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Abstract. One solution to the lack of label problem is to exploit trans-
fer learning, whereby one acquires knowledge from source-domains to im-
prove the learning performance in the target-domain. The main challenge
is that the source and target domains may have different distributions.
An open problem is how to select the available models (including algo-
rithms and parameters) and importantly, abundance of source-domain
data, through statistically reliable methods, thus making transfer learn-
ing practical and easy-to-use for real-world applications. To address this
challenge, one needs to take into account the difference in both marginal
and conditional distributions in the same time, but not just one of them.
In this paper, we formulate a new criterion to overcome “double” distri-
bution shift and present a practical approach “Transfer Cross Validation”
(TrCV) to select both models and data in a cross validation framework,
optimized for transfer learning. The idea is to use density ratio weight-
ing to overcome the difference in marginal distributions and propose a
“reverse validation” procedure to quantify how well a model approx-
imates the true conditional distribution of target-domain. The useful-
ness of TrCV is demonstrated on different cross-domain tasks, including
wine quality evaluation, web-user ranking and text categorization. The
experiment results show that the proposed method outperforms both
traditional cross-validation and one state-of-the-art method which only
considers marginal distribution shift. The software and datasets are avail-
able from the authors.

1 Introduction

Transfer learning works in the context that the number of labeled examples in
target-domain is limited. It assumes that source-domain and target-domain are
under different marginal and conditional distributions. Recently, a number of al-
gorithms have been proposed to overcome the distribution shift, such as those re-
viewed in but not limited to [1]. Moreover, for a given target-domain in transfer
learning, a likely large number of source-domains are available. For example, if we
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Table 1. Definition of notations

Notation Description Notation Description
S Source-domain, S = {Xs, Ys} = {(xi, yi)}n

i=1 k Number of folds in cross validation
Si Data in i-th fold r(x) Value of x got by reverse validation

Y
i
s Pseudo labels of Si ℓ∗(f) Expected loss of model f

Si Remaining data in i-th fold ℓ(f) Empirical loss of model f in T
T Target-domain, T = {Xℓ, Yℓ, Xu} ℓw(f) Weighted empirical loss of model f in S
L Labeled data in T , L = {Xℓ, Yℓ} εu(f) Estimated accuracy of model f by TrCV
U Unlabeled data in T , U = Xu Θf Model complexity of f
n Number of instances in S P (x) Marginal distribution of x
ℓ Number of instances in L P (y|x) Conditional distribution of (x, y)
u Number of instances in U β Density ratio vector of Xs

aim to classify the documents of 20-Newsgroup [2], RCV1 [3] and Reuters-21578 [2]
or other text collections can be treated as the candidates of source-domain. Thus,
for a transfer learning task, it is crucial to solve three problems effectively: (1) How
to select the right transfer learning algorithms? (2) How to tune the optimal pa-
rameters? (3) How to choose the most helpful source-domain from a large pool of
datasets? However, to the best of our knowledge, neither any analytical criterion
nor efficient practical procedures have been proposed and reported.

Although some analytical techniques such as AIC (Akaike Information Cri-
terion) [4], BIC (Bayesian Information Criterion) [5] and SRM (Structural Risk
Minimization) principle [6] or sample re-use method (such as Cross Validation
(CV)) to selecting the suitable model or training data (source-domain in trans-
fer learning) have been studied, as reviewed later, they can not guarantee their
performances in transfer learning for two reasons. First, due to the “double” dis-
tribution shift, including marginal and conditional distributions, the unbiased-
ness which guarantees the accuracy of these techniques does not hold anymore.
Second, due to the very small number of labeled data in target-domain, it is
unreliable to estimate the conditional distribution of target-domain directly.

To cope with these challenges, we first formulate a general criterion for model
selection in transfer learning scenario, followed by a novel variant of CV method
“Transfer Cross Validation” (TrCV) to solving the above three problems prac-
tically. Briefly, we introduce density ratio weighting to reduce the difference of
marginal distributions between two domains. As proved in Section 4.1, it makes
the estimation of TrCV unbiased. In addition, we exploit a method “Reverse
Validation” (RV) to approximate the difference between the estimated and true
conditional distribution of target-domain directly. As stated in Section 4.2, the
value of RV is reliable to indicate the true difference. In summary, by eliminating
the difference between two domains, the model selected by TrCV has a confi-
dence bound on accuracy as shown in Section 4.3. In other words, the model or
source-domain selected by TrCV is highly likely the best one among candidates
as evaluated in Section 5.

2 Problem Statement

We review the limitation of traditional validation methods and then introduce
a general criterion with transfer cross validation. The notations are summarized
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in Table 1. Let S = {Xs, Ys} = {(xi, yi)}n
i=1 denote the source-domain and T =

{Xℓ, Yℓ, Xu} = {(xi, yi)}ℓ
i=1 ∪ {(xj)}u

j=1 denote the target-domain, where n is
the number of instances in source-domain, ℓ and u are the number of labeled and
unlabeled instances in target-domain respectively. Then, let Ps(x) and Ps(y|x)
denote the marginal and conditional distribution of source-domain, Pt(x) and
Pt(y|x) for target-domain. We use f̂ to represent the model expected to obtain.

