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Hard

Non-realizable expert +  
limited expert support 

Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER) to provide 

labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable 
 

As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.   
Collect lots of data and 

do Behavior CloningSo
lu
tio
n



Two Core Ideas
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“What is the 
metric to match to 

human?”

Data

“What is the distribution 
of states?”

Loss



Two Core Ideas
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“What is the 
metric to match to 

human?”

Data

“What is the distribution 
of states?”

Loss



DAGGER queries the human at every state!



Impractical: Too much human effort!

Can we learn from minimal human interaction?

??

??
??

??

??



Today’s topic: Can we learn from minimal human feedback?
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Think of the most minimal feedback: 
An E-STOP!

How can we learn from this  
1 bit feedback? 



Recap: DAGGER
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Aggregate data 

min
π

𝔼s,a*∼𝒟1(π(s) ≠ a*)
Update policy

Roll out a learner policy

Collect expert actions



Not all errors are equal



What does DAGGER guarantee?
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Let’s say your policy class  has 2 policiesΠ

Policy :   π1

Shaky hands,  
never goes out of racetrack, 
but can’t recover if it did



What does DAGGER guarantee?
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Let’s say your policy class  has 2 policiesΠ

Policy :   π2

Perfect on straight turns, 
Perfect when falling off the cliff, 
But makes mistake on the curve



What does DAGGER guarantee?
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Which policy might DAGGER 
return?

Which policy would you like  
to learn? Policy   π1

Policy    π2



Activity!



Think-Pair-Share!
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Think (30 sec): Which policy would DAGGER 
return? How would you get it to choose  ?π1

Pair: Find a partner 

Share (45 sec): Partners exchange  
       ideas 

Policy   π1

Policy    π2



What is  

theoretically the best  

we can do in  

imitation learning?
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Performance Difference Lemma
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Is there a theoretically best  
imitation learning algorithm?

AGGREVATE AGGREVATE(D)



AGGREVATE: Expert provides values
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Just like DAGGER

Roll-in learner  to get πi {s ∼ dπi
}

For i = 0 … N-1 

Query expert for advantage vector A*(s, . )

Aggregate data 𝒟 ← 𝒟 ∪ {s, A*(s, . )}

Train policy πi+1 = 𝔼s,A*∼𝒟(A*(s, π(s)))

0.0 1.01.0

3.03.0



AGGREVATE: Expert provides values
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Just like DAGGER

Roll-in learner  to get πi {s ∼ dπi
}

For i = 0 … N-1 

Aggregate data 𝒟 ← 𝒟 ∪ {s, A*(s, . )}

Train policy πi+1 = 𝔼s,A*∼𝒟(A*(s, π(s)))

0.0 1.01.0

3.03.0

2.0

1.0

0.0100.0

1000.0

Query expert for advantage vector A*(s, . )



Is Aggrevate even 
practical?
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Yes! AGGREVATE useful for imitating oracles
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Train search heuristics by imitating oracular planners

Bhardwaj, M., Choudhury, S., & Scherer, S. Learning heuristic search via imitation.CORL’17 



AGGREVATE for helicopter planning
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Dataset of canyons

An autonomous helicopter navigating in a canyon

Learning a  
heuristic for 
4D search  

(x,y,z,heading) 

A* using dubins distance heuristic 
times out (2531 states, 7000ms) SAIL expands 18 states in 100 ms

Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR’18



AGGREVATE for mapping unknown environments
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Train Data: Office desks  
created in Gazebo

Test Data: RGBD data  
(Sturm et al.) 

Learn 
Policy

Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR’18



Okay …  
But how do we learn 
from natural human 

feedback?
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https://www.youtube.com/watch?v=1MkI6DH1mcw
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Recap: Learning to drive

Learnt policy

Demonstration

[SCB+ RSS’20]
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Behavior Cloning crashes into a wall
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Problem: Impractical to query expert everywhere

??

??

Can we learn from natural human interaction, e.g., interventions?
28
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Hands free, no corrections!

Learn from natural human interventions?
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Take over and drive back!

Learn from natural human interventions?



HG-DAGGER: Learning from interventions 
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Aggregate data 

min
π

𝔼s,a*∼𝒟1(π(s) ≠ a*)

Update policy

Roll out a learner policy

Collect expert actions on states 
where expert intervened



Does this 
work?



