CS/INFO 6742: NLP and Social Interaction, Fall 2021

Nov. 11, 2021: Lecture 20: continued example of language-model development: latent information; distances between language models

Reminder: Motivating example: modeling small-talk vs. non-small talk

Sample data

ST bye

Written "vertically" instead of "horizontally" to leave room to write.

Two sequences (in this case, monologue documents):

hst i **NS**Tagree **ST** thanks

hi hi [some stock ticker symbol] now thanks

I want to => label the data. | still: w/ new data, it won't have the states! P(hilost) | P(hihihi). labeling the test data:

1.2 A skeleton generative story

- 1. Pick a sentence length ℓ .
- 2. Pick a sequence of ℓ states: where the two possible state types are St for small talk, nSt for not small-talk
- 3. For each state, pick a word according to that state's distribution over single words.

Ideas for instantiation (these are informal "priors")

- 1. (from last lecture) St might have a higher probability of being in longer sentences than in shorter sentences.
- 2. (motivation for step 2 and 3 of the generative story) St might have a higher probability of including the word "hi" than nst.
- 3. (new) st might have a higher probability of starting or ending the sentence than nst.

1.34 "Quiz": What is the probability of our first sample-data sequence?

Assume we pick specific lengths (not length "buckets" like "short" vs. "long") Note how the formulation below avoids talking about the state sequences' probs.

- P(a length-5 sequence (with respect to all possible lengths)) × P(st nst nst st st) × P(hi | st) P(i | nst) P(agree nst) P(thanks | st) P(bye | st)
 - P(a length-5 sequence) $\times \sum_{\text{state sequences } \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5} P(\text{hi} \mid \sigma_1) P(\text{i} \mid \sigma_2) P(\text{agree} \mid \sigma_3) P(\text{thanks} \mid \sigma_4) P(\text{bye} \mid \sigma_5)$
 - P(a length-5 sequence) $\times \sum_{\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5} P(\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5) P(\text{hi} \mid \sigma_1) P(\text{i} \mid \sigma_2) P(\text{agree} \mid \sigma_3) P(\text{thanks} \mid \sigma_4) P(\text{bye} \mid \sigma_5)$
 - · Something else

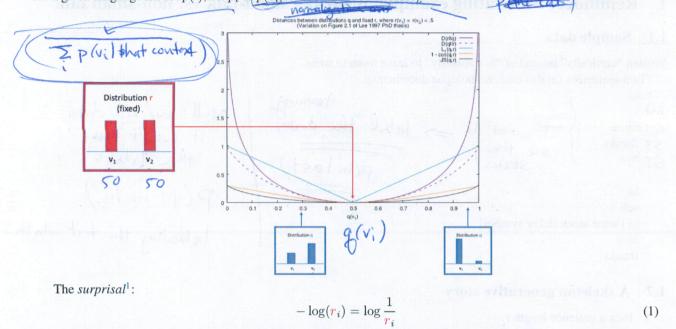
where to get p(hilo)?

P(hi) being word) = P(hi being | o, = st) P(o, = st) + P(hi being | o, = nst) P(o, = nst)

2 Measuring the difference between two "single-word" distributions

We restrict attention to proper distributions $q(\cdot)$ and $r(\cdot)$ over finite "vocabulary" $V = \{v_i\}$. We write q_i and r_i for $q(v_i)$ and $r(v_i)$.

• But LMs give probs to an unbounded number of strings? One can take V to be single words (or whatever), and for a given language model $p(\cdot)$, set p_i to $p(v_i|\text{some context of interest})$.



can be thought of as how *surprised* we should be from the perspective of using r as a model to see v_i , or r's *surprised-ness* or *surprisingness* for v_i . The base of the log is customarily taken to be 2, which makes this surprisingness number interpretable as a number of bits of information.²

2.1 Cross-entropy

If we considered the "reference" distribution to be q, then the *cross-entropy*

$$H(q||\mathbf{r}) = \sum_{i} q_{i} \log \frac{1}{r_{i}} \tag{2}$$

is the expected surprisedness for r with respect to reference distribution q.

2.2 KL-Divergence

$$D(q||\mathbf{r}) = \sum_{i} q_i \log \frac{q_i}{\mathbf{r}_i} \tag{4}$$

$$\hat{H}_S(r) = \frac{1}{L} \sum_{k=1}^{L} \log \frac{1}{r(w_k)}$$
 (3)

¹According to Wikipedia, the term was coined in Tribus, 1961, *Thermostatics and Thermodynamics*.

²Indeed, a much more common interpretation of equation 1 is as a number of bits needed to encode v_i assuming the distribution r over V.

³How you often see this in papers: If the "reference" distribution is taken to be the one induced from the empirical counts from a sample

³How you often see this in papers: If the "reference" distribution is taken to be the one induced from the empirical counts from a sample $S = w_1 w_2 \dots$, where each $w_k \in V$ and the length of the sample is L, then this can be refactored as:

