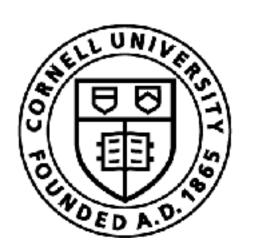
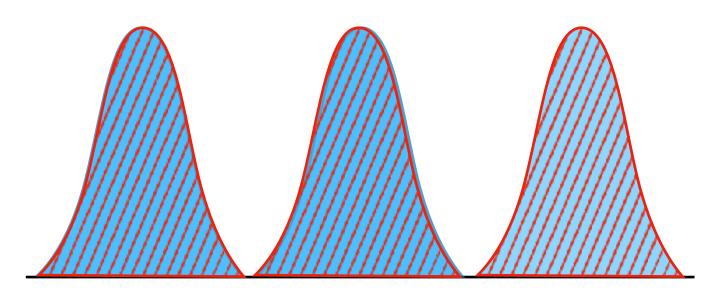
Imitation Learning as Inferring Latent Expert Values

Sanjiban Choudhury



Expert is realizable $\pi^E \in \Pi$

As $N \rightarrow \infty$, drive down $\epsilon = 0$ (or Bayes error)

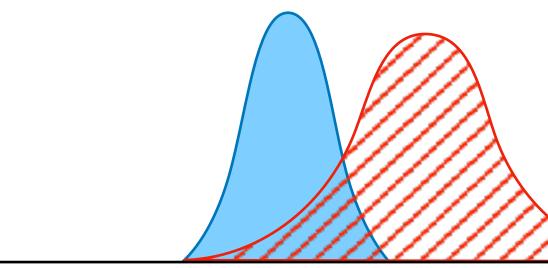


Solutio

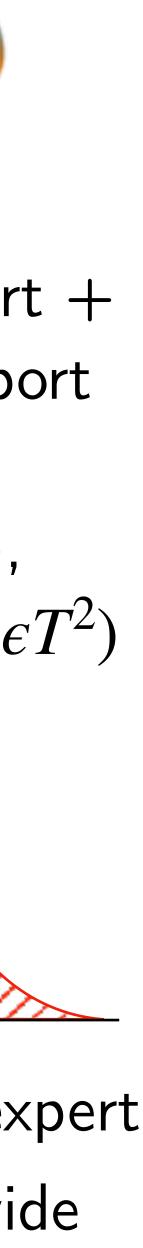
Nothing special. Collect lots of data and do Behavior Cloning

Non-realizable expert + limited expert support

Even as $N \to \infty$, behavior cloning $O(\epsilon T^2)$



Requires interactive expert (DAGGER) to provide labels $\Rightarrow O(\epsilon T)$



Two Core Ideas

Data

"What is the distribution of states?"

Loss

"What is the metric to match to human?"

Data

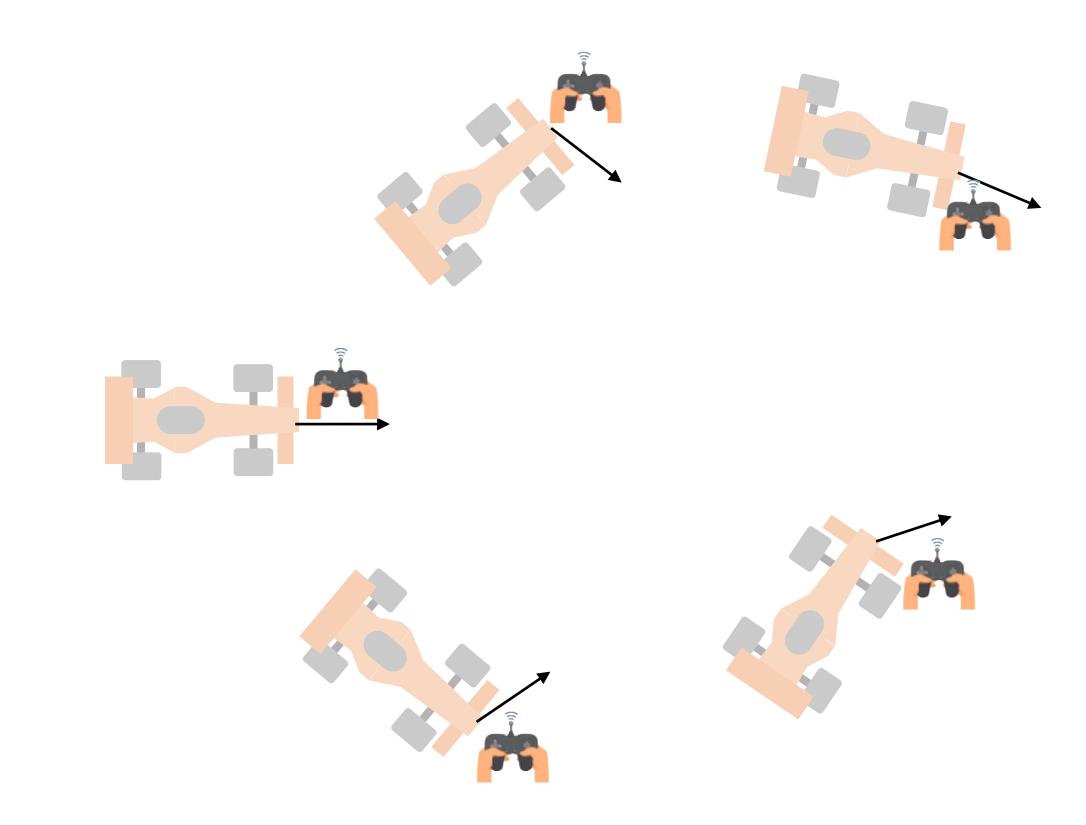
What is the distribution of states?"

Two Core Ideas

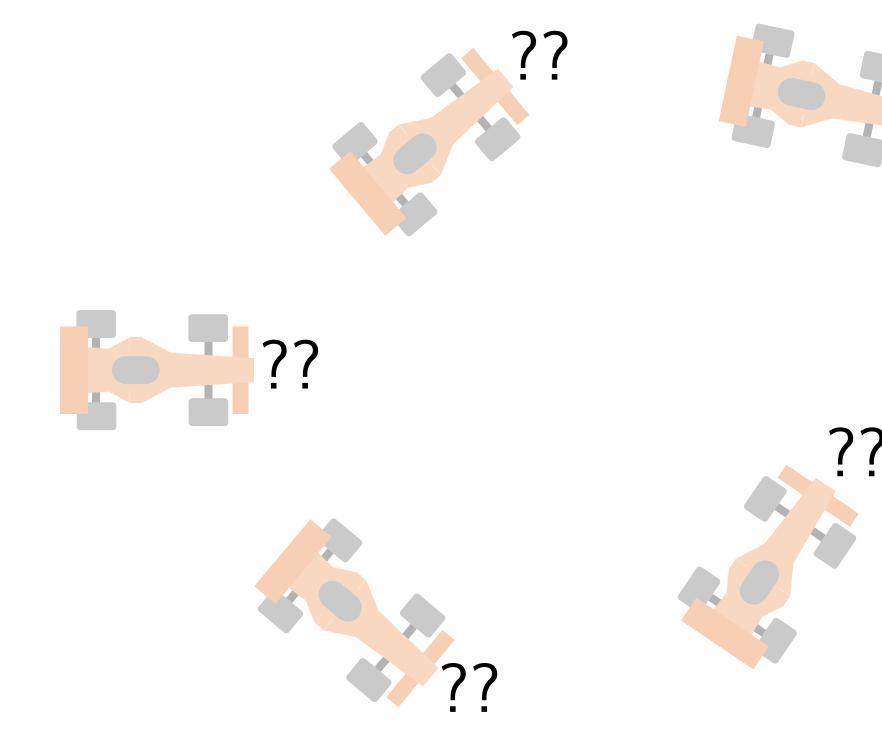
Loss

"What is the metric to match to human?"

DAGGER queries the human at every state!

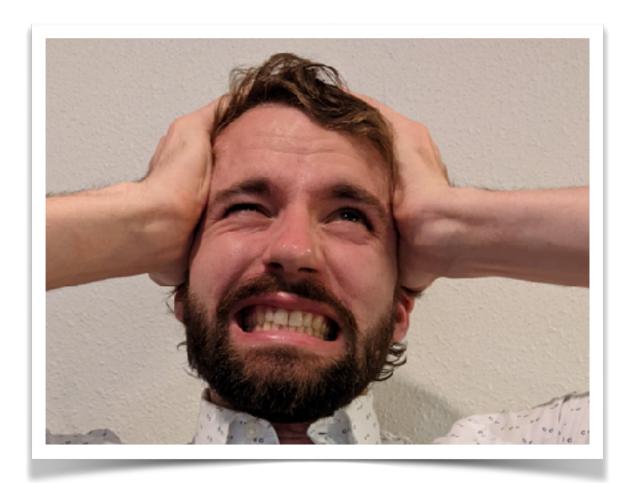


Impractical: Too much human effort!



Can we learn from minimal human interaction?

??



Today's topic: Can we learn from minimal human feedback?

Think of the most minimal feedback: An E-STOP!

How can we learn from this 1 bit feedback?

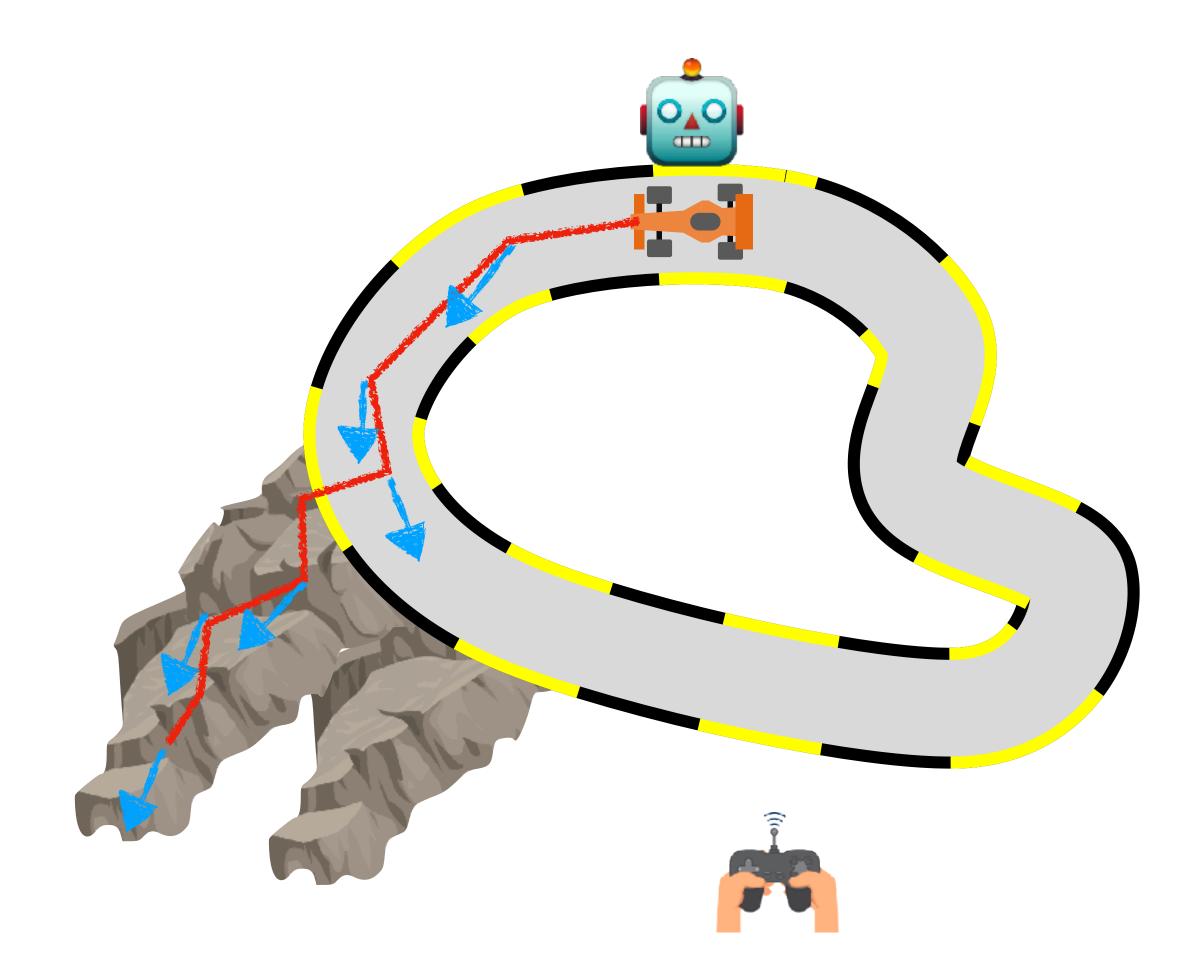
Roll out a learner policy

Collect expert actions

Aggregate data

Update policy $\min \mathbb{E}_{s,a^* \sim \mathcal{D}} \mathbb{1}(\pi(s) \neq a^*)$ ${\cal \pi}$