Interventions are tell us 

something about the expert’s 

latent value function
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Expert Intervention Learning (EIL)

The expert action-value function is latent …

… and must be inferred from human interventions

Q⇤(s, a)

[SCB+ RSS’20]
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Interventions are just constraints on latent action-value function

Expert Intervention Learning (EIL)
[SCB+ RSS’20]
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(s⇤, a⇤) ⇠ Pexpert

Expert Intervention Learning (EIL)
[SCB+ RSS’20]

Interventions are just constraints on latent action-value function

classify demonstrations

min
Q2Q

E(s⇤,a⇤)⇠Pexpert
`(Q(s⇤, .), a⇤)

36



Expert Intervention Learning (EIL)
[SCB+ RSS’20]

Interventions are just constraints on latent action-value function

(I)

before expert intervenes
8(s, a) 2 (I)

classify demonstrations

min
Q2Q

E(s⇤,a⇤)⇠Pexpert
`(Q(s⇤, .), a⇤)

s.t.
Q(s, a)  �good
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Expert Intervention Learning (EIL)
[SCB+ RSS’20]

Interventions are just constraints on latent action-value function

(I)

(II)

after expert intervenes
8(s, a) 2 (II)

before expert intervenes
8(s, a) 2 (I)

classify demonstrations

min
Q2Q

E(s⇤,a⇤)⇠Pexpert
`(Q(s⇤, .), a⇤)

s.t.
Q(s, a)  �good

Q(s, a) � �good
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(I)

(II)

(III)

during expert intervention
8(s, a) 2 (III)

after expert intervenes
8(s, a) 2 (II)

before expert intervenes
8(s, a) 2 (I)

classify demonstrations

min
Q2Q

E(s⇤,a⇤)⇠Pexpert
`(Q(s⇤, .), a⇤)

s.t.
Q(s, a)  �good

Q(s, a) � �good

Q(s, a)  min
a0

Q(s, a)

Expert Intervention Learning (EIL)
[SCB+ RSS’20]

Interventions are just constraints on latent action-value function

Reduce to online, convex optimization! O(ϵT)
39



EIL is “good-enough” after 60 sec of trialsEIL is “good-enough” after 60 sec of trials

40



all these experiments we set it to zero.
Each online policy improvement step m as denoted in

Fig. 1 consists of generating a short trajectory (50-70 steps,
10-15m) and adding it to the dataset. All algorithms are
initialized the same set of (very bad) parameters and given
one full example trajectory, and we evaluate them based
on how many policy improvement iterations they require to
learn to behave like the expert. In simulation, we judge that
precisely by computing the average suboptimality of their
actions according to the expert’s score function on a held
out validation set DT , Ea⇠⇡L,s⇠DT [QE(s, aL) � QE(s, aE)].
On the real robot, we judge success based on the amount of
training samples needed until the robot consistently executes a
trajectory without collision, as well as the “jerkiness”

P
t |�̇t|

of the converged policy.
Using the MuSHR Simulator and an algorithm expert lets

us compare our algorithm to DAGGER, which provides strong
theoretical performance guarantees, but can be challenging to
implement on a real robot because it involves a taxing process
of relabeling actions. Although for behavioral cloning and
DAGGER the expert action is required for every sample in
the environment, in EIL and HG-DAGGER the expert merely
supervises, and actually takes control for far fewer samples.
Thus, for all experiments we consider the number of total
training samples in the environment as well as the number of
samples where the expert was in control.

B. MuSHR Simulation
From our simulation experiments, we make the following

observations:
O1: EIL outperforms all algorithms on all datasets both in

number of expert samples and total number of environment
samples

Fig. 5 provides a comparison of the baselines listed in I in
the hallway (a,b) and the right turn (c,d). EIL achieved the
highest performance, while HG-DAGGER performed compa-
rably to DAGGER in terms of total samples and outperformed
DAGGER in the number of expert samples because it didn’t
query the expert on the segments of learner control. Because
HG-DAGGER amounts to an implementation of EIL with
no reliance on implicit feedback, (� = 0), we see that the
improvement in sample efficiency is due to both the explicit
and implicit feedback. We also see that the improvement in
sample efficiency was most pronounced in the hallway where
DAGGER and BC queried the experts on a large number of
similar samples. We note that on the physical system, the
right turn is more challenging than the hallway because a
policy may have reasonable average score, but fail on the very
crucial sample where it must turn the corner. We use average
suboptimality here because it is a richer metric with lower
variance.

O2: There is an optimal threshold of expert intervention.
Using the algorithm expert for the MuSHR simulator lets us

precisely test how learner performance changes as a function
of the expert intervention style, parameterized here by the
expert’s intervention threshold BE . In Fig. 6 we explore the

Hallway

(a) (b)
Right turn

(c) (d)

Fig. 5: Simulation performance of EIL compared to baselines
in a straight hallway scenario (a,b) and the right hand turn
segment (c,d) pictured in Fig. 4b.

range between an aggressively intervening expert (BE = �1)
and an overly passive expert (BE = 1). The aggressive
intervener is almost always in control, and as BE ! �1,
approaches behavioral cloning. By taking too much control,
the aggressive expert places a high burden on themselves and
increase the number of samples they must supply because
they prevent the learner from making mistakes and visiting
interesting states. On the other hand, the passive expert gives
the agent too much leeway, intervening almost never and
the agent fails to learn because they receive no correction.
Although the human expert cannot make such precise adjust-
ments to their intervention style, this gives a useful heuristic:
In implementing EIL (and perhaps in life) some intervention
is helpful, but too much correction will both exhaust the
supervisor and slow the learning process.