2.1 Limitations of Existing Approaches

The model selected by analytical techniques is as follows:

f̂ = arg min
f

1
n

∑

x∈Xs

∣∣∣Ps(y|x) − P (y|x, f)
∣∣∣ + Θf (1)

where the first term represents the empirical loss and Θf is model complexity:
the number of model parameters in AIC and BIC or the VC-Dimension in SRM.
On the other hand, k-fold cross validation aims to select the model as:

f̂ = arg min
f

1
k

k∑

j=1

∑

(x,y)∈Sj

∣∣∣Ps(y|x) − P (y|x, fj)
∣∣∣ (2)

where k is the number of folds, Sj are the data in j-th fold and fj is the model
trained from the remaining data. However, these methods do not work as one
would desire, for the following two reasons. First, because Ps(x) ̸= Pt(x), Eq.(1)
no longer provides consistent estimation [7]. In other words, limn→∞(f̂) ̸= f∗,
where f∗ is the ideal hypothesis which achieves the minimal expected loss to
approximate Pt(y|x), regulated by model complexity:

f∗ = arg min
f

Ex∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f)
∣∣∣ + Θf (3)

To cope with similar problem in sample selection bias, previous work Weighted
CV (WCV) [8] proposes to use density ratio to eliminate the difference in
marginal distributions when performing cross-validation. It selects the model
that minimizes the following objective.

f̂ = arg min
f

1
k

k∑

j=1

∑

(x,y)∈Sj

Pt(x)
Ps(x)

∣∣∣Ps(y|x) − P (y|x, fj)
∣∣∣ (4)

However, neither of these explicitly considers the effect of conditional distribu-
tion shift between two domains, which is essential for most transfer learning
problems. Because Ps(y|x) ̸= Pt(y|x) under transfer learning context, a model
approximating Ps(y|x) is not necessarily close to Pt(y|x). Thus, the model se-
lected by Eq.(2) and Eq.(4) based on source-domain can not guarantee its per-
formance in target-domain, as demonstrated experimentally in Section 5.

On the other hand, one may consider to perform CV on the labeled target-
domain data L or to select the model trained using source-domain data S and
has a high accuracy on L. But these methods fail to perform well on the whole
target-domain, because the number of labeled data is so limited that they cannot
reliably describe the true conditional distribution of target-domain, Pt(y|x).
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2.2 The Proposed Approach

As such, we have two observations. First, the estimation based on source-domain
data need to be consistent with target-domain data. Second, the model should
approximate the conditional distribution of target-domain, instead of the source-
domain. Thus, we propose a new criterion by adding density ratio weighting and
replacing the target conditional distribution as follows:

f̂ = arg min
f

1
n

∑

x∈Xs

Pt(x)
Ps(x)

∣∣∣Pt(y|x) − P (y|x, f)
∣∣∣ + Θf (5)

We notice that it is a general criterion extending Eq.(1). Under the traditional
setting that marginal and conditional distributions do not shift, it is the same
as Eq.(1). With the analysis in Section 4, we prove that Eq.(5) approximates an
unbiased estimation to ideal hypothesis f∗. However, the model complexity term
Θf is usually hard to calculate in practice. Thus, following the same ideas, we
propose a transfer cross validation (TrCV) method to solve the stated problems
practically. It aims to select the model by minimizing the criterion:

f̂ = arg min
f

1
k

k∑

j=1

∑

(x,y)∈Sj

Pt(x)
Ps(x)

∣∣∣Pt(y|x) − P (y|x, f)
∣∣∣ (6)

Thus, algorithm selection, parameter tuning and source-domain selection in
transfer learning can be solved using TrCV. For algorithm selection, it is in-
tuitive. For other two problems, it is equivalent to pick a set of parameters or a
source-domain which can build a model minimizing the value in Eq.(6).