Recap: DAGGER



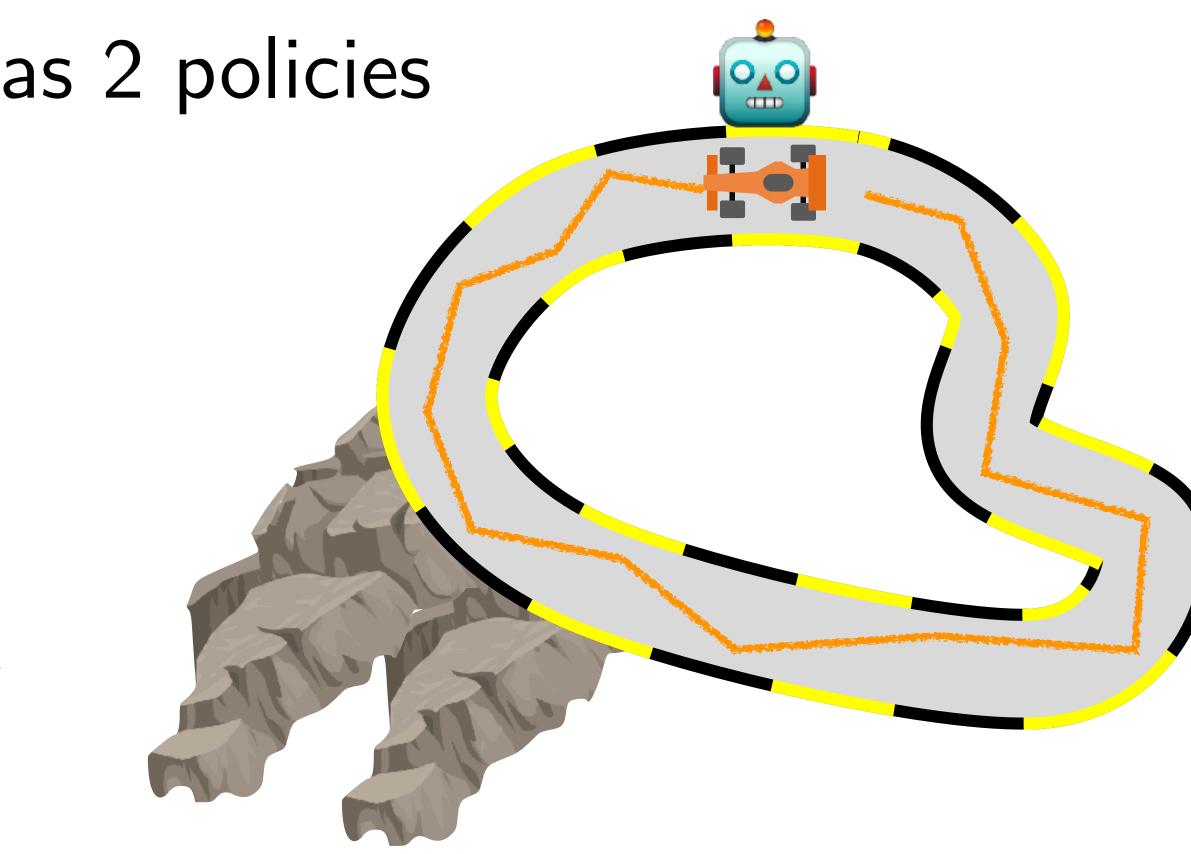
Not all errors are equal

What does DAGGER guarantee?

Let's say your policy class Π has 2 policies

Policy π_1 :

Shaky hands, never goes out of racetrack, but can't recover if it did

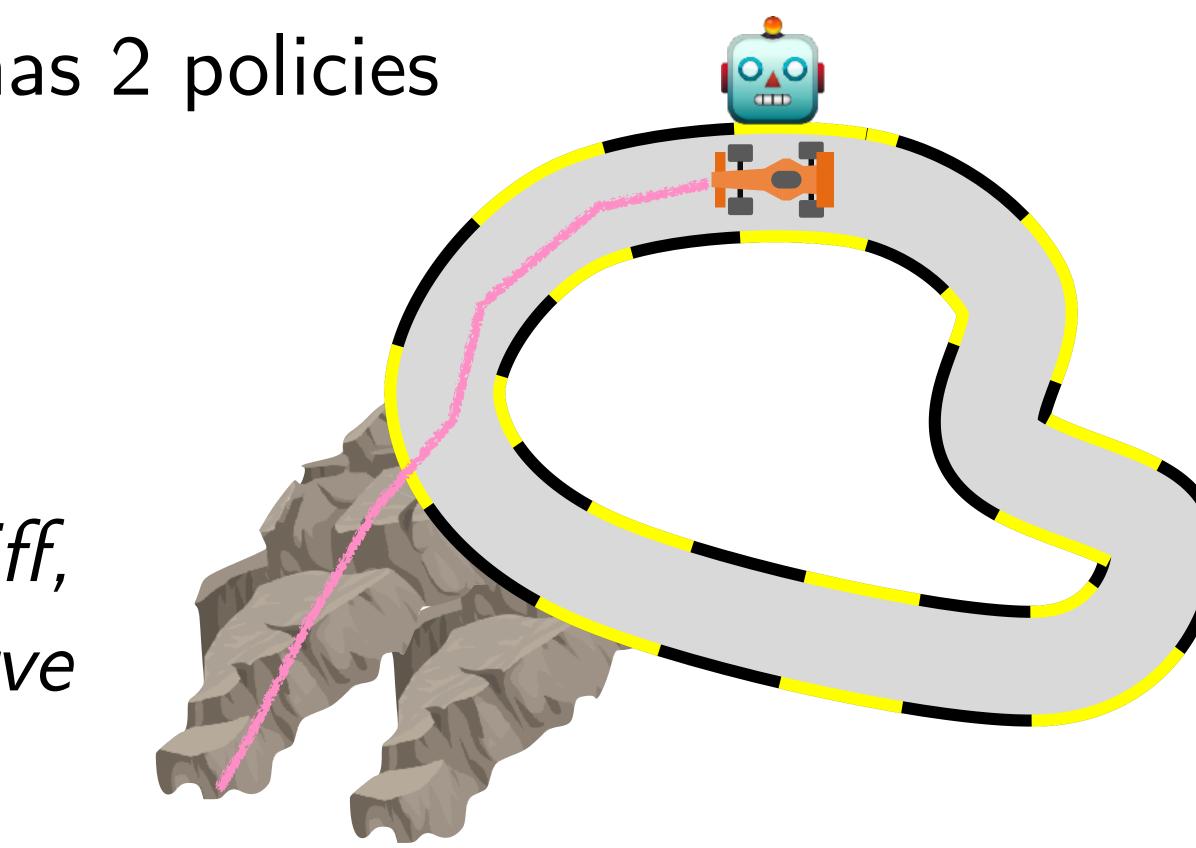


What does DAGGER guarantee?

Let's say your policy class Π has 2 policies

Policy π_2 :

Perfect on straight turns, Perfect when falling off the cliff, But makes mistake on the curve



What does DAGGER guarantee?

Which policy would you like to learn?

Which policy might DAGGER return?



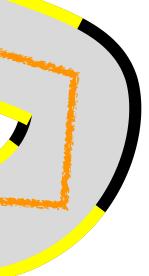
Think-Pair-Share!

Think (30 sec): Which policy would DAGGER return? How would you get it to choose π_1 ?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Policy π_1



What is theoretically the best we can do in imitation learning?

Performance Dífference Lemma

Is there a theoretically best imitation learning algorithm?

AGGREVATE

Reinforcement and Imitation Learning via Interactive No-Regret Learning

Stéphane Ross J. Andrew Bagnell

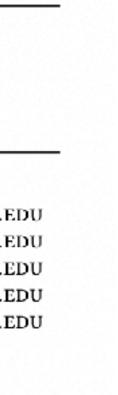
stephaneross@cmu.edu dbagnell@ri.cmu.edu The Robotics Institute Carnegie Mellon University, Pittsburgh, PA, USA

AGGREVATE(D)

Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction

Wen Sun[†] Arun Venkatraman[†] Geoffrey J. Gordon[†] Byron Boots^{*} J. Andrew Bagnell[†] [†]School of Computer Science, Carnegie Mellon University, USA *College of Computing, Georgia Institute of Technology, USA

WENSUN@CS.CMU.EDU ARUNVENK@CS.CMU.EDU GGORDON@CS.CMU.EDU BBOOTS@CC.GATECH.EDU DBAGNELL@RI.CMU.EDU



AGGREVATE: Expert provides values

Just like DAGGER

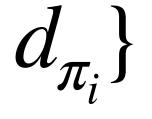
For i = 0 ... N-1

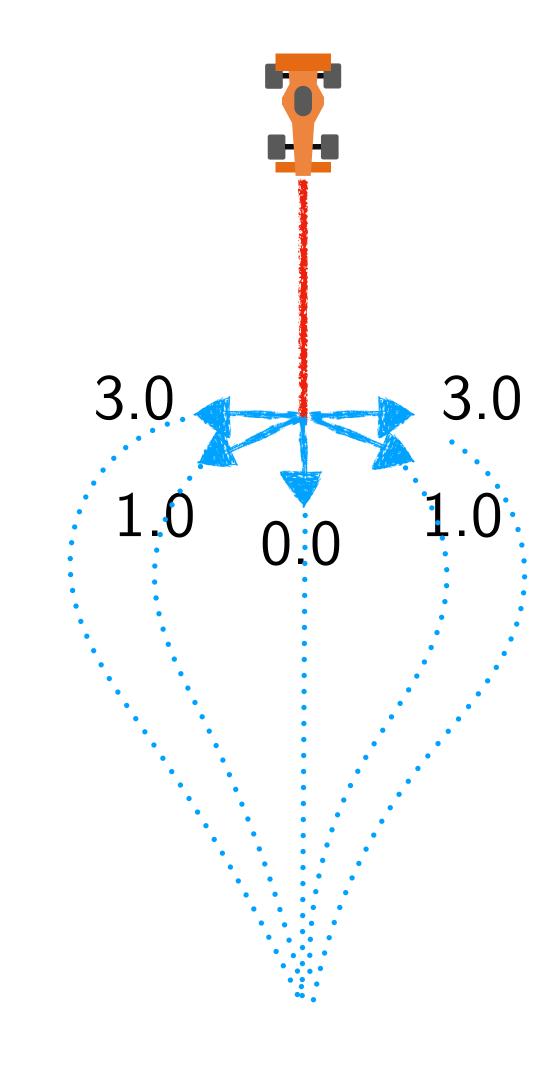
Roll-in learner π_i to get $\{s \sim d_{\pi_i}\}$