C. MuSHR Robot with Human Expert

Our experiments with the physical robot and the human
expert corroborate our first observation from simulation and
add the following observation:

O3: Learning only from recovery trajectories can harm
performance.

Table II shows the number of samples required for the
learner to achieve a policy that consistently avoids collision in
the right turn scenario. In this experiment, even after 24 expert
demonstration trajectories, behavioral cloning never achieves

all these experiments we set it to zero.
Each online policy improvement step m as denoted in

Fig. 1 consists of generating a short trajectory (50-70 steps,
10-15m) and adding it to the dataset. All algorithms are
initialized the same set of (very bad) parameters and given
one full example trajectory, and we evaluate them based
on how many policy improvement iterations they require to
learn to behave like the expert. In simulation, we judge that
precisely by computing the average suboptimality of their
actions according to the expert’s score function on a held
out validation set DT , Ea⇠⇡L,s⇠DT [QE(s, aL) � QE(s, aE)].
On the real robot, we judge success based on the amount of
training samples needed until the robot consistently executes a
trajectory without collision, as well as the “jerkiness”

P
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of the converged policy.
Using the MuSHR Simulator and an algorithm expert lets

us compare our algorithm to DAGGER, which provides strong
theoretical performance guarantees, but can be challenging to
implement on a real robot because it involves a taxing process
of relabeling actions. Although for behavioral cloning and
DAGGER the expert action is required for every sample in
the environment, in EIL and HG-DAGGER the expert merely
supervises, and actually takes control for far fewer samples.
Thus, for all experiments we consider the number of total
training samples in the environment as well as the number of
samples where the expert was in control.

B. MuSHR Simulation
From our simulation experiments, we make the following

observations:
O1: EIL outperforms all algorithms on all datasets both in

number of expert samples and total number of environment
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Fig. 5 provides a comparison of the baselines listed in I in
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crucial sample where it must turn the corner. We use average
suboptimality here because it is a richer metric with lower
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O2: There is an optimal threshold of expert intervention.
Using the algorithm expert for the MuSHR simulator lets us

precisely test how learner performance changes as a function
of the expert intervention style, parameterized here by the
expert’s intervention threshold BE . In Fig. 6 we explore the

Hallway

(a) (b)
Right turn

(c) (d)
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in a straight hallway scenario (a,b) and the right hand turn
segment (c,d) pictured in Fig. 4b.

range between an aggressively intervening expert (BE = �1)
and an overly passive expert (BE = 1). The aggressive
intervener is almost always in control, and as BE ! �1,
approaches behavioral cloning. By taking too much control,
the aggressive expert places a high burden on themselves and
increase the number of samples they must supply because
they prevent the learner from making mistakes and visiting
interesting states. On the other hand, the passive expert gives
the agent too much leeway, intervening almost never and
the agent fails to learn because they receive no correction.
Although the human expert cannot make such precise adjust-
ments to their intervention style, this gives a useful heuristic:
In implementing EIL (and perhaps in life) some intervention
is helpful, but too much correction will both exhaust the
supervisor and slow the learning process.

C. MuSHR Robot with Human Expert

Our experiments with the physical robot and the human
expert corroborate our first observation from simulation and
add the following observation:

O3: Learning only from recovery trajectories can harm
performance.

Table II shows the number of samples required for the
learner to achieve a policy that consistently avoids collision in
the right turn scenario. In this experiment, even after 24 expert
demonstration trajectories, behavioral cloning never achieves

EIL drives down error with less expert query
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Turning interventions to simulations for learner

https://medium.com/aurora-blog/online-to-offline-turning-real-world-experience-into-virtual-tests-231c1cf8cbcd 42©2021 | Aurora Proprietary



The Big Picture
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“What is the metric to 
match to human?”

Data

“What is the distribution 
of states?”

Loss

min
π

𝔼s∼dπ
[Q*(s, π(s)) − Q*(s, π*(s))]

What we really want to solve is:

Use interactive online learning! Difference in Q values!



The Big Picture
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“What is the metric to 
match to human?”

Loss

min
π

𝔼s∼dπ
[Q*(s, π(s)) − Q*(s, π*(s))]

What we really want to solve is:

Difference in Q values!

Q⇤(s, a)

But Q* is latent!



The Big Picture
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Estimate Q* from demonstrations, interventions, preferences, .. 
and even E-stops!

Q⇤(s, a)
Demonstrations

Interventions

Preferences

E-stops

ℒ(Q*θ )
Loss
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tl;dr

Expert Intervention Learning (EIL)

The expert action-value function is latent …

… and must be inferred from human interventions

Q⇤(s, a)

[SCB+ RSS’20]

 X

The Big Picture

 X

“What is the metric to 
match to human?”

Data

“What is the distribution 
of states?”

Loss

min
π

!s∼dπ
[Q*(s, π(s)) − Q*(s, π*(s))]

What we really want to solve is:

Use interactive online learning! Difference in Q values!

Problem: Impractical to query expert everywhere

??

??

Can we learn from natural human interaction, e.g., interventions?
 X


