
CS/IS 6742: NLP and Social Interaction, Fall 2017
Nov. 2, 2017: lecture 21, modeling (local) language structure: “phrase” space, heading towards intra-sentential

structure

1 “Trailer”
Two papers it might be worth skimming over the next few days or the next week:

Hale, John. 2001. A probabilistic earley parser as a psycholinguistic model. Proceedings of NAACL, pp. 1-8.
Levy, Roger and T. Florian Jaeger. 2007. Speakers optimize information density through syntactic reduction. In

Proceedings of NIPS, 849-856.
I mention these papers now because the topic connects to:

• our discussion last lecture of the constant entropy principle (Genzel and Charniak, 2002), also known as the
uniform information density principle (Levy and Jaeger, 2007)

• upcoming discussion of intra-sentential syntactic structure

• the notion that language is social, involving people communicating
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http://www.aclweb.org/anthology/N01-1021
https://papers.nips.cc/paper/3129-speakers-optimize-information-density-through-syntactic-reduction


2 The Brown clustering n-gram language model
P (wk|wk−1

1 ) = P (wk|ck)P (ck|ck−1
1 ) (1)

3 Useful information-theoretic quantities

3.1 Reminders
Surprisal:

− log(ri) = log
1

ri
(2)

Surprisal can also be considered to be “amount of information”, although to some the intuition seems backwards. An
analogy: suppose you know that an event e happens with probability 1. Then e happens. Have you learned anything
from e happening? No; so you have gained no information from it.

If we consider the “reference” distribution to be q, then the cross-entropy

H(q||r) =
∑
i

qi log
1

ri
(3)

is the expected surprisal for r with respect to reference distribution q.
The Kullback-Leibler (KL) divergence is a “corrected” cross-entropy achieving a minimum of 0 at q = r:

D(q||r) =
∑
i

qi log
qi
ri

(4)

3.2 “Derived” quantities
The entropy (think of it as the “self cross-entropy”):

H(q) =
∑
i

qi log
1

qi
(5)

The mutual information can be considered to be the KL divergence between the joint distribution of two random
variables and the joint distribution if they were independent.

We exemplify in terms of the Brown clustering paper. Let us suppose that our random variables are C1 and
C2, meaning something like “the next cluster (or word type)” and “the cluster (or word type) that would immediately
follow”. Then, we can consider the KL divergence between Pdependent = p(C1, C2) and Pindependent = p(C1)p(C2):∑

c1,c1

p(C1, C2) log
p(C1, C2)

p(C1)p(C2)
=

∑
c1,c1

p(C1, C2) log
p(C2|C1)

p(C2)
(6)
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