3 Transfer Cross Validation (TrCV)

We discuss two main issues of TrCV in this section. The first one is that the
density ratio of two domains Pt(x)

Ps(x) needs to be calculated based on the observed
finite set. We let β = {β(x1), . . . , β(xn)} be the density ratio vector, where
β(x) = Pt(x)

Ps(x) . Some methods have been exploited for this problem [9, 10]. We
adopt an existing one KMM from [10] which aims to find suitable values of β to
minimize the discrepancy between means of two domains. Formally, it tries to
minimize the following object by calculating the optimal β.

min
β

1
2
βT Kβ − κT β

s.t βi ∈ [0, B], |
n∑

i=1

βi − n| ≤ nϵ

where Kij = φ(xi,xj), xi,xj ∈ Xs, κi = n
ℓ+u

∑ℓ+u
j=1 φ(xi,xj), xi ∈ Xs,xj ∈

Xℓ ∪ Xu, φ(∗, ∗) is the kernel function, B is the upper bound for the ratio and
ϵ should be O(B/

√
n). In addition, β is restricted by two constraints: the first

one limits the scope of discrepancy between pt(x) and ps(x) and the second one
ensures that the measure β(x)ps(x) is close to a probability distribution.
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Input: Si, Si, T , a learner F
Output: The estimation of |Pt(y|x) − P (y|x, fi)|
Build a model fi from Si using F ;1

Predict the labels of Xu, Y
i
u;2

Build another model fi from {Xu, Y
i
u} ∪ {Xℓ, Yℓ} using F ;3

Predict the labels of Si, Y
i
s;4

for each instance xij in Si do5

r(xij) = |yij − yij |, where yij ∈ Y
i
s;6

end7
return r(xij), xij ∈ Si;8

Fig. 1. Reverse Validation

Fig. 2. Flow chart of reverse validation

As follows, we focus on the second issue: how to calculate the difference be-
tween the conditional distribution estimated by model f and the true conditional
distribution, |Pt(y|x) − P (y|x, f)|. Due to the limited number of labeled exam-
ples in target-domain, it is impossible to estimate the conditional distribution
Pt(y|x) reliably. To overcome this challenge, we propose a novel method “Reverse
Validation” which estimates the approximation difference directly and avoids
computing the conditional distribution Pt(y|x). To the best of our knowledge,
this has not been well studied.

3.1 Reverse Validation (RV)

The main flow is presented in Figure 2 and the detail is stated in Figure 1. Let
Si be the source-domain data in i-th fold and Si be the remaining data. Firstly,
for the given learner, we train a model fi from Si, and then we use fi to predict
the labels of Xu and obtain Y

i
u. Next, we combine {Xu, Y

i
u} and {Xℓ, Yℓ} to

form a new set. Afterwards, a new model f i is built from the new set using the
same algorithm and used to classify the instances in Si. We denote the pseudo
labels of Si as Y

i
s. Finally, for each instance {xij , yij} ∈ Si, we use the value

of |yij − yij | to estimate the difference, where yij is the corresponding pseudo
label of xij . As analysed in Section 4.2, RV value r(xij) = |yij − yij | is related
to |Pt(yij |xij) − P (yij |xij , fi)| and can be used as an indicator.

TrCV can now be introduced using KMM and RV as stated in Figure 3.
Briefly, we calculate the density ratio qualitatively and apply reverse validation
to estimate the loss of conditional distribution approximation in each fold.



552 E. Zhong et al.

Input: S, T , a learner F , number of fold k
Output: The measure value of TrCV
Calculate β using KMM;1
for i = 1 to k do2

Perform reverse validation, Vi = RV (Si, Si, T,F);3
ℓ = ℓ +

∑
j vij · β(xij), vij ∈ Vi;4

end5
return ℓ/n;6

Fig. 3. Transfer Cross Validation

4 Formal Analysis

We analyse three issues. First, does the general principle bound the risk in trans-
fer learning? Second, is the loss calculated by reverse validation related to the
true difference |Pt(y|x)−P (y|x, f)|? Third, how is the confidence of the transfer
cross validation?

4.1 Generalization Bound

We first demonstrate that the model selected by Eq.(5), f̂ , provides an unbiased
estimator to f∗ defined in Eq.(3). Let the expected loss of a model f be ℓ∗(f),
the weighted empirical loss in source-domain be ℓw(f) and n be the number of
examples in S, then we get the lemma.

Lemma 1. ℓw(f̂) + Θf̂ = ℓ∗(f∗) + Θf∗ , when n → ∞ and f∗ and f̂ belong to
the same hypothesis class.

Proof

ℓw(f̂) =
1
n

∑

x∈Xs

Pt(x)
Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣

= Ex∈Xs

[ ∫

x

Pt(x)
Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣Ps(x)dx

]

= Ex∈Xs

[ ∫

x

Pt(x)
∣∣∣Pt(y|x) − P (y|x, f̂)

∣∣∣dx
]

=
1
n

∑

x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣

= Ex∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣

This means that, as n approaches infinity, the model minimizing the value of
weighted empirical loss in source-domain also minimizes the expected loss in
target-domain, ℓw(f̂) = ℓ∗(f∗). In addition, if f∗ and f̂ belong to the same hy-
pothesis class, it leads to Θf∗ = Θf̂ . !
In addition, we conclude that the model minimizing the value of general principal
in Eq.(5) is equal to the model minimizing the empirical error of target-domain
data. In other words,
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ℓ(f̂) =
1
n

∑

x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣

=
1
n

∑

x∈Xs

Pt(x)
Ps(x)

∣∣∣Pt(y|x) − P (y|x, f̂)
∣∣∣

(7)

Next we demonstrate that if the estimator of Θf̂ is related to VC-dimension,
f̂ constructed from source-domain data has a generalization bound over target-
domain data.

