Last Class: Part-of-Speech Tagging

1. HMM Tagger

Today: Parsing

- 1. Grammars and parsing
- 2. Top-down and bottom-up parsing
- 3. Bottom-up chart parsing

Slide CS674–1

\mathbf{Syntax}

syntax: from the Greek *syntaxis*, meaning "setting out together or arrangement."

Refers to the way words are arranged together.

Why worry about syntax?

- The boy ate the frog.
- The frog was eaten by the boy.
- The frog that the boy ate died.
- The boy whom the frog was eaten by died.

Slide CS674–2

Syntactic Analysis

Key ideas:

- constituency: groups of words may behave as a single unit or phrase
- grammatical relations: refer to the SUBJECT, OBJECT, INDIRECT OBJECT, etc.
- subcategorization and dependencies: refer to certain kinds of relations between words and phrases, e.g. *want* can be followed by an infinitive, but *find* cannot.

All can be modeled by various kinds of grammars that are based on context-free grammars.

Grammars and Parsing

Need a **grammar:** a formal specification of the structures allowable in the language.

Need a **parser**: algorithm for assigning syntactic structure to an input sentence.

Sentence

Parse Tree

Beavis ate the cat.

CFG example

CFG's are also called phrase-structure grammars. Equivalent to Backus-Naur Form (BNF).

- 1. $S \rightarrow NP VP$ 5. $NAME \rightarrow Beavis$
- 2. $VP \rightarrow V NP$

6. $V \rightarrow ate$ 7. ART $\rightarrow the$

3. NP \rightarrow NAME 4. NP \rightarrow ART N

8. N \rightarrow cat

- CFG's are *powerful* enough to describe most of the structure in natural languages.
- CFG's are *restricted* enough so that efficient parsers can be built.

Slide CS674–5

CFG's A context free grammar consists of:

1. a set of non-terminal symbols N

- 2. a set of terminal symbols Σ (disjoint from N)
- 3. a set of productions, P, each of the form $A \to \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$
- 4. a designated start symbol S

Slide CS674–6

Derivations

- If the rule $A \to \beta \in P$, and α and γ are strings in the set $(\Sigma \cup N)^*$, then we say that $\alpha A \gamma$ directly derives $\alpha \beta \gamma$, or $\alpha A \gamma \Rightarrow \alpha \beta \gamma$
- Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be strings in $(\Sigma \cup N)^*$, m > 1, such that

 $\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \dots, \alpha_{m-1} \Rightarrow \alpha_m,$

then we say that α_1 derives α_m or $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$

 L_G

The language L_G generated by a grammar G is the set of strings composed of terminal symbols that can be derived from the designated start symbol S.

 $L_G = \{ w | w \in \Sigma^*, S \stackrel{*}{\Rightarrow} w \}$

Parsing: the problem of mapping from a string of words to its parse tree according to a grammar G.

G	eneral Parsing Strate	gies	
Grammar	Top-Down	Bottom-Up	
1. S \rightarrow NP VP	$S \rightarrow NP VP$	\rightarrow NAME ate the cat	Efficient Parsing
2. VP \rightarrow V NP	\rightarrow NAME VP	\rightarrow NAME V the cat	Have the first year Phd students in the computer science
3. NP \rightarrow NAME	\rightarrow Beav VP	\rightarrow NAME V ART cat	department take the Q-exam.
4. NP \rightarrow ART N	\rightarrow Beav V NP	\rightarrow NAME V ART N	
5. NAME \rightarrow Beavis	\rightarrow Beav ate NP	\rightarrow NP V ART N	Have the first year Phd students in the computer science
6. V \rightarrow ate	\rightarrow Beav ate ART N	\rightarrow NP V NP	department taken the Q-exam?
7. ART \rightarrow the	\rightarrow Beav ate the N	\rightarrow NP VP	
$N \rightarrow cat$	\rightarrow beav ate the cat		
Slide CS674-9			
	Slide CS674–9		Slide CS674–10
hart: data structure in such a way that sentence consists of • $n + 1$ vertices • a number of ec	Slide CS674–9 Chart Parsers that stores partial result t they can be reused. The of: lges that connect vertice: $udge_1 \frac{Ito}{2} 2 \frac{scolded}{3} \frac{the}{4} \frac{def}{4}$ S> NP. VP	s of the parsing process e chart for an n -word s $\frac{ense. 5}{2}$	 Slide CS674–10 Chart Parsing: The General Idea The process of parsing an n-word sentence consists of forming a chart with n + 1 vertices and adding edges to the chart one at a time. Goal: To produce a complete edge that spans from vertex 0 to n and is of category S. There is no backtracking. Everything that is put in the chart stays there.

Bottom-UP Chart Parsing Algorithm

Do until there is no input left:

- 1. If the agenda is empty, get next word from the input, look up word categories, add to agenda (as constituent spanning two postions).
- 2. Select a constituent from the agenda: constituent C from p_1 to p_2 .
- 3. Insert C into the chart from position p_1 to p_2 .
- 4. For each rule in the grammar of form $X \to C X_1 \dots X_n$, add an active edge of form $X \to C \circ X_1 \dots X_n$ from p_1 to p_2 .

- 5. Extend existing edges that are looking for a C.
 - (a) For any active edge of form $X \to X_1 \dots \circ CX_n$ from p_0 to p_1 , add a new active edge $X \to X_1 \dots C \circ X_n$ from p_0 to p_2 .
 - (b) For any active edge of form $X \to X_1 \dots X_n \circ C$ from p_0 to p_1 , add a new (completed) constituent of type X from p_0 to p_2 to the agenda.

 Slide CS674–13
 Slide CS674–14

 Grammar and Lexicon

 Grammar:

 1. $S \rightarrow NP VP$ 3. $NP \rightarrow ART ADJ N$

 2. $NP \rightarrow ART N$ 4. $VP \rightarrow V NP$

 Example

 [See .ppt slides]

 the: ART
 man: N, V

 old: ADJ, N
 boat: N

Sentence: 1 The 2 old 3 man 4 the 5 boat 6

Slide CS674–15

