The Necessity of Parsing for Predicate Argument Recognition

Daniel Gildea and Martha Palmer

Introduction

- Work has shifted from complex, rule-based systems to simpler finite-state and statistically based systems.
- Attention has been given to labeling corpora with semantic roles, such as in FrameNet and Propbank.
- Even for a single predicate, semantic arguments often have multiple syntactic realizations.
- In (Gildea and Jurfafski, 2002) and (Miller et al, 1998), both describe systems for which there are no gold-standard parses available.
- Because the Propbank labels data from the Penn Treebank, gold-standard parses are available for the Propbank.
- This paper compares performance of a system using gold-standard parses, with that of a system using automatic parser output.

- John will meet with Mary. John will meet Mary.
 John and Mary will meet.
- The door opened. Mary opened the door.

Daniel Gildea and Daniel Jurfafski. 2002. Automatic Labeling of Semantic Roles. *Computational Linguistics*.

Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw, Richard Schwartz, Rebecca Stone, Ralph Weischedel, and the Annotation Group. 1998. Algorithms that learn to extract information – BBN: Description of the SIFT system as used for MUC-7. In *Proceedings of the Seventh Message Understanding Conference (MUC-7)*, April.

Purpose

- Quantify the effect of parser accuracy on system performance in the task of semantic role identification.
- Examine whether a flatter, "chunked" representation can be as effective as a full parse.

Semantic Role Labeling

 $\begin{bmatrix} I_{A0} & He \end{bmatrix} \begin{bmatrix} I_{AM-MOD} & would \end{bmatrix} \begin{bmatrix} I_{AM-NEG} & n't \end{bmatrix} \begin{bmatrix} I_V & accept \end{bmatrix} \\ \begin{bmatrix} I_{A1} & anything & of value \end{bmatrix} from \begin{bmatrix} I_{A2} & those & he & was writing & about \end{bmatrix}.$

V: verb AO: acceptor A1: thing accepted A2: accepted-from A3: attribute AM-MOD: modal AM-NEG: negation

The Data

FrameNet

- Project at International Computer Science Institute
- Annotation is performed on the British National Corpus.
- Labels verbs, nouns and adjectives
- Focuses on semantic "frames," annotation is done by frame
- A frame is a schematic representation of a situation. Annotators define the frame, then its "frame elements."
- Frame elements take on known conceptual roles.

Propbank

- Project at University of Pennsylvania
- Annotation is performed on the Penn Treebank.
- Only addresses verbs.
- Can be thought of as "FrameNet without the Frames," annotation is done on a per-predicate basis
- Predicates are used. Arguments are labeled according to their position.
- Arguments are numbered. Similar verbs may share rolesets.

FrameNet

Source: Colin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In *Proceedings of COLING/ACL*, pages 86-90, Montreal Canada

11) The company bought a wheel-loader from Dresser.	PURCHASE	BUY	SELL
Arg0: The company rel: bought	Arg0: buyer	Arg0: buyer	Arg0: seller
Arg1: a wheel-loader Arg2-from: Dresser	Arg1: thing bought	Arg1: thing bought	Arg1: thing sold
12) TV stations bought "Cosby" reruns for record prices	Arg2: seller	Arg2: seller	Arg2: buyer
Arg0: TV stations	Arg3: price paid	Arg3: price paid	Arg3: price paid
rel: bought Arg1: "Cosby" reruns Arg3-for: record prices.	Arg4: benefactive	Arg4: benefactive	Arg4: benefactive

Source: Paul Kingsbury and Martha Palmer. 2002. From Treebank to Propbank. In *Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC-2002)*, Las Palmas, Canary Islands, Spain.

The Model

P(r|pt, path, position, voice, hw, p)

- Phrase Type
- Parse Tree Path
- Position
- Voice
- Head Word

The Experiments

- The first experiment provided the system with arguments, the system merely had to label them. The following configurations were compared:
 - Propbank with:
 - Gold-standard parses
 - Automatic parses
 - Gold-standard parses, for which more than 10 examples were available
 - · Automatic parses, for which more than 10 examples were available
 - FrameNet with automatic parses
- The second experiment was the same as the first, but the system also had to also find the arguments in this one.
- The first experiment was repeated with the path feature removed, using gold-standard Propbank parses.
- Two modifications of the path feature were tried .
 - "Collapsed" paths
 - Two values: "NP under S" and "NP under VP"
- · Experiments one and two were repeated using gold-standard chunks instead of parsing.

Chunking

- More coarse analyses than a full parse.
- It may be the case that systems using chunks are more robust to error than those using parsers.

[NP Big investment banks] [VP refused to step] [ADVP up] [PP to] [NP the plate] [VP to support] [NP the beleaguered floor]traders] [PP by] [VP buying] [NP big blocks] [PP of][NP stock], [NP traders][VP say].

he Results

Arguments Provided

Find Arguments and Roles

Gold-standard par

Automatic parses

FrameNet

64.6

	FrameNet	Accuracy Propbank	Propbank > 10 ex.
Gold-standard parses		82.8	84.1
Automatic parses	82.0	79.2	80.5

Arguments Provided, Chunking Results

Find Arguments and Roles, Chunking Results

 PromeNet
 Propbank
 Propbank > 10

 ision
 Recall
 Precision
 Recall
 Precision
 Recall

 71.1
 64.4
 73.5
 71.7

 64.6
 61.2
 57.7
 50.0
 59.0
 55.4

Path	Head	Accuracy
zold parse	gold parse	82.3
auto parse	auto parse	79.2
not used	gold parse	81.7
not used	chunks	77.0

	Precision	Recall
gold parse	71.1	64.4
auto parse	57.7	50.0
chunk	27.6	22.0
chunk, relaxed scoring	49.5	35.1

- Other finite-state systems may do better than the chunking system in this • experiment.
- By using a gold-standard chunking representation, better results have been achieved than could be expected from an automatic chunking system.
- Statistical parsers do a good job of providing information for this task. This information includes not only structure but also head words.
- Improvements in parsers will equate to improved performance on this task.