Query expert for advantage vector $A^*(s, .)$

Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \{s, A^*(s, .)\}$

Train policy $\pi_{i+1} = \mathbb{E}_{s,A^* \sim \mathcal{D}}(A^*(s, \pi(s)))$





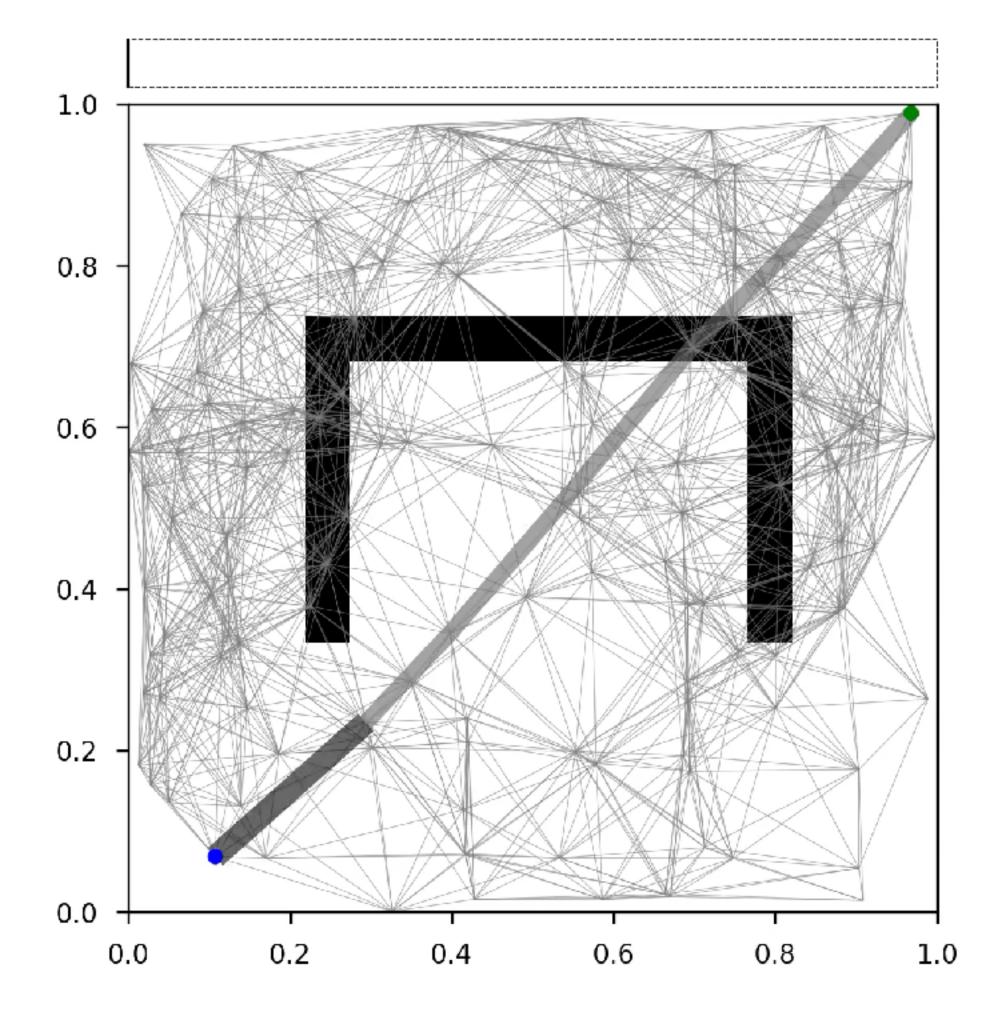
AGGREVATE: Expert provides values Roll-in learner π_i to get $\{s \sim d_{\pi_i}\}$ Query expert for advantage vector $A^*(s, .)$ 1000.0 Aggregate data $\mathscr{D} \leftarrow \mathscr{D} \cup \{s, A^*(s, .)\}$ Train policy $\pi_{i+1} = \mathbb{E}_{s,A^* \sim \mathcal{D}}(A^*(s, \pi(s)))$

Just like DAGGER

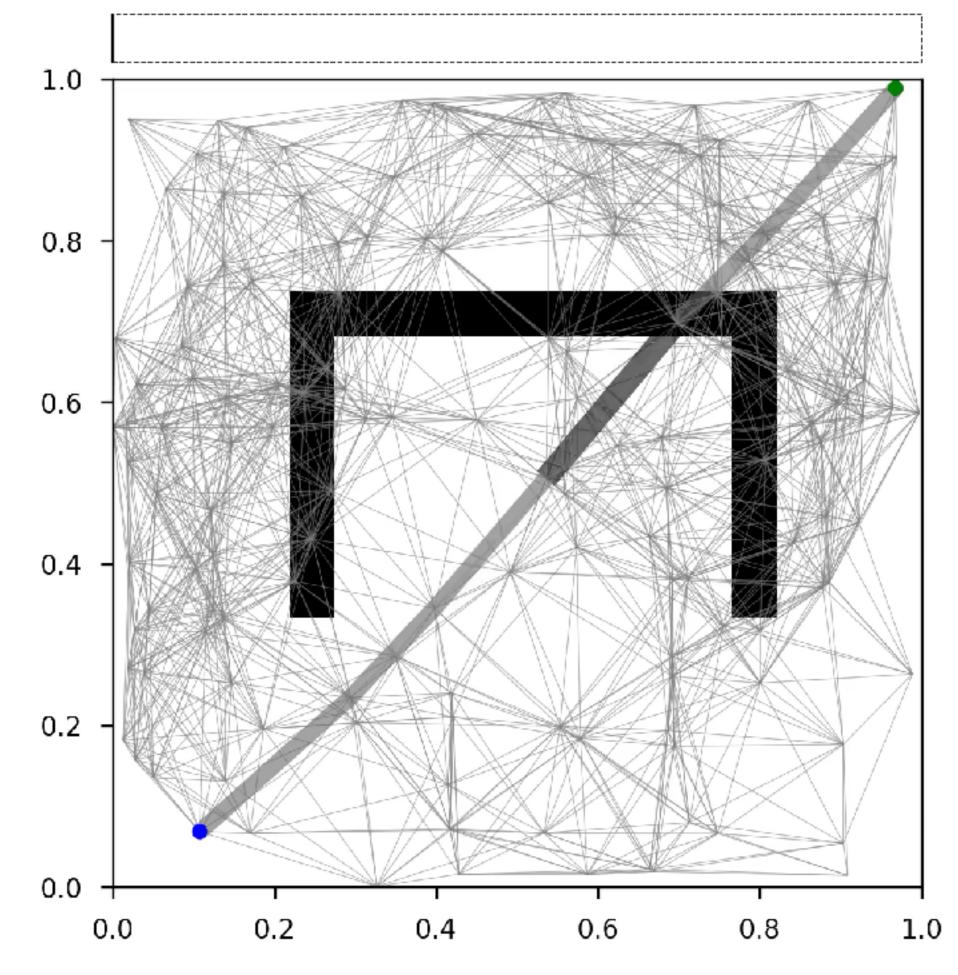
For i = 0 ... N-1

Is Aggrevate even practical?

Yes! AGGREVATE useful for imitating oracles Train search heuristics by imitating oracular planners

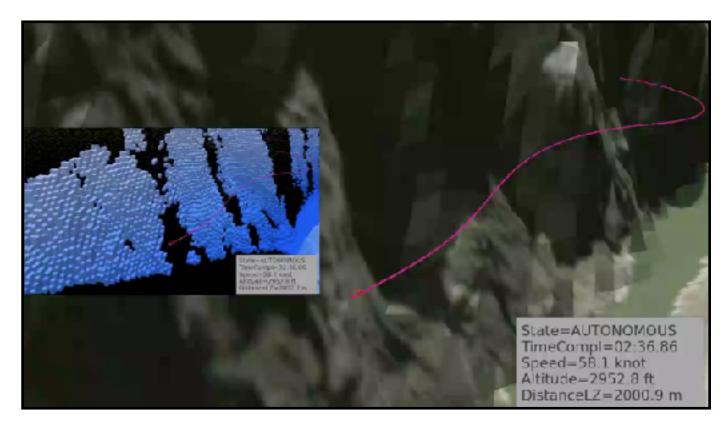


Bhardwaj, M., Choudhury, S., & Scherer, S. Learning heuristic search via imitation.CORL'17

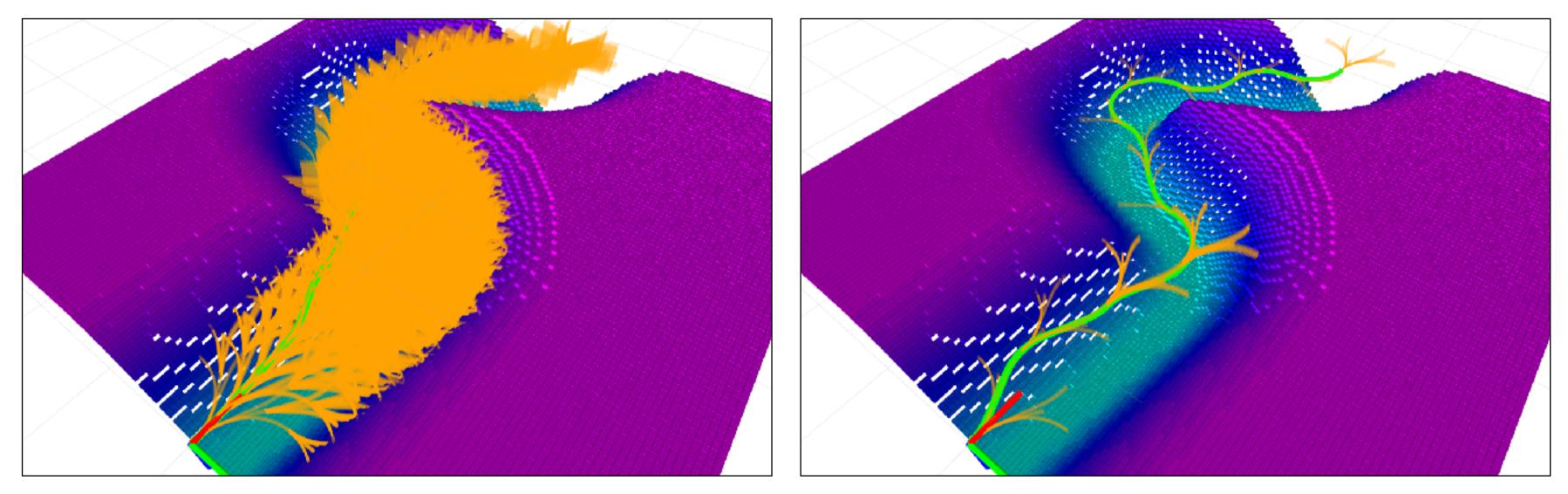


Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR'18

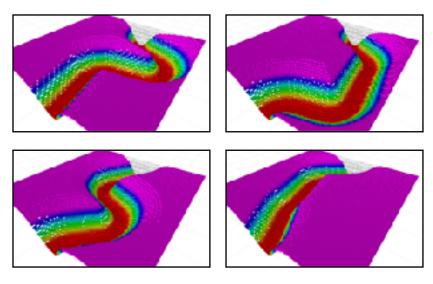
AGGREVATE for helicopter planning



An autonomous helicopter navigating in a canyon



A* using dubins distance heuristic times out (2531 states, 7000ms)



