CS/INFO 6742: NLP and Social Interaction, Fall 2021
Nov. 4, 2021: Reference sheet for lecture 18, "How different are two language models for different sources?"

Earlier lecture: Fightin' words introduced as an exploratory method for getting lists of words that seem to distinguish two language samples (e.g., "babies" vs. "women" in 106th U.S. Senate Republican vs. Democrat speeches on Abortion).

1 (By way of semi-contrast) What we've seen before: lists of Fightin' Words

I think should you apply this method in your course project and future research (unless inapplicable, but usually it's applicable).

2 Motivation for our new unit on language models

The Fightin' words analysis depended on having estimate $p(v)$ for words v. Where did those p s come from?
Also, in many settings, we want to have at hand a way to compute a single number that tells us the degree to which one language "source" differs from another.

Left: figure 6(a) in No country for old members: User lifecycle and linguistic change in online communities, Danescu-Niculescu-Mizil et al., WWW 2013. For each month, a bigram language model is constructed for the user's postings; and a bigram language model is constructed for the posts for a randomly selected 500 users active that month (using only two posts per user, so the size of the samples is the same across months). Plotted is the cross-entropy between the two distributions

Right: Figure by Chenhao Tan. Is a user more influenced by their "home language" or their "current environment"? A language model is constructed from a user u posting in r /food. We compare the Jensen-Shannon divergence (y -axis) of this language model against (1) "self", a language model built on that u 's postings in r /movie, and against (2) "random", a language model built from some other randomly drawn user \hat{u} posting in $\mathrm{r} / \mathrm{food}$. (The x -axis is for different choices of vocabulary size. Note that it is not a linear scale.)

Further example (inspired by course projects): instead of looking for whether the topics, according to a topic model, for two parts/samples of language are different, use an "easier" language model class and compare language models for the two parts/samples.

3 Language models

A language models ($L M$) is a means for assigning probabilities over strings (word sequences).
Examples of classes of language models: n -gram models; topic models; Hidden Markov Models; probabilistic context-free grammars; GPT-3 and cousins.

There are several ways to measure the difference between two (estimated) distributions.

4 How do you build a language model?

- Use a toolkit to learn one from just your data (plus maybe some priors you know)
- Interpolate between a language model built on your data plus a language model built on "generic data"
- Use a toolkit to finetune an existing pretrained language model to your data

5 General education: Estimating a multinomial's categorical distribution.

Learning goal: appreciation for first-principles derivation
Assume a fixed non-empty finite vocabulary $V=\left\{v_{i}\right\}$.
The multinomial has the following parameters:

- L, the number of draws (the sample length)
- $\vec{\phi} \in \Re^{|V|}$, where $\sum_{i} \phi_{i}=1$ and for all $i, \phi_{i} \geq 0$. This categorical distribution on just V (not V^{*}) specifies probabilities on the sides of the "die" whose sides are labeled with the vocabulary items v_{i}.

We are given a sample $S=w_{1} \ldots w_{L}, w_{k} \in V$, and collect the counts S_{i} for each word v_{i}.
Maximum-likelihood estimate: find $\vec{\phi}$ that maximizes

$$
\begin{equation*}
\text { (some constant with factorials?) } \times \prod_{i} \phi_{i}^{S_{i}} \tag{1}
\end{equation*}
$$

Maximum a posteriori estimate: assuming Dirichlet prior's parameter vector $\vec{\alpha}$ is fixed, find the $\vec{\phi}$ that maximizes
$\operatorname{Prob}(\vec{\phi}$ drawn according to $\vec{\alpha}) \cdot\left(\right.$ some constant with factorials?) $\cdot \prod_{i} \phi_{i}^{S_{i}}$