Theorem 1. Let G(f̂ ) denote the generalization error of f̂ in the target-domain,
n is the number of data in S and dvc is the VC-dimension of the hypothesis class
which f̂ belongs to, then with the probability at least 1 − δ

G(f̂) ≤ ℓw(f̂) +
√(

dvc(log(2n/dvc) + 1) − log(δ/4)
n

)
(8)

Proof As a conclusion from [6], for a given model f , it has a generalization
bound:

G(f) ≤ ℓ(f) +
√(

dvc(log(2n/dvc) + 1) − log(δ/4)
n

)
(9)

In addition, let us recall Eq.(7), thus we obtain Eq.(8). !

4.2 Estimation by Reverse Validation

Due to the limited number of labeled examples in target-domain, we use re-
verse validation (RV) to estimate the difference between Pt(y|x) and P (y|x, f)
instead of estimating the conditional probability Pt(y|x) directly. As follows we
provide some insights in RV. Let fi be the model trained from Si, {Xu, Y u}
be the unlabeled data and corresponding pseudo labels predicted by fi in the
target-domain, f i be the model built from {Xu, Y

i
u} ∪ {Xℓ, Yℓ} and ϵ(f) be the

approximation error of a model f . Thus, for a given instance x from Si, RV
returns a value

r(x) =
∣∣∣Ps(y|x) − P (y|x, f i)

∣∣∣ (10)

As an approximation to Ps(y|x), P (y|x, fi) can be rewritten as

P (y|x, fi) = Ps(y|x) + ϵ(fi) (11)

where ϵ is the approximation error. In addition, because f i is trained from the
label information Y

i
u and Yℓ, P (y|x, f i) can be treated as an approximation to

the nuisance between P (y|x, fi) and Pt(y|x).

P (y|x, f i) = α·P (y|x, fi) + (1 − α)·Pt(y|x) + ϵ(f i) (12)
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where α is the nuisance parameter related to the ratio between the size of Xu

and Xl. Thus, by combining Eq.(10), (11) and (12), r(x) can be rewritten as

r(x)

=
∣∣∣Ps(y|x) − P (y|x, f i)

∣∣∣

=
∣∣∣Ps(y|x) − αP (y|x, fi) + (1 − α)Pt(y|x) − ϵ(f i)

∣∣∣

=
∣∣∣(1 − α)

(
P (y|x, fi) − Pt(y|x)

)
− ϵ(fi) − ϵ(f i)

∣∣∣

(13)

This demonstrates that r(x) is related to |P (y|x, fi) − Pt(y|x)| reliably. Thus,
when the number of training data is large enough such that the model can
approximate the true conditional probability reliably. In other words, when ϵ(fi)
and ϵ(f i) are small, RV can approach a confident estimation. In addition, when
more labeled data obtained in target-domain, α tends to be smaller. This implies
that r(x) estimates |P (y|x, fi)−Pt(y|x)| more precisely. On the other hand, if no
labeled data in target-domain but Pt(y|x) = Ps(y|x), r(x) becomes |ϵ(fi)+ϵ(f i)|
instead, which approximates as much as twice the error in traditional cross
validation.

4.3 Confidence by TrCV

The discussion is based on the assumption that the classifiers are consistent:
the classifiers built in each folds have the same predictability. Following Eq.(7),
minimizing the weighted empirical loss of source-domain data in TrCV is equal
to minimizing the empirical loss of target-domain data. In addition, combining
Eq.(6) and Eq.(13), when model can approximate the true distribution well if
obtaining enough labeled data, we rewrite the accuracy estimated by TrCV,
εu(f), as

εu(f) = 1 − 1
k

k∑

j=1

∑

x∈Sj

β(x)
∣∣∣r(x)/(1 − α)

∣∣∣

= 1 − 1
k

k∑

j=1

∑

x∈Xs,Xs∼Pt(x)

∣∣∣Pt(y|x) − P (y|x, f)
∣∣∣

(14)

where r(x) is the value of reverse validation on data x and β(x) is the density
ratio of x. Let ε(f) be the true accuracy of f , based on the statement in [11],
when the size of validation set is reasonably large, the distribution of εu(f) is
approximately normal with mean ε(f) and a variance of ε(f) · (1 − ε(f))/n. By
De Moivre-Laplace Limit theorem, we have

Pr
{
− z <

εu(f) − ε(f)√
ε(f) · (1 − ε(f))/n

< z
}

≈ λ (15)

where z is the (1 + λ)/2-th quantile point of the standard normal distribution.
The low and high confidence points of ε(f) is calculated by inverting Eq.(15) as

2n · εu(f) + z2 ± z ·
√

4n · εu(f) + z2 − 4n · ε2
u(f)

2(n + z2)
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In addition, if the accuracy of f obtains the normal distribution in this inter-

val with mean µ = 2n·εu(f)+z2

2(n+z2) and variance σ = z·
√

4n·εu(f)+z2−4n·ε2
u(f)

2(n+z2) , the

probability between two models, f1 and f2, P
(
ε(f1) > ε(f2)

)
can be calculated.

