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Expert is realizable
t eIl

Setting

As N — oo, drive down
e = 0 (or Bayes error)

Nothing special.

Collect lots of data and

Solution

do Behavior Cloning

Non-realizable expert +
limited expert support

Even as N — o0,
behavior cloning O(eT?)

Requires interactive expert
(DAGGER) to provide

labels = O(eT)



Two Core ldeas

Data | oss
“What is the distribution “"What is the
of states?” metric to match to

human?’



Two Core ldeas

Data | oss
“What is the distribution “"What is the
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DAGGER queries the human at every state!



Impractical: Too much human effort!
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Can we learn from minimal human interaction?



Today's topic: Can we learn from minimal human feedback?

Think of the most minimal feedback:
An E-STOP!

How can we learn from this

1 bit feedback?




Recap

Roll out a learner policy
Collect expert actions

Aggregate data

Update policy

min k.« g 1(7(s) # a™*)




Not all errors are equal




What does DAGGER guarantee?

Shaky hands,

never goes out of racetrack,
but can't recover if it did
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What does DAGGER guarantee?

Perfect on straight turns,
Perfect when falling off the cliff,
But makes mistake on the curve
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What does DAGGER guarantee?

Which policy would you like
to learn?’

~
Which policy might DAGGER " N ( L
return?’ 7 S~ Y’ )

Policy x,
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Think-Pair-Share!

Think (30 sec): Which policy would DAGGER
return? How would you get it to choose 7, ?

Pair: Find a partner

Share (45 sec): Partners exchange
ideas
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What is
theoretically the best

we can do In

imitation learning?




Performance Ditference Lemma




Is there a theoretically best
imitation learning algorithm ?
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AGGREVATE: Expert provides values

Just like DAGGER

Fori = 0 ... N-1

Roll-in learner z; to get {s ~ d, }

Query expert for advantage vector A*(s, . )

Aggregate data Y «— D U {s,A*(s,.)}

Train policy ;. | = :S,A*N@(A*(S, 7(s)))




AGGREVATE: Expert provides values

Fori = 0 ... N-1

Roll-in learner 7; to get {s ~ d_}

Query expert for advantage vector A*(s, . )

Aggregate data & « D U {s,A%(s,.)} OO SR
;°1OQ:' OO

Train policy ;| = [ 4+ .g(A™(s, 7(5)))
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Is Aggrevate even
practical?’
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Bhardwaj, M., Choudhury, S., & Scherer, S. Learning heuristic search via imitation.CORL'17

Yes! AGGREVATE useful for imitating oracles

Train search heuristics by imitating oracular planners
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Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR'18

AGGREVATE for helicopter planning

Learning a

= pot
5P

heuristic for
4D search
(x,y,z,heading)

SlLale=AUTONOMOUS
TimeConpl=02:36 86
Spead=581 knot
Altitude=2952 A ft

9 DistancelLZ=2000.9 m
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A* using dubins distance heuristic
times out (2531 states, 7000ms)

SAIL expands 18 states in 100 ms
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Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR'18

AGGREVATE for mapping unknown environments

Test Data: RGBD data
Train Data: Office desks (Sturm et al.)

created in Gazebo

Learn

Policy
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Okay ...

But how do we learn
from natural human

teedback?
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Impedance Learning


https://www.youtube.com/watch?v=1MkI6DH1mcw

[SCB+ RSS'20]
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Learnt policy
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Problem: Impractical to query expert everywhere

Can we learn from natural human interaction, e.g., interventions?
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| earn from natural human interventions?

Hands free, no corrections!
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| earn from natural human interventions?

ra)

Take over and drive back!
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HG-DAGGER: Learning from interventions

Roll out a learner policy

Collect expert actions on states
where expert intervened

Aggregate data

U p d a te p Ol |Cy HG-DAgger: Interactive Imitation Learning with Human Experts

min
/A

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer

—s.a%*~3D 1 (72'(S) 75 Cl*)
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Does this
work?




Interventions are tell us
something about the expert's

latent value function
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Expert Intervention Learning (EIL)

[SCB+ RSS'20]

The expert action-value function is latent ...

... and must be inferred from human interventions
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Expert Intervention Learning (EIL)
SCB+ RSS'20]

Interventions are just constraints on latent action-value function
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Expert Intervention Learning (EIL)
SCB+ RSS'20]

Interventions are just constraints on latent action-value function

éngg <13(‘9*7aJ>k)"\’PexpertZ(Q(S*7 ')7 a*)

classity demonstrations
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Expert Intervention Learning (EIL)
SCB+ RSS'20]

Interventions are just constraints on latent action-value function

min <13(‘9*7aJ>k)"\’PexpertZ(Q(S*7 ')7 a*)

©eS classity demonstrations
S.t.
Q(Sp CI,) S 5good V(s,a) € (I)

before expert intervenes
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Expert Intervention Learning (EIL)
SCB+ RSS'20]

Interventions are just constraints on latent action-value function

~

- * *
= gleugl t(S*,ax*)NPexpertZ(Q(S : .), a )
* classify demonstrations
§ S.t.

Q(Sv CL) < 5good V(s,a) € (I)

before expert intervenes

t. xl Q(Sv CL) > 5good v(s,a) € (1)

after expert intervenes
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Expert Intervention Learning (EIL)
SCB+ RSS'20]

Interventions are just constraints on latent action-value function

min <13(8*7aJ>k)"\’PexpertZ(Q(S*7 ')7 aj*)

QeQ classify demonstrations
S.t.
V(s,a) € (1)
s,a) <0 |
Q( ) ) — Ygood before expert intervenes
> V(s,a) € (II)
Q(S7 CL) — 5good after expert intervenes
Q(s,a) < minQ(s,a) V(s,a) € (I1I)
/

a during expert intervention

Reduce to online, convex optimization! O(ET)
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EIL drives down error with less expert query
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Turning interventions to simulations for learner

Triage Specialist

AV needed to nudge for a vehicle pulling over
and slowing to a stop.

Triage

2

Online
to

Offline Creale

virtual
tests

4 3

lterate

©2021 | Aurora’/Proprietar https://medium.com /aurora-blog/online-to-offline-turning-real-world-experience-into-virtual-tests-231c1cf8cbed



The Big Picture

What we really want to solve is:

min kg, [Q*(s, 7(s)) — O*(s, 7%(s))]

T

Data

v

“What is the distribution
of states?”

Use interactive online learning!

| oss

J “"What is the metric to
match to human?”

Difference in Q values!
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The Big Picture

What we really want to solve is:

min kg, [Q*(s, 7(s)) — O*(s, 7%(s))]

| oss

J “"What is the metric to
match to human?”

Ditference in Q values!

But Q* is latentl!
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The Big Picture

Estimate Q* from demonstrations, interventions, preferences, ..

and even E-stops!

Demonstrations _

Interventions

Preferences — 7

E-stops
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The Big Picture
t | y d r What we really want to solve is:

min E,_, [Q*(s, 7(s)) — O*(s, 7%(s))]

/ Data
“What is the distribution
of states?”’

Use interactive online learning!

Problem: Impractical to query expert everywhere

27 N

Can we learn from natural human interaction, e.g., interventions?

| oss

J “What is the metric to
match to human?”

Difference in Q values!

Expert Intervention Learning (EIL)

[SCB+ RSS'20]

The expert action-value function is latent ...

.. .and must be inferred from human interventions
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