Dataset of canyons

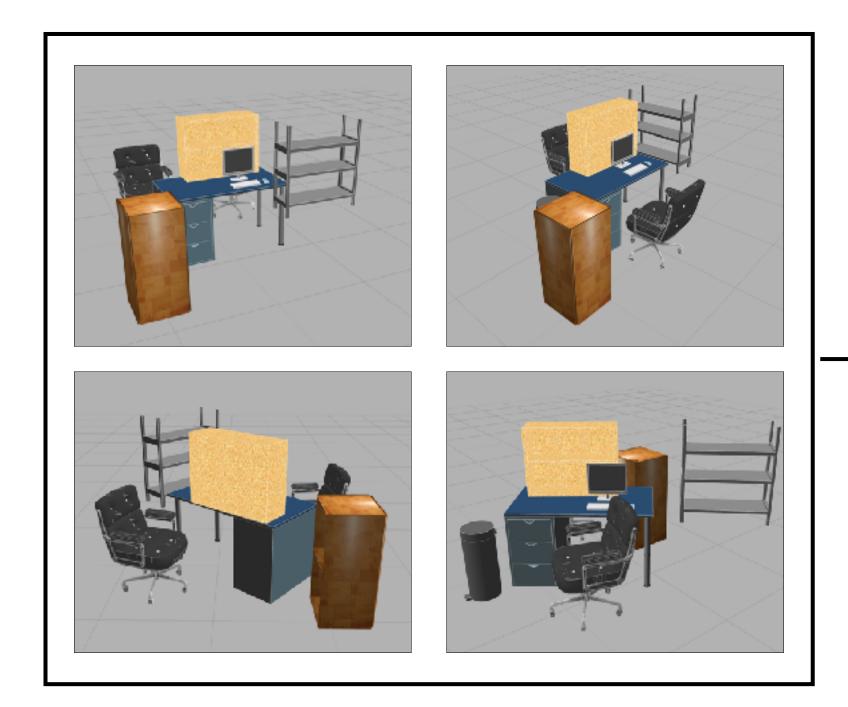
Learning a heuristic for 4D search (x,y,z,heading)

SAIL expands 18 states in 100 ms

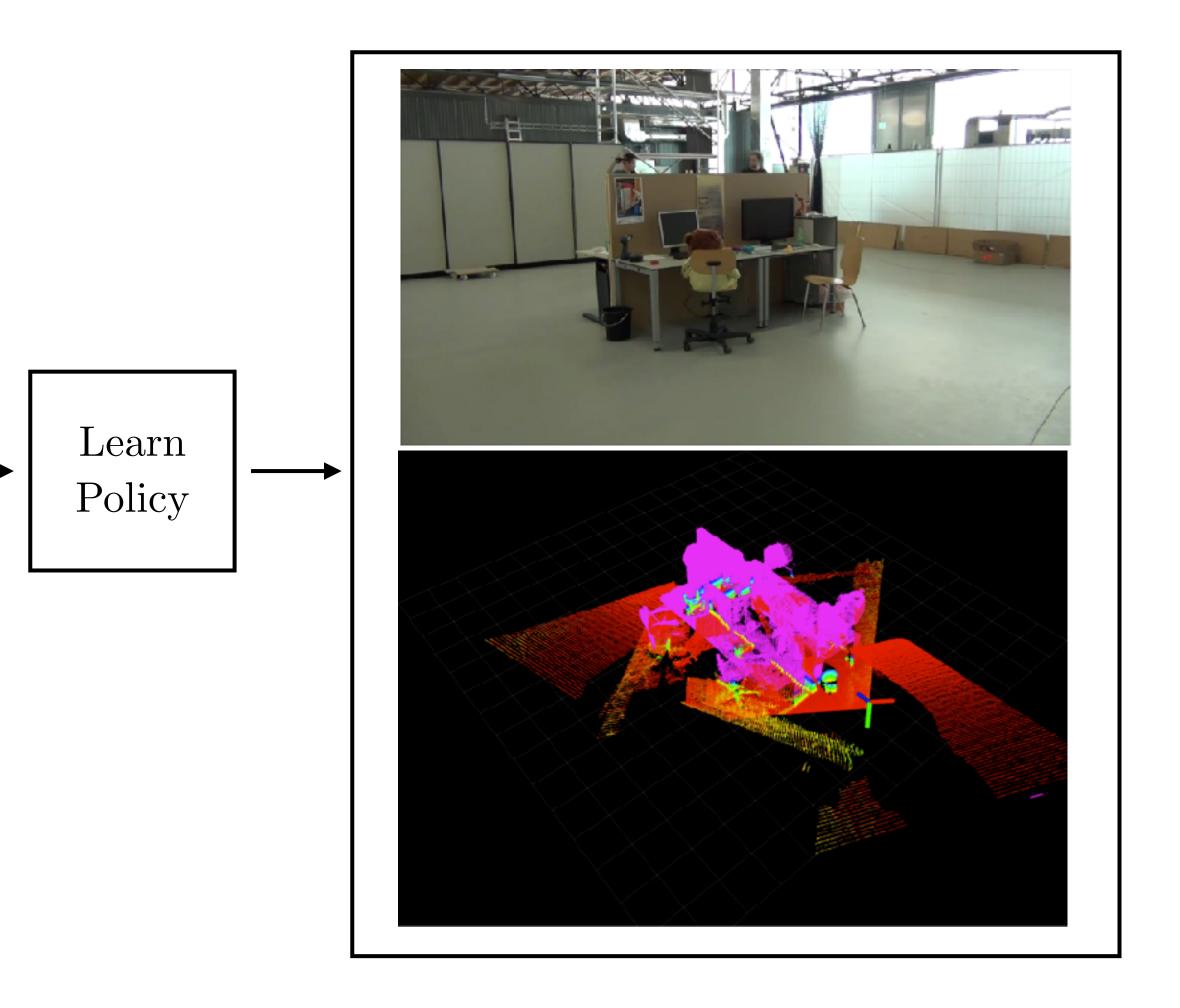
Choudhury, S., Bhardwaj, M., Arora, S., Kapoor, A., Ranade, G., Scherer, S., & Dey, D. Data-driven planning via imitation learning. IJRR'18

AGGREVATE for mapping unknown environments

Train Data: Office desks created in Gazebo

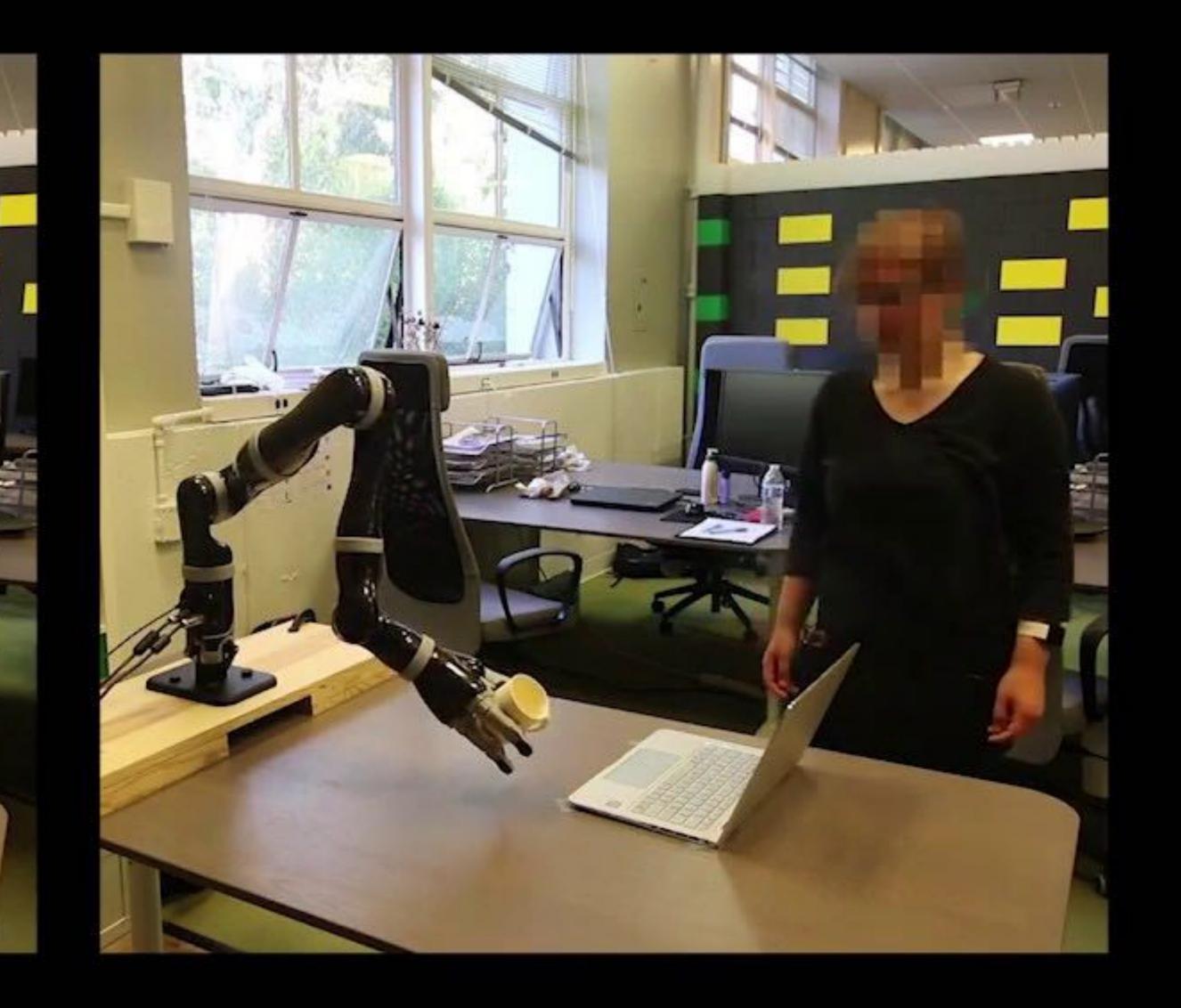


Test Data: RGBD data (Sturm et al.)



Okay ... But how do we learn from natural human feedback?

