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L et's travel to the INFINITE data limit!

The
Three Regimes

of

Covariate

Shift




Expert is realizable
t eIl

Setting

As N — oo, drive down
e = 0 (or Bayes error)

Nothing special.

Collect lots of data and

Solution

do Behavior Cloning

Non-realizable expert +
limited expert support

Even as N — o0,
behavior cloning O(eT?)

Requires interactive expert
(DAGGER/EIL) to provide

labels = O(eT)
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Medlum \ J

Non-realizable expert
but full expert support

/
.

Setting

Solution
45



Expert demonstrations have full coverage

.. but expert runs

away after
emonstrations
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So expert data has
full coverage ...

. why don't we just do
Behavior Cloning?







Think-Pair-Share!

To BC, or not to BC!
Think (30 sec): Will BC work? O(eT) or O(eT?) 7

ake the argument!

air: Find a partner

hare (45 sec): Partners exchange
ideas




BC results in compounding

Crrors

We don't have an interactive

expert




What it we knew our MDP
(except the cost)?

Or what if we had an

interactive simulator?
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https://www.youtube.com/watch?v=vk_-JqoGGQA

Can we learn a cost function for CRUSHER navigation?

Optimal Control Solution
Cost Map

Learning \ yi—l




Let's
formalizel




Learning to Search (LEARCH)

Learning to Search:
Functional Gradient Techniques
for Imitation Learning

Nathan D. Ratliff David Silver
Robotics Institute Robotics Institute
Carnegie Mellon University Carnegie Mellon University
Pittsburgh. PA 15213 Pittsburgh, PA 15213

ndr@ri.cmu.edu dsilver@ri.cmu.edu

J. Andrew Bagnell
Robotics Institute and Machine Learning
Carnegic Mellon University
Pittsburgh, PA 15213
dbagnell@ri.cmu. edu

Min distance Stay on roads Stay near trees
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~lLearning to Search (LEARCH)
ﬁ

Given dataset: {éih’ ¢i}§\;1 Solve for cost Ce(f)

(Human demo) (Map)

1 N
min — (Cg(cfh ¢;) — mln[Ce(cf @) — v(S, éfh)]) + R(0)

7, N (Margin)
=1
Human

Regularizer
Cost &
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_Learning to Search (LEARCH)

Human demons tration

W SRS NS iy
earner pa optima
— e

Cost map

fori=1,....N
= min[Cy(S, ¢;) — y(&, EM)]
0" =0 — ﬂ[vece(ffh ¢) — Vece( ¢i) + VyR(0)]

(Push down human (Push up plan



Learning to Search

U e iy \_/_/\“1
L, e \/-/\\
Cost map

fori=1,....N
= min[Cy(&, ;) — y(&, EM)
0" =0 — ﬂ[vgce(fh ¢) — VHCH(

(Push down human (Push up plar

¢i) + VR(0)]
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_Learning to Search (LEARCH)

Human demons tration
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Cost map \

fori=1,....N
= min[Cg(é b)) — y(&, EM)
A 9 ﬂ[vece(s&h ¢) — Vece(f* ¢) + VyR(0)]

(Push down human (Push up plan
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_Learning to Search (LEARCH)

Human demons tration
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Cost map

fori=1,....N
= min[cg@ b)) — y(&, EM)
6 6 n[wc@(éh ¢> — VgCg(af* ¢> + V4R(0))

(Push down human (Push up plan
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What happens when the
expert is stochastic /
noisy / suboptimal?
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Learning which bridge to cross

Demonstrations
~_  always pick
. Bridge 1

LEARCH converges to
w=|[1 0 O]
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Learning which bridge to cross
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We would like " Does LEARCH

AR 7« N B 1 I I N \
- — 11— converge
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Expert demonstrations are
coming from some (unknown)

distribution ..
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S Can we learn this distribution?



The Distribution Matching Problem

PoperdS h)/\ / P(&)

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

expert samples

generate samples

What loss - ']

igh '
should we /
_ use? ¢

¢
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Think-Pair-Share!

Think (30 sec): Given samples from expert and learner, what loss
should we define to get learner to match expert distribution?

]
Pair: Find a partner %

Share (45 sec): Partners exchange
ideas e

20



Proposal: Match expected costs?

Pexpm@”)/\ /) P

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

generate samples
expert samples
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But wait .. how can we
match costs if we don't
know the weights w?

cost(&) = w'f
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Proposal: Match expected features!

Pexpm(é‘h)/\

(Unknown) expert distribution

All we see are
expert samples

P
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h ._
“enep, () JHE) =

/ Py(S)

/ /Il K

Learn distribution over trajectories

~enpy() N1(S
“enpy() J2(S

L earner can also
generate samples
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Let's
formalizel




Maximum Entropy Inverse Optimal Control

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213
bziebart@cs.cmu.edu, amaas @andrew.cmu.edu, dbagnell @ri.cmu.edu, anind@cs.cmu.edu
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Maximum Entropy Inverse Optimal Control

LEO: Learning Energy-based Models in
Factor Graph Optimization

Paloma Sodhi!?, Eric Dexheimer!, Mustafa Mukadam?, Stuart Anderson?, Michael Kaess!
ICarnegie Mellon University, * Facebook Al Research
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Maximum Entropy Inverse Optimal Control
A 7N
ﬁ 5 2
\m/ N
Given dataset: {gih’ ¢i}£’\;1 Solve for cost Ce(f)

(Human demo) (Map)

—log Py(EM )  PyE|@) = exp(=Cy(<S, @)

2(0,¢)

Max lik. of human traj More costly traj, less likely
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Maximum Entropy Inverse Optimal Control

—

fori=1,....N
|
~ EeXP (_Ce( ,¢))

0t = 0 — n[vece(afh ¢) — Vo Cy( ¢)]

(Push down human (Push up plan



Maximum Entropy Inverse Optimal Control

74
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fori=1,....N

: C
~ EéXP (_ o<, ¢))

0" =0 — ﬂ[vece(e&h ¢) — Vo Cy( ¢)]

(Push down human (Push up plan




Maximum Entropy Inverse Optimal Control
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fori=1,....N

i 1 C
- EﬁXP (_ o<, ¢))

07 =0 — ﬂ[vgce(fh ¢) — Vece(fp ¢)]

(Push down human (Push up plan




Maximum Entropy Inverse Optimal Control

N N
S Wl
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fori=1,....N

i 1 C
- EﬁXP (_ o<, ¢))

07 =0 — ﬂ[vgce(fh ¢) — Vece(fp ¢)]

(Push down human (Push up plan




Deep Max Ent

Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

L

Markus Wulfmeier!, Dominic Zeng Wang! and Ingmar Posner!

Sensory Input Initial States

Demonstration Samples

State Visiting
Frequencies

Determine Loss &
Gradient

Expected State
Visiting Frequencies

Reward Approximation

- ——————— -

Gradient Backpropagation

——— e ———

Solve MDP ‘
A

Reward
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https://www.youtube.com/watch?v=hXxaepw0zAw

Medium (° ¢ Hard (X

Expert is realizable Non-realizable expert Non-realizable expert +
oD at eIl but full expert support limited expert support
=
o As N — oo, drive down Even as N — o0, Even as N — o0,

e = 0 (or Bayes error) behavior cloning O(eCT) behavior cloning O(eT?)

where C is conc. coeff

L | )

S Nothing special. Requires interactive simulator Requires interactive expert
E Collect lots of data and (MaxEntIRL) to match (DAGGER / EIL) to

O

n

do Behavior Cloning distribution = O(eT) provide labels = O(eT)
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tl:dr

| earner

Initialize policy

Update policy

To know the distribution, you need a learner

To train a learner, you need a distribution

The Imitation Game 5

T

1 [policy]

e

Adversary

Chooses loss

Chooses loss
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DAgger: lteration 1
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