CS/INFO 6742: NLP and Social Interaction, Fall 2021
Nov. 11, 2021: Lecture 20: continued example of language-model development: latent information; distances
between language models

1 Reminder: Motivating example: modeling small-talk vs. non-small talk

1.1 Sample data

Written “vertically” instead of “horizontally” to leave room to write.
Two sequences (in this case, monologue documents):
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1.2 A skeleton generative story
1. Pick a sentence length ¢.
2. Pick a sequence of ¢ states: where the two possible state types are St for small talk, nst for not small-talk

3. For each state, pick a word according to that state’s distribution over single words.

1.3 Ideas for instantiation (these are informal “priors”)

1. (from last lecture) st might have a higher probability of being in longer sentences than in shorter sentences.

2. (motivation for step 2 and 3 of the generative story) st might have a higher probability of including the word
“hi” than nst.

)
@ﬁew) st might have a higher probability of starting or ending the sentence than nst.
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1.3 “Quiz”: What is the probability of our first sample-data sequence?
Assume we pick specific lengths (not length “buckets” like “short” vs. “long”) Note how the formulation below avoids
talking about the state sequences’ probs.
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2 Measuring the difference between two “single-word” distributions

We restrict attention wp\r@stributions q(+) and 7(-) over finite “vocabulary” V' = {v;}. We write ¢; and r; for
q(v;) and 7 (v;). :

e But LMs give probs to an unbounded number of strings? One can take V' to be single words (or whatever), and
for a given language model p(-), set p; t ;
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Distances between dist s q and fixed 1, where r{v,) = 1(v;) = .5
(Varistion on Figure 2.1 of Lee 1957 PhD thesis)
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The surprisal':
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can be thought of as how surprised we should be from the perspective of using " as a model to see v;, or 7’s surprised-
ness or surprisingness for v;. The base of the log is customarily taken to be 2, which makes this surprisingness number
interpretable as a number of bits of information.’

2.1 Cross-entropy

If we considered the “reference” distribution to be ¢, then the cross-entropy
Hgllr) = 3 gslog @
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is the expected surprisedness for  with respect to reference distribution ¢.*

2.2 KL-Divergence

D(allr) =4 1og:1_—f )

! According to Wikipedia, the term was coined in Tribus, 1961, Thermostatics and Thermodynamics.

2Indeed, a much more common interpretation of equation | is as a number of bits needed to encode v; assuming the distribution 7 over V.

3How you often see this in papers: If the “reference” distribution is taken to be the one induced from the empirical counts from a sample
S = wiws ..., where each wi € V and the length of the sample is L, then this can be refactored as:
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