Impedance

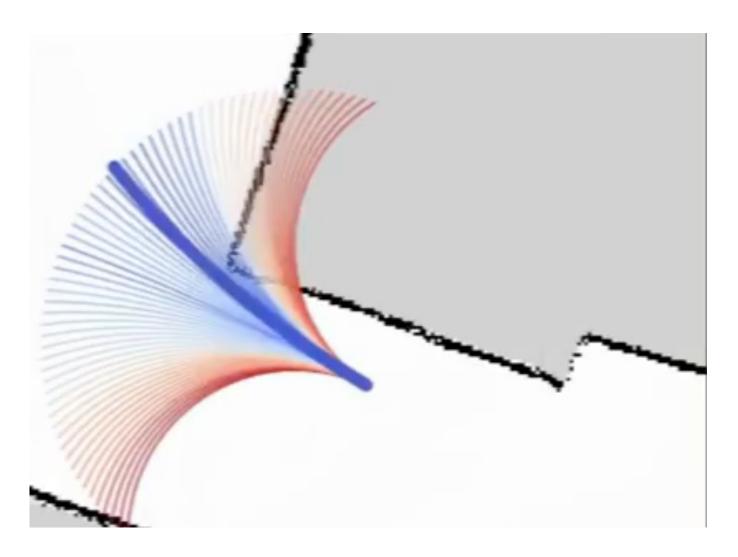


Learning

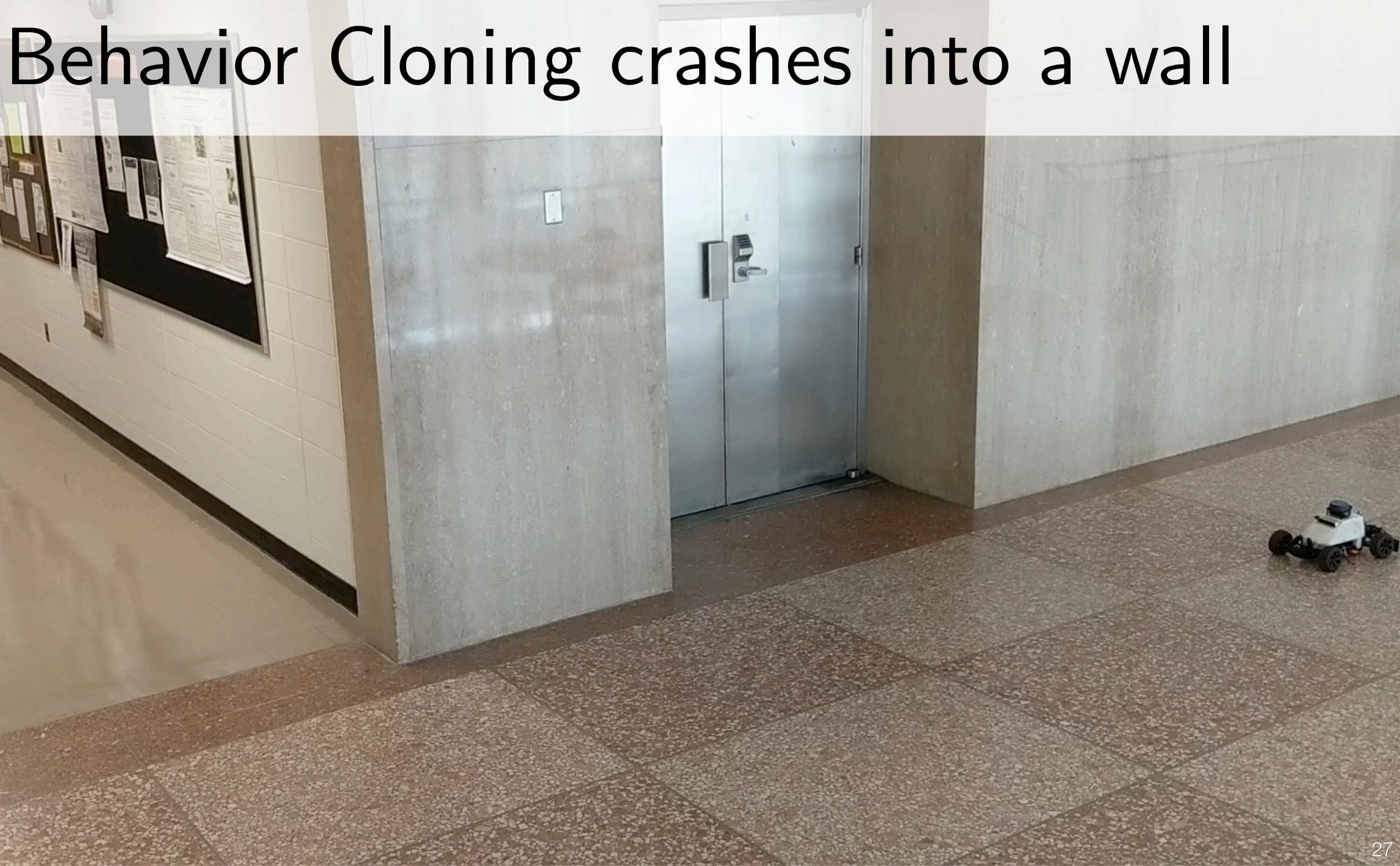
Recap: Learning to drive



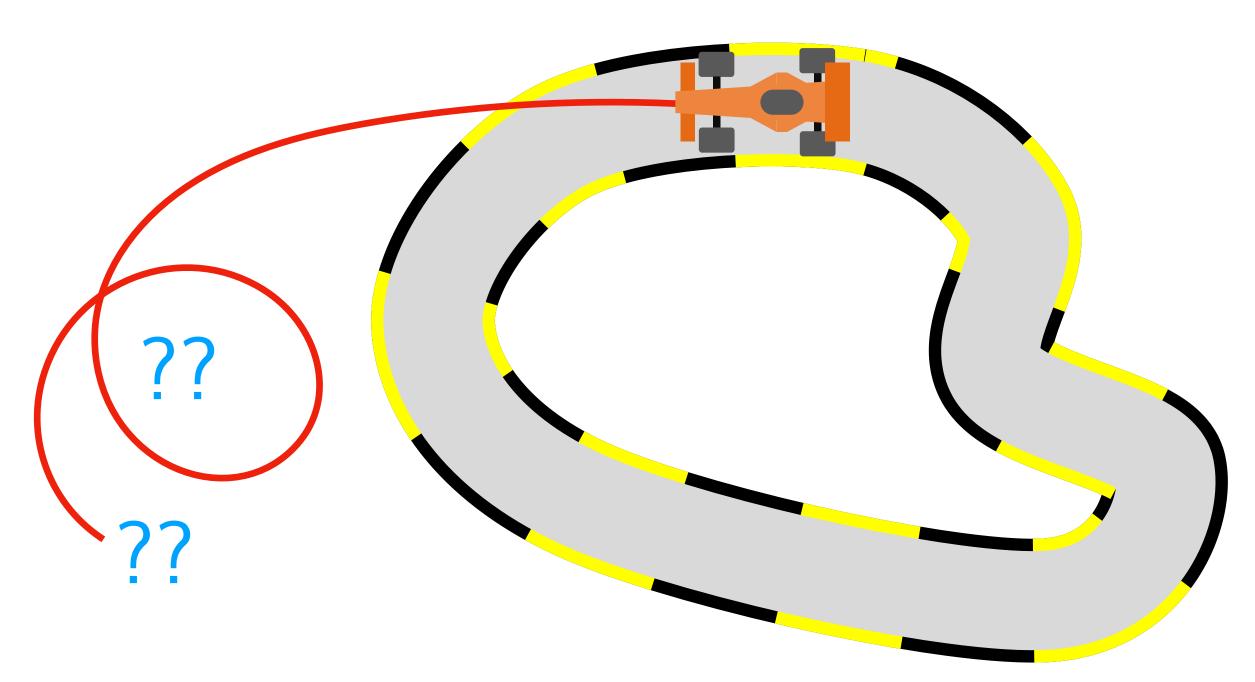
[SCB+RSS'20]



Learnt policy



Problem: Impractical to query expert everywhere

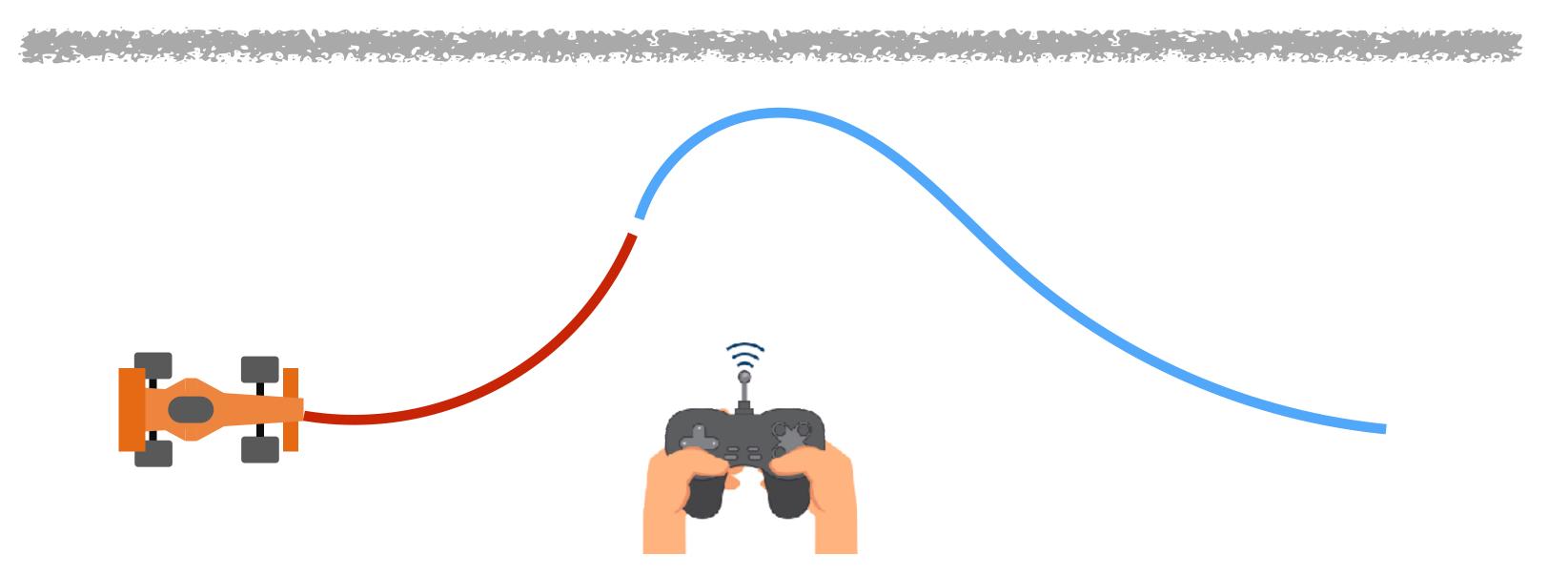


Can we learn from natural human interaction, e.g., interventions?

Learn from natural human interventions?

TARAS STRAND SALE SALE AND STRAND S

Hands free, no corrections!



Take over and drive back!

Learn from natural human interventions?

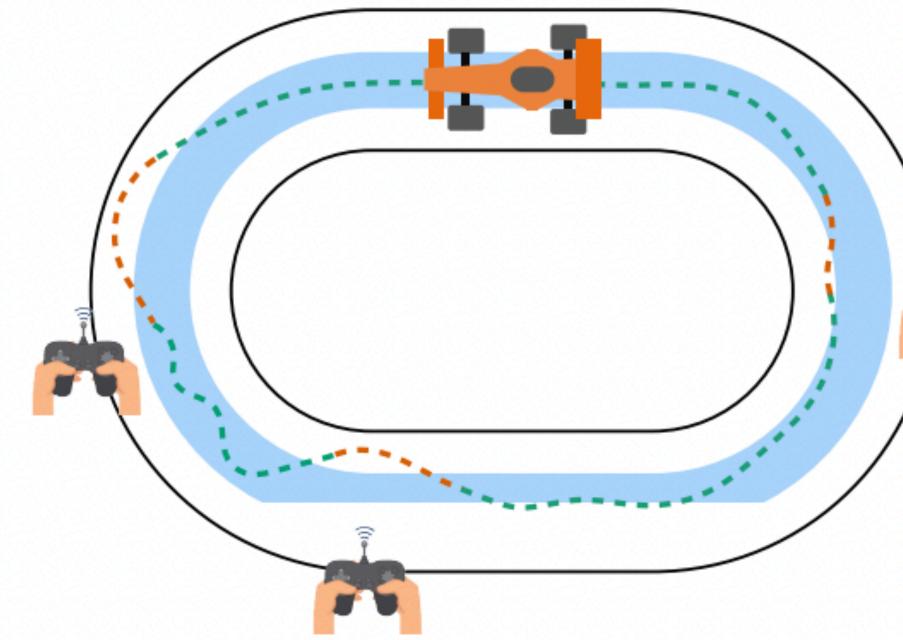
HG-DAGGER: Learning from interventions

Roll out a learner policy

Collect expert actions on states where expert intervened

Aggregate data

Update policy $\min \mathbb{E}_{s,a^* \sim \mathcal{D}} \mathbb{1}(\pi(s) \neq a^*)$ π

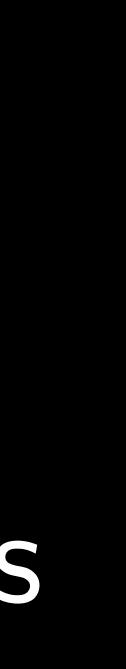


HG-DAgger: Interactive Imitation Learning with Human Experts

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer

Does this work?