P
(
ε(f1) > ε(f2)

)

= P
(
ε(f1) − ε(f2) > 0

)

= P (x > 0), x ∼ N(µ1 − µ2, σ
2
1 + σ2

2)

= 1 − 1√
2π(σ2

1 + σ2
2)

∫ µ2−µ1√
σ2
1+σ2

2

−∞
e−t2/2dt

(16)

where µ1 and µ2 are the means of accuracy distributions obtained by f1 and f2

with TrCV and σ1 and σ2 are the corresponding variances. By calculating the
means and variances based on the loss value of TrCV, the confidence of TrCV
can be obtained by Eq.(16).

5 Experiment

TrCV criterion is evaluated to show if it can select the best algorithm for one
task, can tune suitable parameters for one model and can choose the most useful
source-domain over different candidates. For each task, several data collections
have been utilized.

5.1 Experimental Setup

The proposal approach TrCV is compared against several other cross valida-
tion methods. The first two are the standard k-fold CV formulated by Eq.(2).
One is on source-domain (SCV), another is on labeled data from target-domain
(TCV). The third one is to build a model on the source-domain data and vali-
date on labeled target-domain data (STV). Most importantly, we compare with
Weighted CV (WCV) [8]. As discussed earlier, WCV is proposed for sample se-
lection bias problems. It uses density ratio weighting to reduce the difference of
marginal distribution between two domains, but ignores the difference in condi-
tional probability, as shown in Eq.(6).

To test different criteria, we introduce five traditional classifiers, including
Naive Bayes(NB), SVM, C4.5, K-NN and NNge(Ng), and three state-of-the-
art transfer learning methods: TrAdaBoost(TA) [12], LatentMap(LM) [13] and
LWE [14]. Among them, TrAdaBoost is based on instances weighting, LatentMap
is through feature transform and LWE uses model weighting ensemble. As a
comparison, the number of folds in SCV, TCV and TrCV is set to be the same:
10, and the number of labeled data in target-domain is fixed as the larger one
between 0.1× |T | and 20. As follows, we use “correlation” between the best clas-
sifiers and the selected classifiers by the criteria as the measure of evaluation.
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Table 2. Dataset for Algorithm and Parameters Selection

Data Set |S| |T | Description
Red-White(RW) 1599 4998 physicochemical
White-Red(WR) 4998 1599 variables
orgs vs. people(ope) 1016 1046 Documents
orgs vs. places(opl) 1079 1080 from different
people vs. places(pp) 1239 1210 subcategories
Sheep(Sp) 61 65 Web pages
Biomedical(Bl) 61 131 with different
Goats(Gs) 61 70 contents

Table 3. Dataset for Source-domain Selection

Data Set S T |S| |T |
comp windows vs. motorcycles graphics 1596

1957vs. pc.hardware vs. baseball vs. 1969
rec mac.hardware vs. hockey autos 1954
sci crypt vs. guns electronics 1895

1924vs. med vs. misc vs. 1761
talk space vs. religion mideast 1612

Let f and g denote any two models, and ε(·) and v(·) are the accuracy and value
of criteria (e.g. TrCV, standard CV, etc) on each model, respectively. Then the
measure is

corr = C2
|H| −

∑

f,g∈H

[(
ε(f) − ε(g)

)
×

(
v(f) − v(g)

)
< 0

]

where
[
x
]

is 1 when x is true and 0 otherwise, and H is the set of models.
The first term C2

|H| is the number of comparisons where |H| is the number of
models and the second term indicates how many times the criterion selects the
worse one among two models. This measure means that if one criterion can select
the better model in the comparison, it gains a higher measure value. The main
results can be found in Table 4 and 5.

Three data collections from three different domains are employed to eval-
uate the algorithm selection and parameter tuning by TrCV. Among them,
Wine Quality dataset [2] contains two subsets related to red and white variants
of the Portuguese “Vinho Verde” wine. The task is to classify wine’s quality
according to their physicochemical variables. In the experiment, red-wine set
and white-wine set are treated as source-domain and target-domain alternately.
Reuters-21578 [2] is the primary benchmark of text categorization formed by
different news with a hierarchial structure. It contains five top categories of
news wire articles, and each main category contains several subcategories. Three
top categories, “orgs”, “people” and “places” are selected in the study. All of
the subcategories from each category are divided into two parts, one source-
domain and one target-domain. They have different distributions and are ap-
proximately equal in size. The learning objective aims to classify articles into
top categories. SyskillWebert [2] is the standard dataset used to test web page
ratings, generated by the HTML source of web pages plus the user rating (“hot”
or “not hot”) on those web pages. It contains four separate subjects belonging to
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Table 4. Algorithm Selection and Parameters Tuning

