fk(ξ)



Let’s 

formalize!



Maximum Entropy Inverse Optimal Control
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Maximum Entropy Inverse Optimal Control
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min
θ

1
N

N

∑
i=1

− log Pθ(ξh
i |ϕi)

Max lik. of human traj

Given dataset: {ξh
i , ϕi}N

i=1
(Human demo) (Map)

Solve for cost Cθ(ξ)

Pθ(ξ |ϕ) =
1

Z(θ, ϕ)
exp(−Cθ(ξ, ϕ))

More costly traj, less likely

Maximum Entropy Inverse Optimal Control
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control
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for i = 1,…, N # Loop over datapoints
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1
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control



Deep Max Ent
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https://www.youtube.com/watch?v=hXxaepw0zAw
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Hard

Non-realizable expert + 

limited expert support


Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER / EIL) to 

provide labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable




As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.  

Collect lots of data and 

do Behavior CloningSo
lu
tio
n

Medium

Non-realizable expert

but full expert support


Even as , 
behavior cloning 

N → ∞
O(ϵCT)

Requires interactive simulator 
(MaxEntIRL) to match 

distribution ⇒ O(ϵT)

where C is conc. coef
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To know the distribution, you need a learner 
To train a learner, you need a distribution

 X

Learner

Initialize policy
Chooses loss

π2

l2( . )

Update policy
Chooses loss

π1 [policy]

l1( . ) [loss]

The Imitation Game
Adversary

 X

DAgger: Iteration 1 

 X

[Ross et al’11]

Robot   drives π0

Human corrects!

Data

Old Data

Policy
π1AGGREGATE DATA

tl;dr