Interventions are tell us something about the expert's latent value function



Expert Intervention Learning (EIL) [SCB+RSS'20]

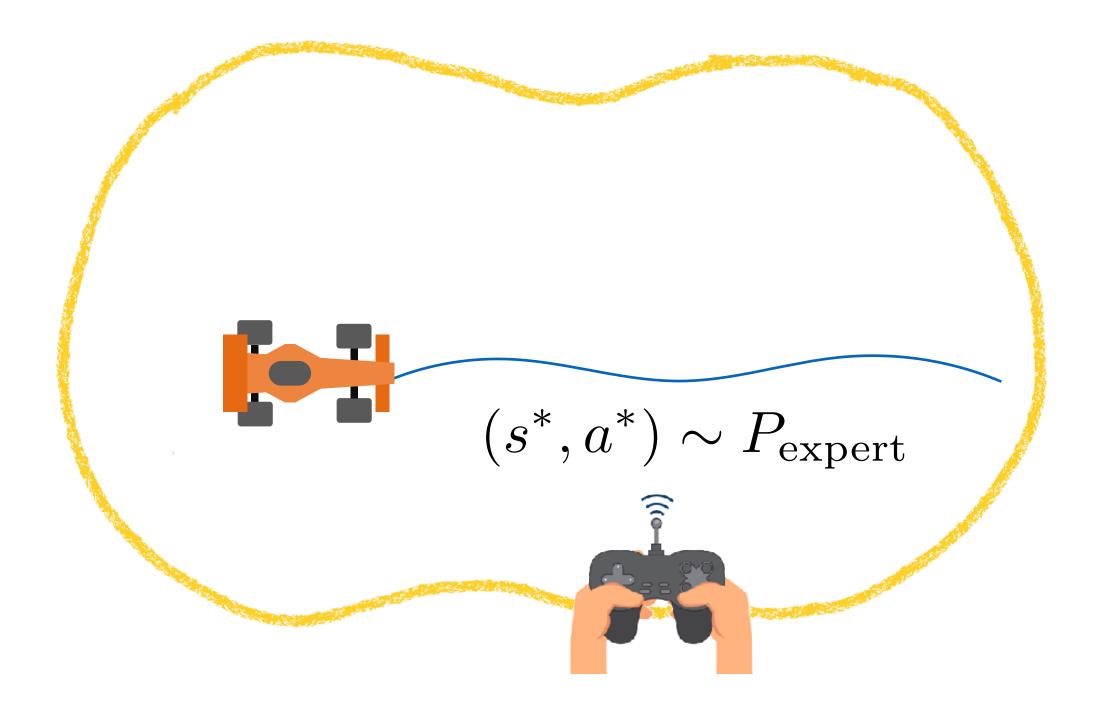
The expert action-value function is latent ...

... and must be inferred from human interventions

Expert Intervention Learning (EIL) [SCB+RSS'20]

Interventions are just constraints on latent action-value function

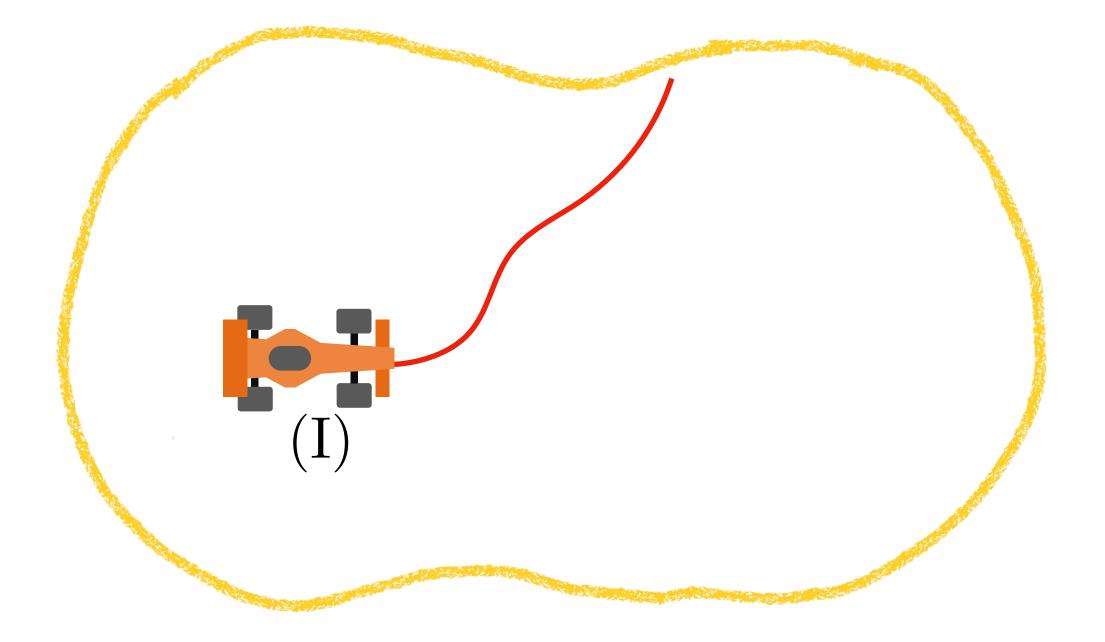
Expert Intervention Learning (EIL) [SCB+ RSS'20]



Interventions are just constraints on latent action-value function

 $\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$ classify demonstrations

Expert Intervention Learning (EIL) [SCB+RSS'20]



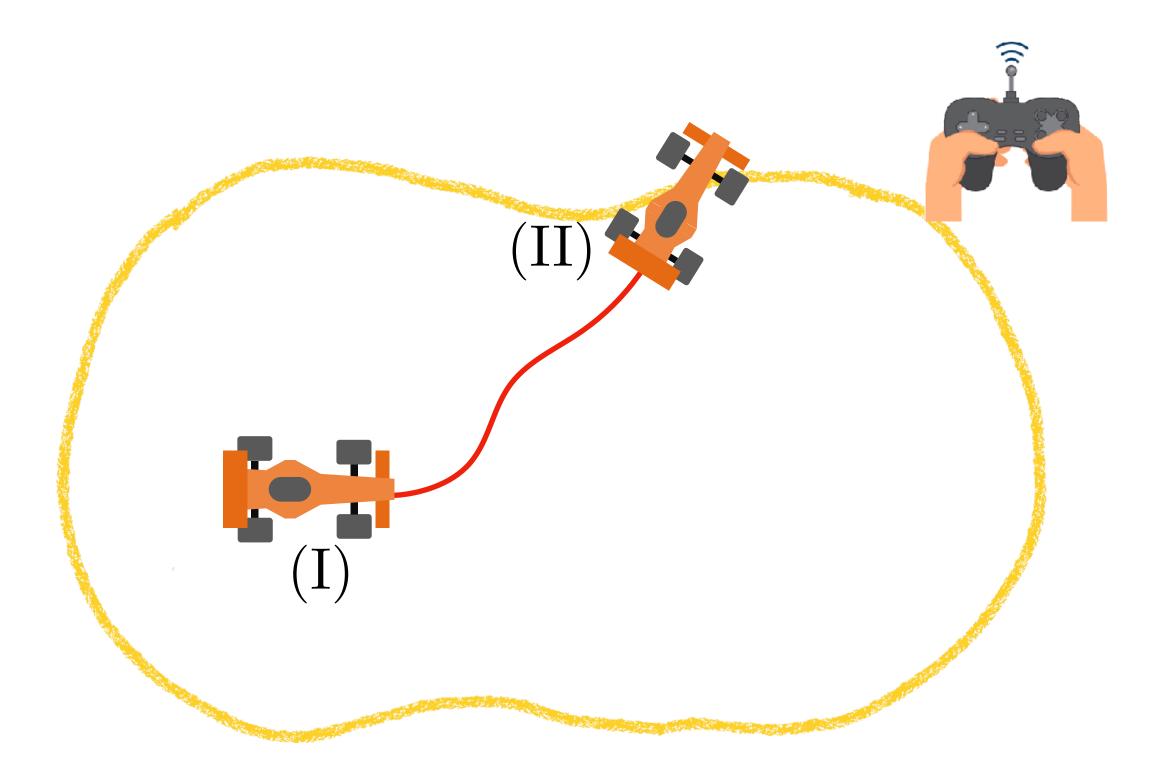
Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$
classify demonst

s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes

Expert Intervention Learning (EIL) [SCB+ RSS'20]



Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$

$$\underset{\text{classify demonst}}{\text{classify demonst}}$$

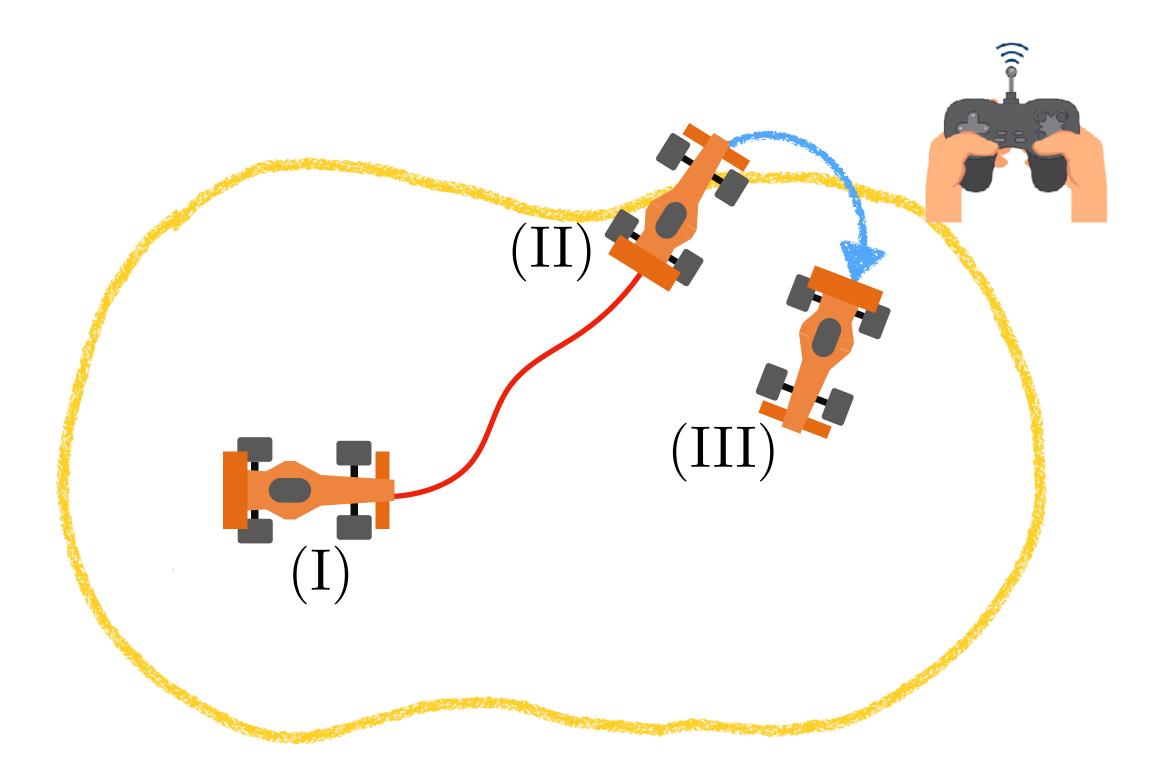
s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes

 $Q(s,a) \ge \delta_{\text{good}}$

 $\forall (s, a) \in (\mathrm{II})$ after expert intervenes

Expert Intervention Learning (EIL) [SCB+ RSS'20]