Method RW WR ope opl pp Sp Bl Gs RW WR ope opl pp Sp Bl Gs RW WR ope opl pp Sp Bl Gs

Algorithm Selection Parameter Tuning (LatentMap) Parameter Tuning (SVM)
SCV 18 17 13 17 13 19 16 17 4 5 5 5 8 4 4 6 4 7 5 4 3 7 7 8
TCV 17 18 14 17 10 15 10 11 3 3 3 5 5 4 1 2 5 4 3 4 4 4 5 5
STV 16 15 13 15 14 18 17 20 4 5 4 4 7 8 1 6 4 7 4 7 3 8 7 5
WCV 20 19 17 19 18 18 15 15 4 5 5 8 8 4 3 7 8 7 6 6 5 8 6 7
TrCV 22 23 22 20 22 20 15 18 5 7 8 8 8 5 3 7 7 8 7 8 6 8 8 8

Table 5. Source-domain Selection

Method NB SVM C45 KNN Ng TA LM LWE Pr
SCV 5 6 6 5 4 4 1 6 436
STV 2 3 4 6 2 2 3 5 371
TCV 6 5 2 4 2 5 3 4 399
WCV 5 6 6 4 3 4 3 6 442
TrCV 6 6 6 6 6 5 4 6 512

different topics. The learning task is to predict the user’s preferences for the given
web pages. In the experiment, we randomly reserve “Bands-recording artists”
as source-domain and the three others as target-domain data. The details of
datasets are summarized in Table 2. These datasets are chosen because they are
highly representative of the real world data we typically encounter. For example,
some of them have few instances but have high dimensions, while others have
the opposite. In addition, to evaluate the performance of source-domain selec-
tion with TrCV, 20-Newsgroup [2] is chosen. It is another primary benchmark
of text categorization similar to Reuters-21578. In our study, 16 subcategories
from 4 top subjects, including “comp”, “rec”, “sci” and “talk”, are selected to
form 8 different datasets of two tasks, “comp vs. rec” and “sci vs. talk”. Data of
source-domain and target-domain come from the same top categories but differ-
ent sub-topics. As shown in Table 3, for “comp vs. rec” task, “graphics vs. autos”
is chose as the target-domain and three others are treated as source-domains.
Similarly, “electronics vs. mideast” is target-domain in “sci vs. talk” task, while
others are source-domains. Moreover, for SyskillWebert, Reuters-21578 and 20-
Newsgroup, only 500 features with highest information gains are selected.

5.2 Experiment Procedure

Selection among Different Algorithms. As a comparison, the parameters of tra-
ditional classifiers are set as the default values in Weka1 and those of transfer
learning approaches are chosen as the values which are suggested in the corre-
sponding papers. In addition, for TrAdaBoost, SVM with polynomial kernel is
set as base model; for LWE, five traditional classifiers stated above with default
parameters are the base models. There are 8 approaches, thus the number of
comparison is C2

8 = 28. Table 4 and Figure 4(a) present correlation measure
values for each domain transfer datasets, given by five competitive approaches:

1 www.cs.waikato.ac.nz/ml/weka/
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Fig. 4. The comparison of TrCV with other validation methods
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Method NB SVM C45 KNN Ng TA LM LWE

Red-White
TrCV 0.550 0.638 0.642 0.546 0.603 0.667 0.624 0.717
Accuracy 0.585 0.633 0.632 0.618 0.590 0.697 0.664 0.675

White-Red
TrCV 0.560 0.585 0.566 0.547 0.547 0.629 0.604 0.667
Accuracy 0.588 0.564 0.567 0.574 0.534 0.651 0.631 0.662

Fig. 5. The comparison between TrCV’s accuracy and the true accuracy

SCV, TCV, STV, WCV and TrCV. Dataset 1 ∼ 8 correspond to those in Table
4. It is evident that TrCV achieves the best performance in 6 out of 8 runs. Due
to “distribution gap” between source and target domains, SCV fails to select
the better model among the comparisons most of the time. To be specific, the
correlation value got by SCV is just 18 on the Red-White set and no more than
17 on the Reuters collection. In addition, TCV and STV also fail to select a
better model. This can be ascribed to the limited number of labeled data in the
target-domain. One classifier performing well in this small subset can not guar-
antees its generalizability over the whole target-domain collection. However, the
proposed approach, TrCV, which considers the difference on marginal distribu-
tion and conditional possibility between source and target domains, has a much
better performance. Specifically, we notice that TrCV performs better than SCV
by at least 4 in correlation value on Wine Quality collection, and as high as 9
on the Reuters-21578 collection. Moreover, the performance of TrCV is better
than WCV consistently. The main reason is that although WCV reduces the
difference of marginal distribution, it still selects those models which approach
conditional distribution of source-domain in stead of target-domain. Thus, as
analysed in the section 2, these models can not guarantee their performances in
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target-domain. This also affords an evidence that reverse validation is necessary
under the context of transfer learning.