Interventions are just constraints on latent action-value function

$$\min_{Q \in \mathcal{Q}} \mathbb{E}_{(s^*, a^*) \sim P_{\text{expert}}} \ell(Q(s^*, .), a^*)$$

$$\underset{\text{classify demon}}{\text{monomega}}$$

s.t.
$$Q(s, a) \leq \delta_{\text{good}}$$

 $\forall (s, a) \in (\mathbf{I})$ before expert intervenes

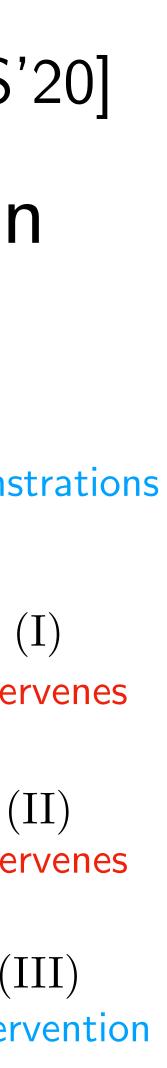
 $\forall (s, a) \in (\mathrm{II})$ $Q(s,a) \ge \delta_{\text{good}}$ after expert intervenes

$$Q(s,a) \le \min_{a'} Q(s,a)$$

 $\forall (s, a) \in (\mathrm{III})$

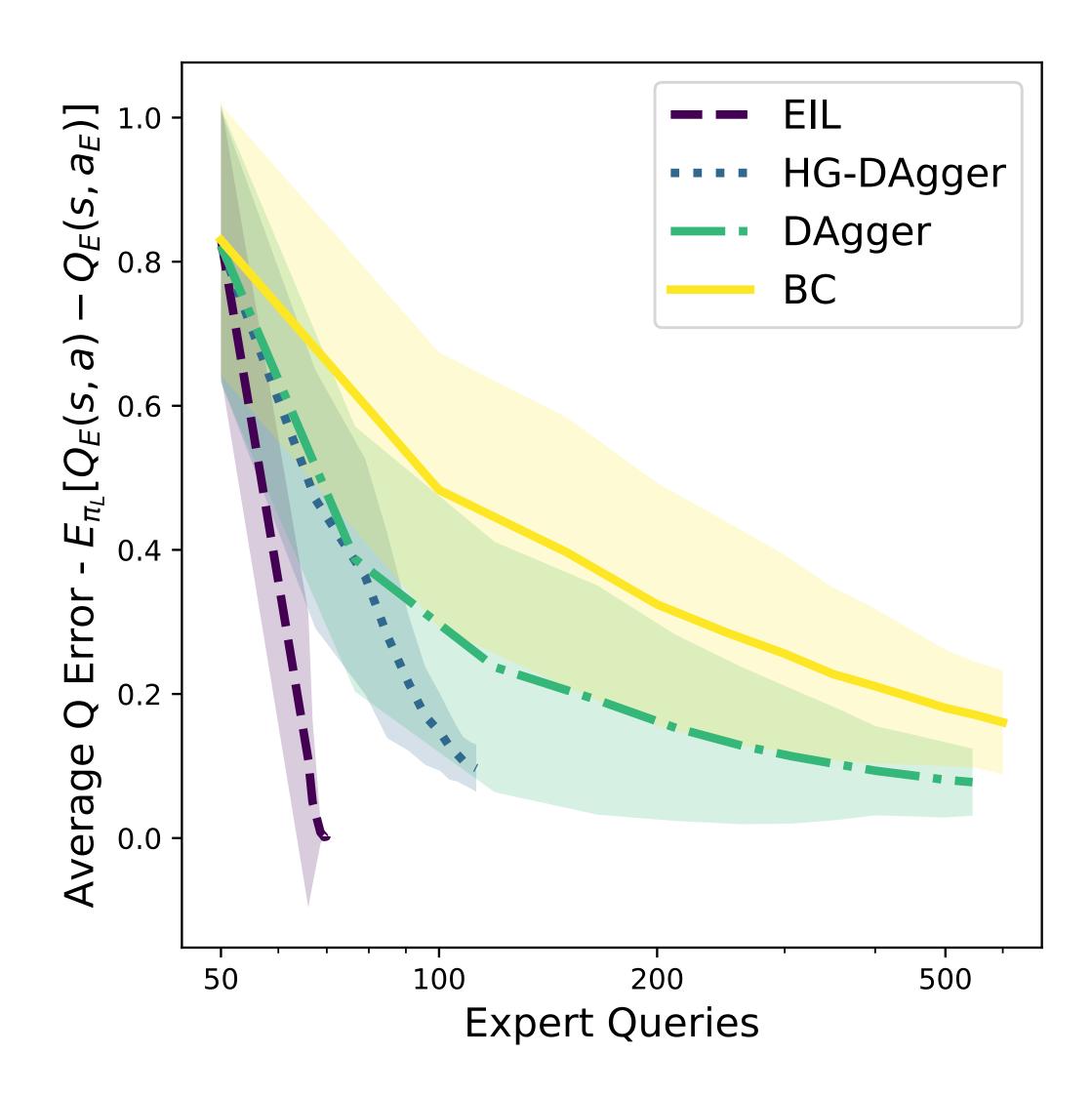
during expert intervention

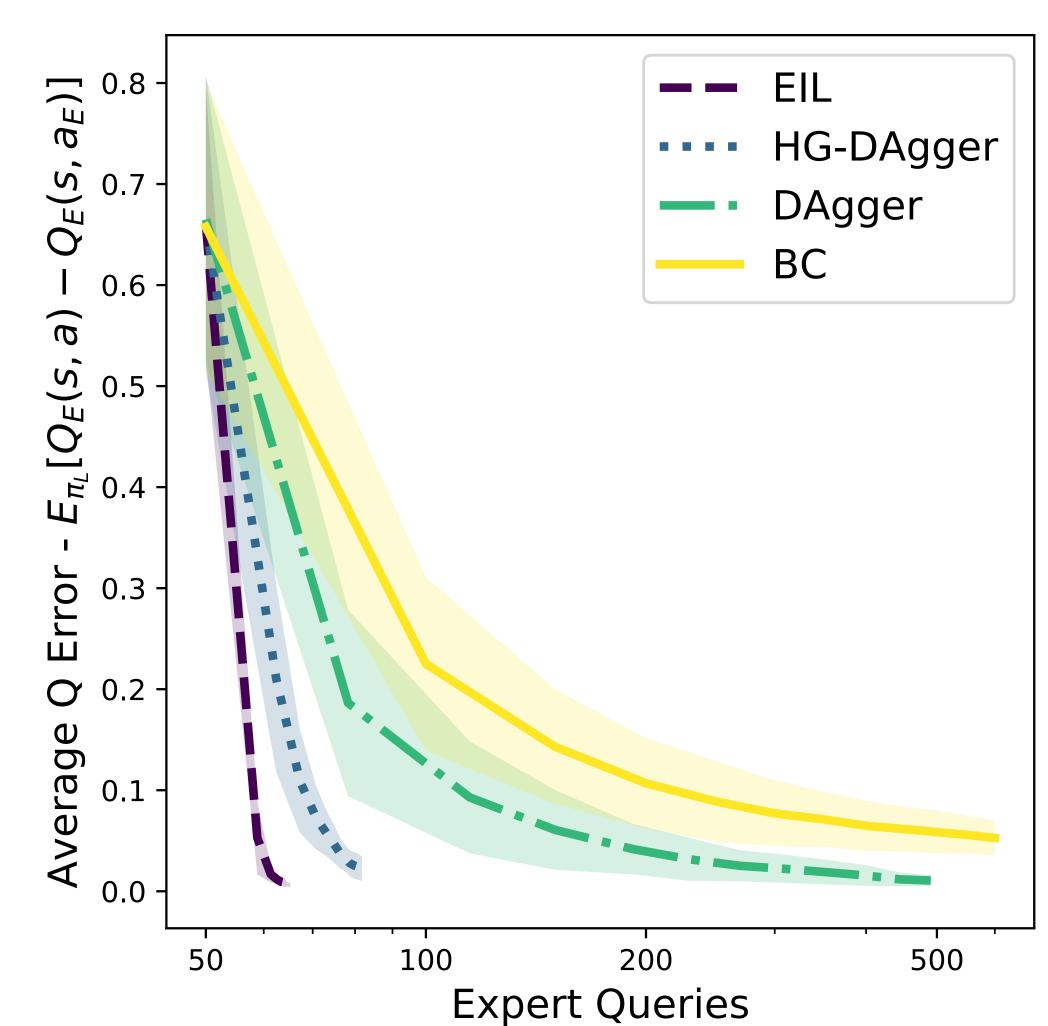
Reduce to online, convex optimization! $O(\epsilon I')$



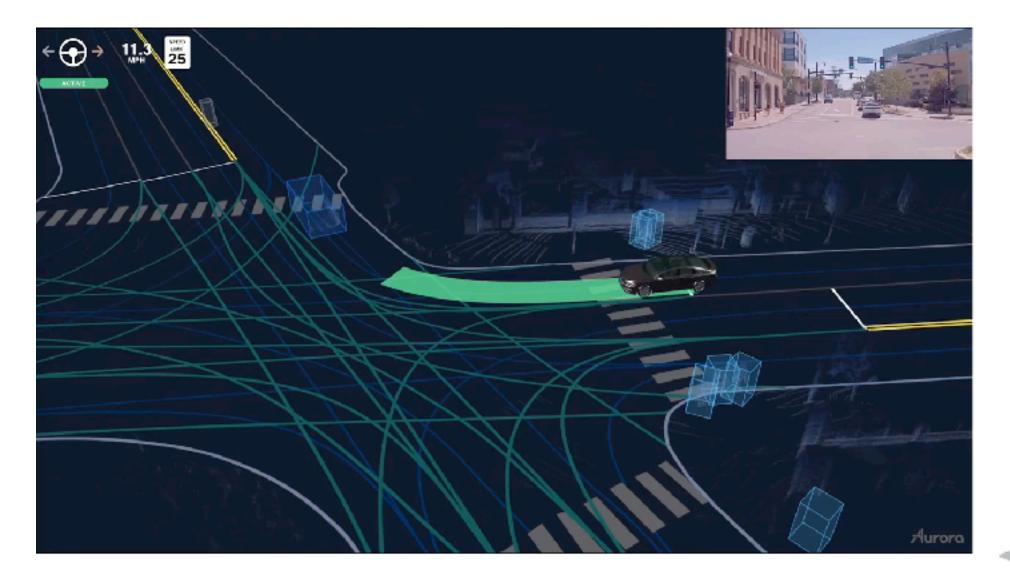


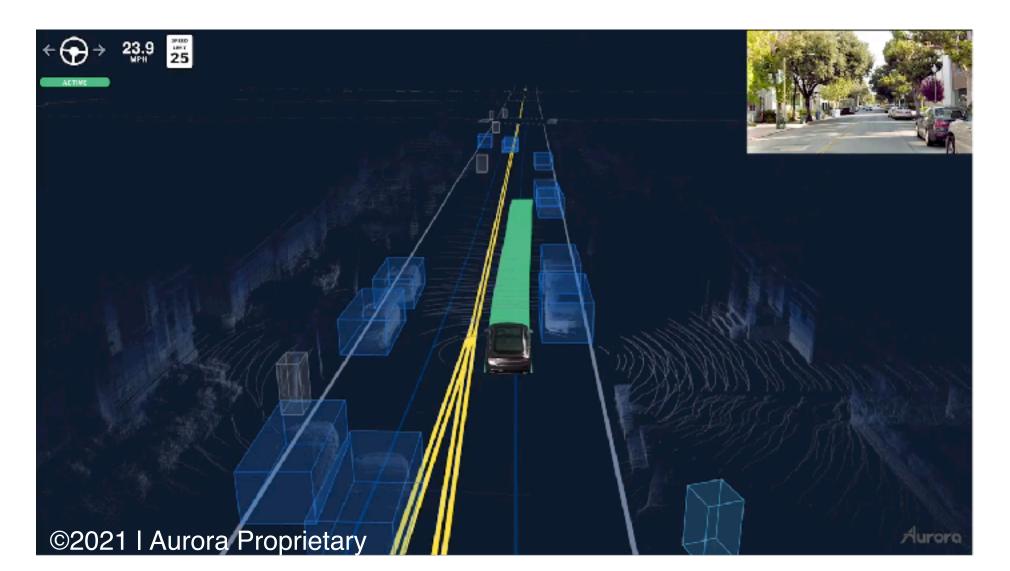
EIL drives down error with less expert query

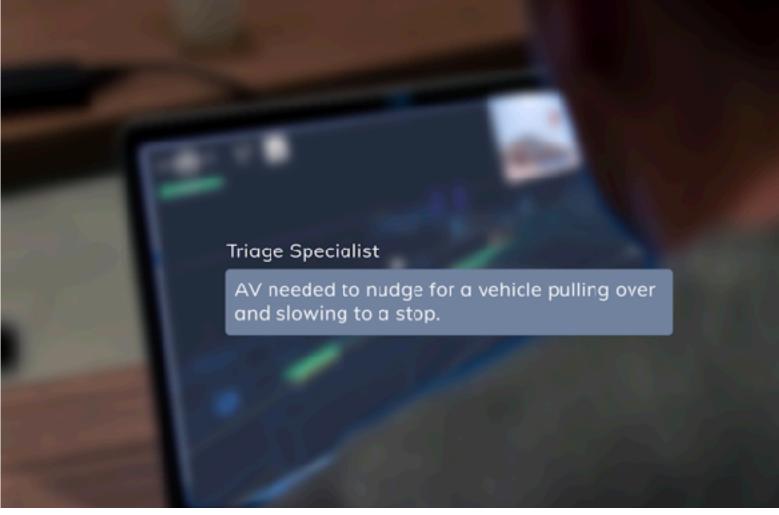


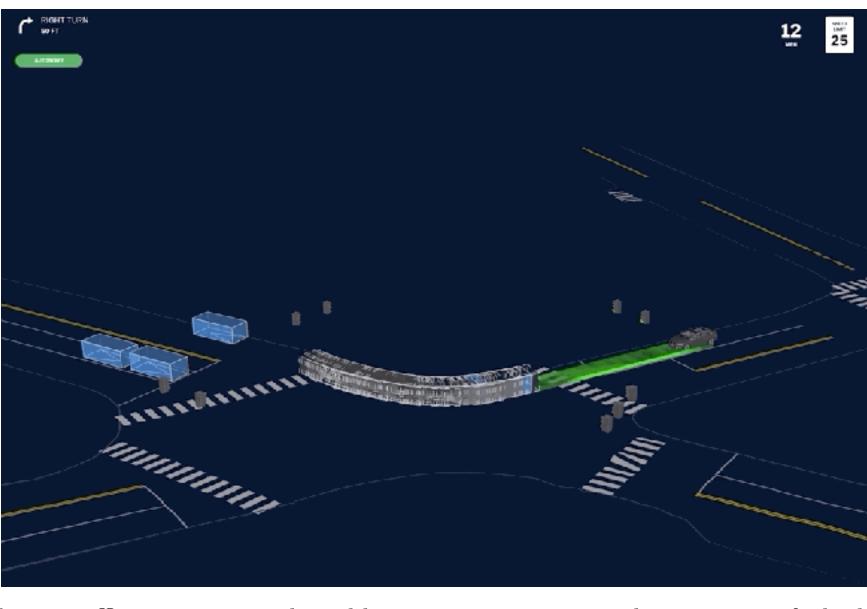


Turning interventions to simulations for learner









https://medium.com/aurora-blog/online-to-offline-turning-real-world-experience-into-virtual-tests-231c1cf8cbcd 42

The Big Picture

What we really want to solve is:

Data

"What is the distribution of states?"

Use interactive online learning!

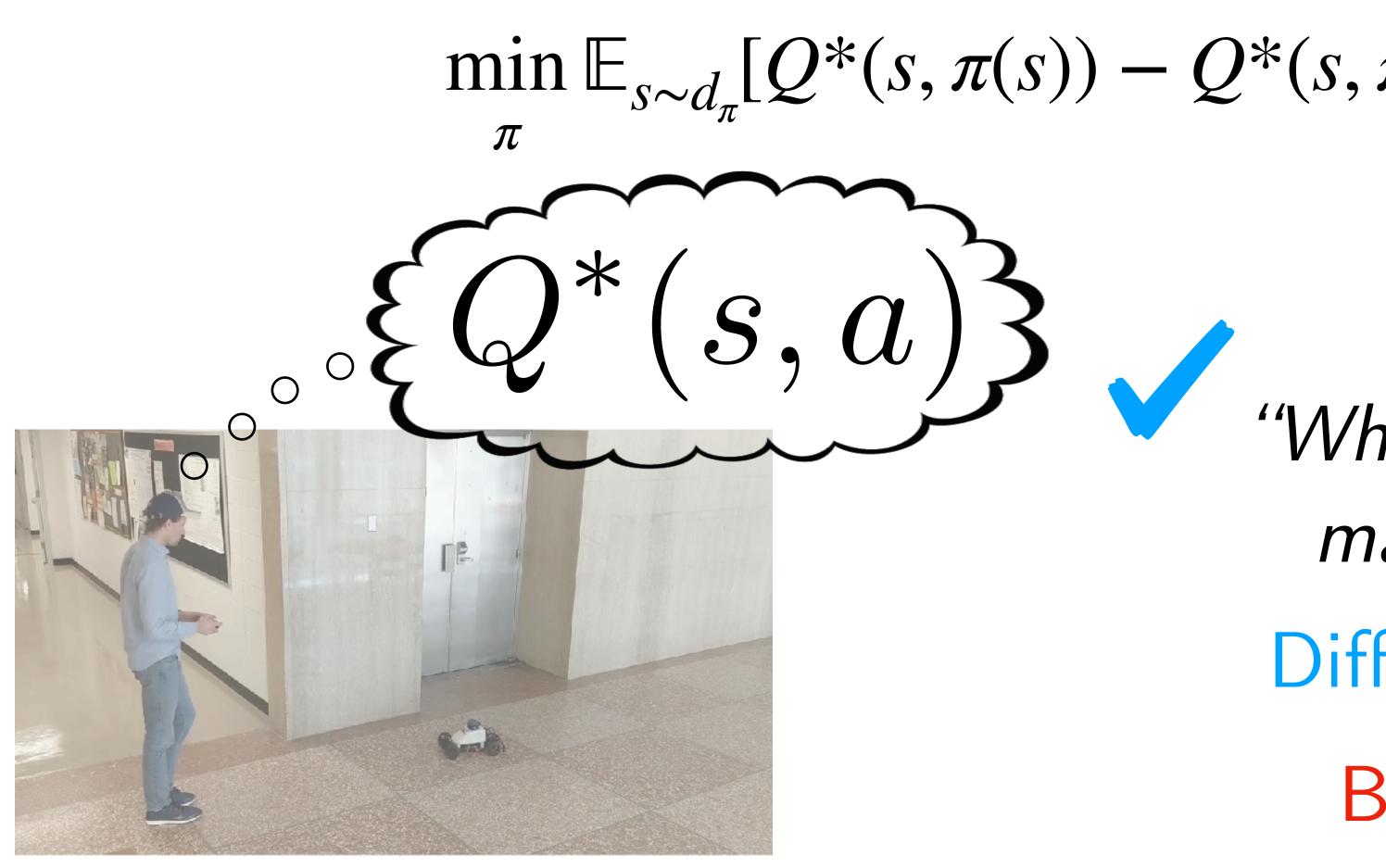
min $\mathbb{E}_{s \sim d_{\pi}}[Q^{*}(s, \pi(s)) - Q^{*}(s, \pi^{*}(s))]$

Loss

"What is the metric to match to human?"

Difference in Q values!

The Big Picture



What we really want to solve is:

$\min \mathbb{E}_{s \sim d_{\pi}}[Q^{*}(s, \pi(s)) - Q^{*}(s, \pi^{*}(s))]$

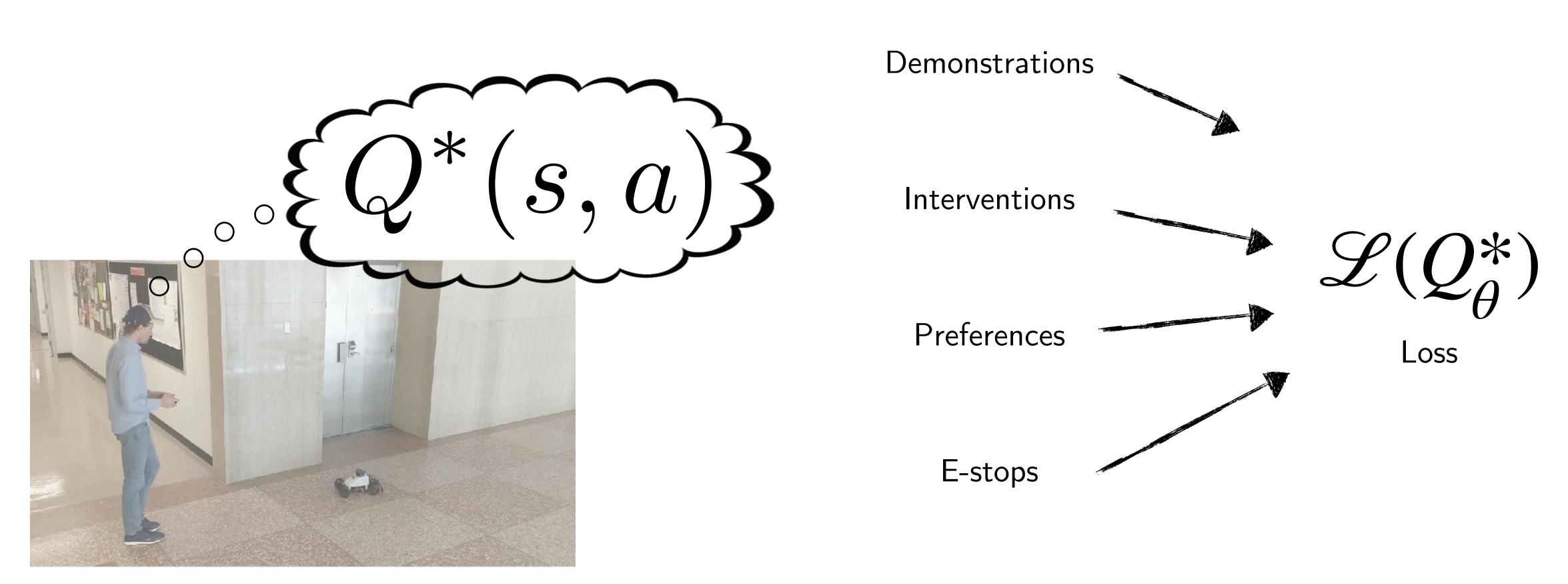
Loss

"What is the metric to match to human?"

Difference in Q values!

But Q* is latent!

The Big Picture



Estimate Q* from demonstrations, interventions, preferences, ... and even E-stops!

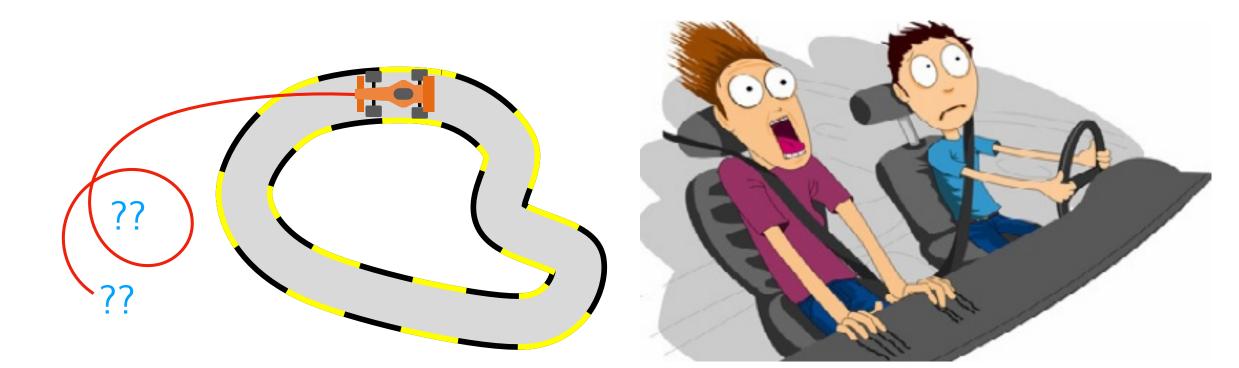
tl;dr

The Big Picture

Data *"What is the distribution"* of states?"

Use interactive online learning!

Problem: Impractical to query expert everywhere



Can we learn from natural human interaction, e.g., interventions?

What we really want to solve is:

 $\min \mathbb{E}_{s \sim d_{\pi}}[Q^*(s, \pi(s)) - Q^*(s, \pi^*(s))]$

Loss *"What is the metric to"* match to human?"

Difference in Q values!

Expert Intervention Learning (EIL)

Х

[SCB+ RSS'20]

The expert action-value function is latent ...

... and must be inferred from human interventions

Х