In addition, the advantage of TrCV over STV is that TrCV explores the
power of unlabeled data and multiple validations, thus reducing the variance of
the testing. As analyzed, these characteristics of TrCV reduce the distribution
gap between two domains during algorithm selection. This, from the empirical
perspective, provides justification to the analysis in Section 4. In addition, Fig-
ure 5 plots TrCV values and accuracies of each classifiers in Wine collection.
It is intuitive that when one classifier achieves a higher TrCV value, it gets
a higher accuracy with high confidence. In other words, accuracy obtained by
TrCV is highly correlated to the true accuracy. Moreover, three transfer learn-
ing algorithms beat those traditional classifiers because they accommodate the
distribution gap between two domains. Classifier 1 ∼ 8 in the figure correspond
to those list in the table.

Parameter Tuning. We select SVM and LatentMap as the learning models and
generate two tasks. The first one is to select a suitable margin parameter C for
SVM (from 10−2 to 102) and the second one is to tune a good number of nearest
neighbors for LatentMap (from 5 to 45). The size of these two parameter set is 5,
so we get C2

5 = 10 comparisons. Table 4 and Figure 5(b) and (c) summarize the
correlation values of baselines: SCV, TCV, STV and WCV and the proposed
criteria TrCV on 8 datasets. Clearly, TrCV achieves higher correlation value
(from 1 to 4 higher in 6 out of 8 datasets) than the corresponding baseline
approaches on tuning the parameters of LatentMap and performs best in 7 out of
8 cases when we adjust the margin parameter in SVM. For example, on the Red-
White dataset, the correlation value has been improved from 5 achieved by SCV
and WCV to 7 by the proposed TrCV. More importantly, in total 16 comparisons,
TrCV beats WCV consistently with only one exception in RW dataset when
tuning margin parameter of SVM. On the other hand, two exceptions happened
on the SyskillWebert collection. We observe that TrCV fails to tune the best
parameters for LatentMap and does not have significant improvements to tune
SVM. This can be ascribed to the limited number of data in both domains that
makes the density ratio estimation imprecise and the reverse validation can not
reflect the approximation error to the true conditional distribution significantly
as shown in Eq.(13).

Source-domains selection. We aim to select a best source-domain among mul-
tiple candidates. Two comparisons are involved. One is to evaluate the ability
of TrCV to select among source-domains when the model is fixed, another is
to test whether TrCV can select the best pair of source-domain and classifier
given a set of classifiers and a set of source-domains. The result is presented in
Table 5 and Figure 5(d). For the first evaluation, both datasets have 3 candidate
source-domains, thus the number of comparison is 2×C2

3 = 6. Among them,
TrCV achieves the best performance over all 8 tasks in the correlation measure.
In particular, TrCV beats SCV by as much as 5 times while it defeat WCV by 7
times. Table 5 also presents the second evaluation results over 2 data collections,
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Fig. 6. Parameter Analysis

where 2×C2
(8×3) = 552 comparisons are obtained. We denote the result of this

comparison as “Pr”. Obviously, under this setting, TrCV still performs better
than SCV, STV, WCV and TCV over two datasets, implying the TrCV can
still select the best pairs of source-domains and algorithms. The performance
improvement is due to density ratio weighting and reverse validation that effec-
tively accommodate the difference between two domains. For WCV, although it
boost the ability of SCV with density ratio weighting, it does not perform well
due to the ignoring the conditional distribution shift.

Parameter Analysis. Two extended experiments were conducted on the Wine
Quality collection to test the parameter sensitivity and the relationship between
the number of labeled target-domain data and correlation value, corr. As shown
in Section 3, the number of folds need be set before running TrCV. In addition,
those labeled target-domain data affect the accuracy of TrCV to selecting a good
model or a source-domain as shown in Eq.(13).

For sensitivity testing, we vary the value of folds from 5 to 30 with step size
5 to perform algorithm selection over 8 candidate approaches. As a comparison,
we also attach the results obtained by SCV, TCV and WCV. The results are
presented in Figure 5(a). Obviously, TrCV achieves the highest correlation value
under all settings. This clearly demonstrates TrCV’s advantage over SCV, TCV
and WCV. In addition, we test TrCV when the number of labeled data ℓ increases
from 0.1×|T | to 0.9×|T | by comparing with TCV, SVT. |T | is the number of data
in target-domain. The results are presented in Figure 5(b). Overall, three criteria
achieve a higher value with more labeled data and SVT performs better than
TrCV when the number of labeled data is significantly large. With more labeled
data in target-domain, SVT can obtain more precise estimate to the prediction
accuracies of remaining target-domain data. However, when only a few labeled
data(< 0.4 × |T |) can be obtained in the target-domain, the performance of
TrCV is much better than both SVT and TCV.
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6 Related Work

Many solutions for transfer learning have been proposed previously, such as but
not limited to [12–14], while few approach has been studied to select models or
source-domains. Though several existing standard techniques [4–6] can be ap-
plied for model selection, they fail to work in transfer learning due to the distri-
bution shift between source and target domains. Two recent approaches [8, 15]
have been proposed for model selection in covariant shift or sample selection
bias. The method in [8] “WCV” adapts the density ratio into cross validation to
handle unbias estimation under covariant shift. The technique described in [15]
performs “Reverse Testing” to select model under sample selection bias. We no-
tice that “Reverse Testing” evaluates or rather “orders” the ability of one model
based on another model and does not apply density ratio weighting that returns
an estimated value, that is different from the method proposed in this paper. In
addition, both of them do not consider the conditional distribution shift which
may make them fail under transfer learning context as demonstrated in Section
2.1. Beside these, some techniques have been proposed to estimate the density
ratio directly, including Kullback-Leibler importance estimation procedure [9]
and nonparametric kernel mean matching (KMM) method [10]. The former one
finds the density ratio to minimize the KL-divergence between two domains while
the latter estimates by making the discrepancy between means of two domains
small. On the other hand, works in [16] solved the similar problems under the
context of meta-learning, including algorithm selection, parameter tuning and
dataset selection.

7 Conclusion

Several challenges need to be resolved in order to make transfer learning methods
practical: algorithm selection, parameter tuning and source-domain data selec-
tion. Traditional approach fails to solve these problems well due to the distribu-
tion gap between two domains. This paper firstly formulates a general criterion
followed by proposing a transfer cross validation (TrCV) method. It works by
applying density weighting to reduce the difference between marginal distribu-
tions of two domains, as well as utilizing reverse validation to measure how well a
model approximates the true conditional distribution of target-domain. Formal
analysis demonstrates that the newly proposed general criterion has a general-
ization bound on target-domain, and the confidence of transfer cross validation
can also be bounded. Empirical studies under different tasks demonstrate that
TrCV has higher chance to select the best models, parameters or source-domains
than traditional approaches. In summary, it achieves the best in 28 out of 33
cases comparing with all baselines. Importantly, by considering both marginal
and conditional distribution shift, the proposed TrCV approach outperforms in
23 out of 33 cases than WCV [8], a recently proposed method that only considers
marginal distribution but ignores difference in conditional distribution.



562 E. Zhong et al.

References

1. Pan, S.J., Yang, Q.: A survey on transfer learning. Technical Report HKUST-CS08-
08, Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong, China (November 2008)

2. Asuncion, A., Newman, D.J.: uci machine learning repository (2007),
http://www.ics.uci.edu/mlearn/MLRepository.html

3. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research 5, 361–397
(2004)

4. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6), 716–723 (2003)

5. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2),
461–464 (1978)

6. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
7. Shimodaira, H.: Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of Statistical Planning and Inference 90(2),
227–244 (2000)

8. Sugiyama, M., Krauledat, M., Müller, K.R.: Covariate shift adaptation by impor-
tance weighted cross validation. Journal of Machine Learning Research 8, 985–1005
(2007)

9. Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P.V., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: NIPS ’07: Proceedings of the 2007 Conference on Advances in Neu-
ral Information Processing Systems, vol. 20, pp. 1433–1440. MIT Press, Cambridge
(2008)

10. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting
sample selection bias by unlabeled data. In: NIPS ’06: Proceedings of the 2006
Conference on Advances in Neural Information Processing Systems, vol. 19, pp.
601–608. MIT Press, Cambridge (2007)

11. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: IJCAI’95: Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pp. 1137–1143. Morgan Kaufmann Publishers
Inc, San Francisco (1995)

12. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML
’07: Proceedings of the 24th International Conference on Machine Learning, pp.
193–200. ACM, New York (2007)

13. Xie, S., Fan, W., Peng, J., Verscheure, O., Ren, J.: Latent space domain transfer
between high dimensional overlapping distributions. In: WWW ’09: Proceedings
of the 18th International Conference on World Wide Web, pp. 91–100. ACM, New
York (2009)

14. Gao, J., Fan, W., Jiang, J., Han, J.: Knowledge transfer via multiple model local
structure mapping. In: KDD ’08: Proceeding of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 283–291. ACM,
New York (2008)

15. Fan, W., Davidson, I.: Reverse testing: an efficient framework to select amongst
classifiers under sample selection bias. In: KDD ’06: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
147–156. ACM, New York (2006)

16. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. In: Cognitive Technologies. Springer, Heidelberg (2009)


